1
|
Zhou Y, Lin P, Xia L, Heidari AA, Chen Y, Liu L, Chen H, Li C, Li Y. An enhancing diagnostic pulmonary diseases diagnostic method for differentiating talaromycosis from tuberculosis. iScience 2025; 28:111867. [PMID: 40034117 PMCID: PMC11872622 DOI: 10.1016/j.isci.2025.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Talaromycosis (TSM) affects immunocompromised individuals, particularly those with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), causing varied pulmonary abnormalities on chest computed tomography (CT). These features overlap with pulmonary tuberculosis, making accurate differentiation essential for appropriate treatment. This study utilized real patient data from the First Affiliated Hospital of Wenzhou Medical University. A machine learning model, termed bIPCACO-FKNN, was developed, integrating an ant colony optimization (ACO) algorithm with a fuzzy k-nearest neighbors (FKNNs) classifier. This model introduces an incremental proportional-integral-derivative control strategy to enhance the search efficiency of ACO. Comparative analysis with several algorithms in the CEC 2017 benchmark functions confirms the superior performance of the IPCACO. Applying the bIPCACO-FKNN model for the prediction of pulmonary TSM achieved a prediction accuracy of 98.196% and a specificity of 99.500%, thus demonstrating its significant efficacy in accurately distinguishing between pulmonary TSM and tuberculosis. This provides an efficient and reliable machine learning tool for the differentiation between pulmonary TSM and tuberculosis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pengchen Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijing Xia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yi Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, P.R. China
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Zhao J, Li J, Yao J, Lin G, Chen C, Ye H, He X, Qu S, Chen Y, Wang D, Liang Y, Gao Z, Wu F. Enhanced PSO feature selection with Runge-Kutta and Gaussian sampling for precise gastric cancer recurrence prediction. Comput Biol Med 2024; 175:108437. [PMID: 38669732 DOI: 10.1016/j.compbiomed.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
Gastric cancer (GC), characterized by its inconspicuous initial symptoms and rapid invasiveness, presents a formidable challenge. Overlooking postoperative intervention opportunities may result in the dissemination of tumors to adjacent areas and distant organs, thereby substantially diminishing prospects for patient survival. Consequently, the prompt recognition and management of GC postoperative recurrence emerge as a matter of paramount urgency to mitigate the deleterious implications of the ailment. This study proposes an enhanced feature selection model, bRSPSO-FKNN, integrating boosted particle swarm optimization (RSPSO) with fuzzy k-nearest neighbor (FKNN), for predicting GC. It incorporates the Runge-Kutta search, for improved model accuracy, and Gaussian sampling, enhancing the search performance and helping to avoid locally optimal solutions. It outperforms the sophisticated variants of particle swarm optimization when evaluated in the CEC 2014 test suite. Furthermore, the bRSPSO-FKNN feature selection model was introduced for GC recurrence prediction analysis, achieving up to 82.082 % and 86.185 % accuracy and specificity, respectively. In summation, this model attains a notable level of precision, poised to ameliorate the early warning system for GC recurrence and, in turn, advance therapeutic options for afflicted patients.
Collapse
Affiliation(s)
- Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - JiaCheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiangqiao Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Huajun Ye
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xixi He
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shanghu Qu
- Department of Urology, Yunnan Tumor Hospital and the Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Yuxin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Danhong Wang
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yingqi Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhihong Gao
- Zhejiang Engineering Research Center of Intelligent Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Jia W, Chen S, Yang L, Liu G, Li C, Cheng Z, Wang G, Yang X. Ankylosing spondylitis prediction using fuzzy K-nearest neighbor classifier assisted by modified JAYA optimizer. Comput Biol Med 2024; 175:108440. [PMID: 38701589 DOI: 10.1016/j.compbiomed.2024.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
The diagnosis of ankylosing spondylitis (AS) can be complex, necessitating a comprehensive assessment of medical history, clinical symptoms, and radiological evidence. This multidimensional approach can exacerbate the clinical burden and increase the likelihood of diagnostic inaccuracies, which may result in delayed or overlooked cases. Consequently, supplementary diagnostic techniques for AS have become a focal point in clinical research. This study introduces an enhanced optimization algorithm, SCJAYA, which incorporates salp swarm foraging behavior with cooperative predation strategies into the JAYA algorithm framework, noted for its robust optimization capabilities that emulate the evolutionary dynamics of biological organisms. The integration of salp swarm behavior is aimed at accelerating the convergence speed and enhancing the quality of solutions of the classical JAYA algorithm while the cooperative predation strategy is incorporated to mitigate the risk of convergence on local optima. SCJAYA has been evaluated across 30 benchmark functions from the CEC2014 suite against 9 conventional meta-heuristic algorithms as well as 9 state-of-the-art meta-heuristic counterparts. The comparative analyses indicate that SCJAYA surpasses these algorithms in terms of convergence speed and solution precision. Furthermore, we proposed the bSCJAYA-FKNN classifier: an advanced model applying the binary version of SCJAYA for feature selection, with the aim of improving the accuracy in diagnosing and prognosticating AS. The efficacy of the bSCJAYA-FKNN model was substantiated through validation on 11 UCI public datasets in addition to an AS-specific dataset. The model exhibited superior performance metrics-achieving an accuracy rate, specificity, Matthews correlation coefficient (MCC), F-measure, and computational time of 99.23 %, 99.52 %, 0.9906, 99.41 %, and 7.2800 s, respectively. These results not only underscore its profound capability in classification but also its substantial promise for the efficient diagnosis and prognosis of AS.
Collapse
Affiliation(s)
- Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China.
| | - Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China.
| | - Chiyu Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, China; College of Resources and Environment, Jilin Agriculture University, Changchun, 130118, China.
| | - Guoqing Wang
- Zhejiang Suosi Technology Co. Ltd, Wenzhou, 325000, Zhejiang, China.
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
4
|
Chen X, Zhao D, Ji H, Chen Y, Li Y, Zuo Z. Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study. Comput Biol Med 2024; 174:108439. [PMID: 38643596 DOI: 10.1016/j.compbiomed.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
Collapse
Affiliation(s)
- Xuting Chen
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Haochen Ji
- The Seventh Research Division, Beihang University (BUAA), Beijing, China
| | - Yihuan Chen
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Li
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zongyu Zuo
- The Seventh Research Division, Beihang University (BUAA), Beijing, China.
| |
Collapse
|
5
|
Zhang M, Yan K, Chen Y, Yu R. Anticipating interpersonal sensitivity: A predictive model for early intervention in psychological disorders in college students. Comput Biol Med 2024; 172:108134. [PMID: 38492456 DOI: 10.1016/j.compbiomed.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Psychological disorders, notably social anxiety and depression, exert detrimental effects on university students, impeding academic achievement and overall development. Timely identification of interpersonal sensitivity becomes imperative to implement targeted support and interventions. This study selected 958 freshmen from higher education institutions in Zhejiang province as the research sample. Utilizing the runge-kutta search and elite levy spreading enhanced moth-flame optimization (MFO) in conjunction with the kernel extreme learning machine (KELM), we propose an efficient intelligent prediction model, namely bREMFO-KELM, for predicting the interpersonal sensitivity of college students. IEEE CEC 2017 benchmark functions and the interpersonal sensitivity dataset were employed as the basis for detailed comparisons with peer-reviewed studies and well-known machine learning models. The experimental results demonstrate the outstanding performance of the bREMFO-KELM model in predicting the sensitivity of interpersonal relationships in college students, achieving an impressive accuracy rate of 97.186%. In-depth analysis reveals that the prediction of interpersonal sensitivity in college students is closely associated with multiple features, including easily hurt in relationships, shy and uneasy with the opposite sex, feeling inferior to others, discomfort when observed or discussed, and blame and criticize others. These features are not only crucial for the accuracy of the prediction model but also provide valuable information for a deeper understanding of the sensitivity of college students' interpersonal relationships. In conclusion, the bREMFO-KELM model excels not only in performance but also possesses a high degree of interpretability, providing robust support for predicting the sensitivity of interpersonal relationships in college students.
Collapse
Affiliation(s)
- Min Zhang
- Department of Student Affairs, Wenzhou University, Wenzhou, 325035, China.
| | - Kailei Yan
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Yufeng Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Ruying Yu
- Mental Health Education Center, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Lian J, Hui G, Ma L, Zhu T, Wu X, Heidari AA, Chen Y, Chen H. Parrot optimizer: Algorithm and applications to medical problems. Comput Biol Med 2024; 172:108064. [PMID: 38452469 DOI: 10.1016/j.compbiomed.2024.108064] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
Stochastic optimization methods have gained significant prominence as effective techniques in contemporary research, addressing complex optimization challenges efficiently. This paper introduces the Parrot Optimizer (PO), an efficient optimization method inspired by key behaviors observed in trained Pyrrhura Molinae parrots. The study features qualitative analysis and comprehensive experiments to showcase the distinct characteristics of the Parrot Optimizer in handling various optimization problems. Performance evaluation involves benchmarking the proposed PO on 35 functions, encompassing classical cases and problems from the IEEE CEC 2022 test sets, and comparing it with eight popular algorithms. The results vividly highlight the competitive advantages of the PO in terms of its exploratory and exploitative traits. Furthermore, parameter sensitivity experiments explore the adaptability of the proposed PO under varying configurations. The developed PO demonstrates effectiveness and superiority when applied to engineering design problems. To further extend the assessment to real-world applications, we included the application of PO to disease diagnosis and medical image segmentation problems, which are highly relevant and significant in the medical field. In conclusion, the findings substantiate that the PO is a promising and competitive algorithm, surpassing some existing algorithms in the literature. The supplementary files and open source codes of the proposed Parrot Optimizer (PO) is available at https://aliasgharheidari.com/PO.html and https://github.com/junbolian/PO.
Collapse
Affiliation(s)
- Junbo Lian
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Guohua Hui
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ling Ma
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ting Zhu
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Xincan Wu
- College of Mathematics and Computer Sciences, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Sensing Technology and Intelligent Equipment of Department of Forestry, Zhejiang A & F University, Hangzhou, 311300, PR China; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yi Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Su H, Zhao D, Heidari AA, Cai Z, Chen H, Zhu J. Kernel extreme learning with harmonized bat algorithm for prediction of pyrene toxicity in rats. Basic Clin Pharmacol Toxicol 2024; 134:250-271. [PMID: 37945549 DOI: 10.1111/bcpt.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/12/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants and manufactured substances conferring toxicity to human health. The present study investigated whether pyrene, a type of PAH, harms rats. Our research provides an effective feature selection strategy for the animal dataset from Wenzhou Medical University's Experimental Animal Center to thoroughly examine the impacts of PAH toxicity on rat features. Initially, we devised a high-performance optimization method (SCBA) and added the Sobol sequence, vertical crossover and horizontal crossover mechanisms to the bat algorithm (BA). The SCBA-KELM model, which combines SCBA with the kernel extreme learning machine model (KELM), has excellent accuracy and high stability for selecting features. Benchmark function tests are then used in this research to verify the overall optimization performance of SCBA. In this paper, the feature selection performance of SCBA-KELM is verified using various comparative experiments. According to the results, the features of the genes PXR, CAR, CYP2B1/2 and CYP1A1/2 have the most impact on rats. The SCBA-KELM model's classification performance for the gene dataset was 100%, and the model's precision value for the public dataset was around 96%, as determined by the classification index. In conclusion, the model utilized in this research is anticipated to be a reliable and valuable approach for toxicological classification and assessment.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhennao Cai
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiayin Zhu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Guo H, Li M, Liu H, Chen X, Cheng Z, Li X, Yu H, He Q. Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images. Comput Biol Med 2024; 168:107769. [PMID: 38039898 DOI: 10.1016/j.compbiomed.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Breast cancer poses a significant risk to women's health, and it is essential to provide proper diagnostic support. Medical image processing technology is a key component of all supporting diagnostic techniques, with Image Segmentation (IS) being one of its primary steps. Among various methods, Multilevel Image Segmentation (MIS) is considered one of the most effective and straightforward approaches. Many researchers have attempted to improve the quality of image segmentation by combining different metaheuristic algorithms with MIS. However, these methods often suffer from issues such as low convergence accuracy and a proclivity for converging towards Local Optima (LO). To overcome these challenges, this study introduces an integrated approach that combines the Salp Swarm Algorithm (SSA), Slime Mould Algorithm (SMA) and Differential Evolution (DE) algorithm. In this manuscript, we introduce an innovative hybrid MIS model termed SDSSA, which leverages elements from the SSA, SMA and DE algorithms. The SDSSA model fundamentally relies on non-local means 2D histogram and 2D Kapur's entropy. To evaluate the proposed method effectively, we compare it initially with similar algorithms using the IEEE CEC2014 benchmark functions. The SDSSA showcases enhanced convergence velocity and precision relative to similar algorithms. Furthermore, this paper proposes an excellent MIS method. Subsequently, IS experiments were conducted separately at both low and high threshold levels. The test results demonstrate that the segmentation outcomes of MIS, at both low and high threshold levels, outperform other methods. This validates SDSSA as a superior segmentation technique that provides practical assistance for future research in breast cancer pathology image processing.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mingyang Li
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hanbo Liu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiao Chen
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130000, China.
| | - Xiaohua Li
- Library, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Qiuxiang He
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Peng L, Cai Z, Heidari AA, Zhang L, Chen H. Hierarchical Harris hawks optimizer for feature selection. J Adv Res 2023; 53:261-278. [PMID: 36690206 PMCID: PMC10658428 DOI: 10.1016/j.jare.2023.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The main feature selection methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must include a swarm intelligence algorithm, and its performance in feature selection is closely related to the algorithm's quality. Therefore, it is essential to choose and design a suitable algorithm to improve the performance of the feature selection method based on the wrapper. Harris hawks optimization (HHO) is a superb optimization approach that has just been introduced. It has a high convergence rate and a powerful global search capability but it has an unsatisfactory optimization effect on high dimensional problems or complex problems. Therefore, we introduced a hierarchy to improve HHO's ability to deal with complex problems and feature selection. OBJECTIVES To make the algorithm obtain good accuracy with fewer features and run faster in feature selection, we improved HHO and named it EHHO. On 30 UCI datasets, the improved HHO (EHHO) can achieve very high classification accuracy with less running time and fewer features. METHODS We first conducted extensive experiments on 23 classical benchmark functions and compared EHHO with many state-of-the-art metaheuristic algorithms. Then we transform EHHO into binary EHHO (bEHHO) through the conversion function and verify the algorithm's ability in feature extraction on 30 UCI data sets. RESULTS Experiments on 23 benchmark functions show that EHHO has better convergence speed and minimum convergence than other peers. At the same time, compared with HHO, EHHO can significantly improve the weakness of HHO in dealing with complex functions. Moreover, on 30 datasets in the UCI repository, the performance of bEHHO is better than other comparative optimization algorithms. CONCLUSION Compared with the original bHHO, bEHHO can achieve excellent classification accuracy with fewer features and is also better than bHHO in running time.
Collapse
Affiliation(s)
- Lemin Peng
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Zhennao Cai
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Lejun Zhang
- Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China; College of Information Engineering, Yangzhou University, Yangzhou 225127, China; Research and Development Center for E-Learning , Ministry of Education, Beijing 100039, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Zhu W, Li Z, Heidari AA, Wang S, Chen H, Zhang Y. An Enhanced RIME Optimizer with Horizontal and Vertical Crossover for Discriminating Microseismic and Blasting Signals in Deep Mines. SENSORS (BASEL, SWITZERLAND) 2023; 23:8787. [PMID: 37960486 PMCID: PMC10648578 DOI: 10.3390/s23218787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Real-time monitoring of rock stability during the mining process is critical. This paper first proposed a RIME algorithm (CCRIME) based on vertical and horizontal crossover search strategies to improve the quality of the solutions obtained by the RIME algorithm and further enhance its search capabilities. Then, by constructing a binary version of CCRIME, the key parameters of FKNN were optimized using a binary conversion method. Finally, a discrete CCRIME-based BCCRIME was developed, which uses an S-shaped function transformation approach to address the feature selection issue by converting the search result into a real number that can only be zero or one. The performance of CCRIME was examined in this study from various perspectives, utilizing 30 benchmark functions from IEEE CEC2017. Basic algorithm comparison tests and sophisticated variant algorithm comparison experiments were also carried out. In addition, this paper also used collected microseismic and blasting data for classification prediction to verify the ability of the BCCRIME-FKNN model to process real data. This paper provides new ideas and methods for real-time monitoring of rock mass stability during deep well mineral resource mining.
Collapse
Affiliation(s)
- Wei Zhu
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China; (W.Z.); (Z.L.)
| | - Zhihui Li
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China; (W.Z.); (Z.L.)
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1417466191, Iran;
| | - Shuihua Wang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
11
|
Li X, Lin Z, Lv H, Yu L, Heidari AA, Zhang Y, Chen H, Liang G. Advanced slime mould algorithm incorporating differential evolution and Powell mechanism for engineering design. iScience 2023; 26:107736. [PMID: 37810256 PMCID: PMC10558746 DOI: 10.1016/j.isci.2023.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The slime mould algorithm (SMA) is a population-based swarm intelligence optimization algorithm that simulates the oscillatory foraging behavior of slime moulds. To overcome its drawbacks of slow convergence speed and premature convergence, this paper proposes an improved algorithm named PSMADE, which integrates the differential evolution algorithm (DE) and the Powell mechanism. PSMADE utilizes crossover and mutation operations of DE to enhance individual diversity and improve global search capability. Additionally, it incorporates the Powell mechanism with a taboo table to strengthen local search and facilitate convergence toward better solutions. The performance of PSMADE is evaluated by comparing it with 14 metaheuristic algorithms (MA) and 15 improved MAs on the CEC 2014 benchmarks, as well as solving four constrained real-world engineering problems. Experimental results demonstrate that PSMADE effectively compensates for the limitations of SMA and exhibits outstanding performance in solving various complex problems, showing potential as an effective problem-solving tool.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zihan Lin
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haoxuan Lv
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Liang Yu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou 325035, China
| |
Collapse
|
12
|
Zhang H, Cai Z, Xiao L, Heidari AA, Chen H, Zhao D, Wang S, Zhang Y. Face Image Segmentation Using Boosted Grey Wolf Optimizer. Biomimetics (Basel) 2023; 8:484. [PMID: 37887615 PMCID: PMC10604473 DOI: 10.3390/biomimetics8060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Image segmentation methods have received widespread attention in face image recognition, which can divide each pixel in the image into different regions and effectively distinguish the face region from the background for further recognition. Threshold segmentation, a common image segmentation method, suffers from the problem that the computational complexity shows exponential growth with the increase in the segmentation threshold level. Therefore, in order to improve the segmentation quality and obtain the segmentation thresholds more efficiently, a multi-threshold image segmentation framework based on a meta-heuristic optimization technique combined with Kapur's entropy is proposed in this study. A meta-heuristic optimization method based on an improved grey wolf optimizer variant is proposed to optimize the 2D Kapur's entropy of the greyscale and nonlocal mean 2D histograms generated by image computation. In order to verify the advancement of the method, experiments compared with the state-of-the-art method on IEEE CEC2020 and face image segmentation public dataset were conducted in this paper. The proposed method has achieved better results than other methods in various tests at 18 thresholds with an average feature similarity of 0.8792, an average structural similarity of 0.8532, and an average peak signal-to-noise ratio of 24.9 dB. It can be used as an effective tool for face segmentation.
Collapse
Affiliation(s)
- Hongliang Zhang
- Jilin Agricultural University Library, Jilin Agricultural University, Changchun 130118, China;
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China; (Z.C.); (L.X.)
| | - Lei Xiao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China; (Z.C.); (L.X.)
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 11366, Iran;
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China; (Z.C.); (L.X.)
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Wu Q, Tang X, Li R, Liu L, Chen HL. An enhanced decision-making framework for predicting future trends of sharing economy. PLoS One 2023; 18:e0291626. [PMID: 37797038 PMCID: PMC10553323 DOI: 10.1371/journal.pone.0291626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
This work aims to provide a reliable and intelligent prediction model for future trends in sharing economy. Moreover, it presents valuable insights for decision-making and policy development by relevant governmental bodies. Furthermore, the study introduces a predictive system that incorporates an enhanced Harris Hawk Optimization (HHO) algorithm and a K-Nearest Neighbor (KNN) forecasting framework. The method utilizes an improved simulated annealing mechanism and a Gaussian bare bone structure to improve the original HHO, termed SGHHO. To achieve optimal prediction performance and identify essential features, a refined simulated annealing mechanism is employed to mitigate the susceptibility of the original HHO algorithm to local optima. The algorithm employs a mechanism that boosts its global search ability by generating fresh solution sets at a specific likelihood. This mechanism dynamically adjusts the equilibrium between the exploration and exploitation phases, incorporating the Gaussian bare bone strategy. The best classification model (SGHHO-KNN) is developed to mine the key features with the improvement of both strategies. To assess the exceptional efficacy of the SGHHO algorithm, this investigation conducted a series of comparative trials employing the function set of IEEE CEC 2014. The outcomes of these experiments unequivocally demonstrate that the SGHHO algorithm outperforms the original HHO algorithm on 96.7% of the functions, substantiating its remarkable superiority. The algorithm can achieve the optimal value of the function on 67% of the tested functions and significantly outperforms other competing algorithms. In addition, the key features selected by the SGHHO-KNN model in the prediction experiment, including " Form of sharing economy in your region " and " Attitudes to the sharing economy ", are important for predicting the future trends of the sharing economy in this study. The results of the prediction demonstrate that the proposed model achieves an accuracy rate of 99.70% and a specificity rate of 99.38%. Consequently, the SGHHO-KNN model holds great potential as a reliable tool for forecasting the forthcoming trajectory of the sharing economy.
Collapse
Affiliation(s)
- Qiong Wu
- School of Marxism, Wenzhou University, Wenzhou, China
| | - Xiaoxiao Tang
- School of Marxism, Wenzhou University, Wenzhou, China
| | - Rongjie Li
- Wenzhou Business College, Wenzhou, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Ling Chen
- College of Computer Science an Artificial Intelligence, Wenzhou University, Wenzhou, China
| |
Collapse
|
14
|
Zhou W, Wang P, Zhao X, Chen H. Anti-sine-cosine atom search optimization (ASCASO): a novel approach for parameter estimation of PV models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99620-99651. [PMID: 37620698 DOI: 10.1007/s11356-023-28777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/09/2023] [Indexed: 08/26/2023]
Abstract
Nowadays, solar power generation has gradually become a part of electric energy sharing. How to effectively enhance the energy conversion efficiency of solar cells and components has gradually emerged as a focal point of research. This paper presents a boosted atomic search optimization (ASO) with a new anti-sine-cosine mechanism (ASCASO) to realize the parameter estimation of photovoltaic (PV) models. The anti-sine-cosine mechanism is inspired by the update principle of sine cosine algorithm (SCA) and the mutation strategy of linear population size reduction adaptive differential evolution (LSHADE). The working principle of anti-sine-cosine mechanism is to utilize two mutation formulas containing arcsine and arccosine functions to further update the position of atoms. The introduction of anti-sine-cosine mechanism achieves the populations' random handover and promotes the neighbors' information communication. For better evaluation, the proposed ASCASO is devoted to estimate parameters of three PV models of R.T.C France, one Photowat-PWP201 PV module model, and two commercial polycrystalline PV panels including STM6-40/36 and STM6-120/36 with monocrystalline cells. The proposed ASCASO is compared with nine reported comparative algorithms to assess the performance. The results of parameter estimation for different PV models of various methods demonstrate that ASCASO performs more accurately and reliably than other reported comparative methods. Thus, ASCASO can be considered a highly effective approach for accurately estimating the parameters of PV models.
Collapse
Affiliation(s)
- Wei Zhou
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuehua Zhao
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
15
|
Hao S, Huang C, Heidari AA, Xu Z, Chen H, Alabdulkreem E, Elmannai H, Wang X. Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images. Biomed Signal Process Control 2023; 86:105147. [PMID: 37361197 PMCID: PMC10266503 DOI: 10.1016/j.bspc.2023.105147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Since the outbreak of COVID-19, it has seriously endangered the health of human beings. Computer automatic segmentation of COVID-19 X-ray images is an important means to assist doctors in rapid and accurate diagnosis. Therefore, this paper proposes a modified FOA (EEFOA) with two optimization strategies added to the original FOA, including elite natural evolution (ENE) and elite random mutation (ERM). To be specific, ENE and ERM can effectively speed up the convergence and deal with the problem of local optima, respectively. The outstanding performance of EEFOA was confirmed by experimental results comparing EEFOA with the original FOA, other FOA variants, and advanced algorithms at CEC2014. After that, EEFOA is implemented for multi-threshold image segmentation (MIS) of COVID-19 X-ray images, where a 2D histogram consisting of the original greyscale image and the non-local means image is used to represent the image information, and Rényi's entropy is used as the objective function to find the maximum value. The evaluation results of the MIS segmentation experiments show that, whether high or low threshold, EEFOA can achieve higher quality segmentation results and greater robustness than other advanced segmentation methods.
Collapse
Affiliation(s)
- Shuhui Hao
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Changcheng Huang
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhangze Xu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Eatedal Alabdulkreem
- Department of Computer Science, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Xianchuan Wang
- Information Technology Center, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
16
|
Chen Z, Xinxian L, Guo R, Zhang L, Dhahbi S, Bourouis S, Liu L, Wang X. Dispersed differential hunger games search for high dimensional gene data feature selection. Comput Biol Med 2023; 163:107197. [PMID: 37390761 DOI: 10.1016/j.compbiomed.2023.107197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
The realms of modern medicine and biology have provided substantial data sets of genetic roots that exhibit a high dimensionality. Clinical practice and associated processes are primarily dependent on data-driven decision-making. However, the high dimensionality of the data in these domains increases the complexity and size of processing. It can be challenging to determine representative genes while reducing the data's dimensionality. A successful gene selection will serve to mitigate the computing costs and refine the accuracy of the classification by eliminating superfluous or duplicative features. To address this concern, this research suggests a wrapper gene selection approach based on the HGS, combined with a dispersed foraging strategy and a differential evolution strategy, to form a new algorithm named DDHGS. Introducing the DDHGS algorithm to the global optimization field and its binary derivative bDDHGS to the feature selection problem is anticipated to refine the existing search balance between explorative and exploitative cores. We assess and confirm the efficacy of our proposed method, DDHGS, by comparing it with DE and HGS combined with a single strategy, seven classic algorithms, and ten advanced algorithms on the IEEE CEC 2017 test suite. Furthermore, to further evaluate DDHGS' performance, we compare it with several CEC winners and DE-based techniques of great efficiency on 23 popular optimization functions and the IEEE CEC 2014 benchmark test suite. The experimentation asserted that the bDDHGS approach was able to surpass bHGS and a variety of existing methods when applied to fourteen feature selection datasets from the UCI repository. The metrics measured--classification accuracy, the number of selected features, fitness scores, and execution time--all showed marked improvements with the use of bDDHGS. Considering all results, it can be concluded that bDDHGS is an optimal optimizer and an effective feature selection tool in the wrapper mode.
Collapse
Affiliation(s)
- Zhiqing Chen
- School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou, 325035, China.
| | - Li Xinxian
- Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China.
| | - Ran Guo
- Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China.
| | - Lejun Zhang
- Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China; College of Information Engineering, Yangzhou University, Yangzhou, 225127, China; Research and Development Center for E-Learning, Ministry of Education, Beijing, 100039, China.
| | - Sami Dhahbi
- Department of Computer Science, College of Science and Art at Mahayil, King Khalid University, Muhayil, Aseer, 62529, Saudi Arabia.
| | - Sami Bourouis
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Xianchuan Wang
- Information Technology Center, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Zhang X, Lu B, Zhang L, Pan Z, Liao M, Shen H, Zhang L, Liu L, Li Z, Hu Y, Gao Z. An enhanced grey wolf optimizer boosted machine learning prediction model for patient-flow prediction. Comput Biol Med 2023; 163:107166. [PMID: 37364530 DOI: 10.1016/j.compbiomed.2023.107166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Large and medium-sized general hospitals have adopted artificial intelligence big data systems to optimize the management of medical resources to improve the quality of hospital outpatient services and decrease patient wait times in recent years as a result of the development of medical information technology and the rise of big medical data. However, owing to the impact of several elements, including the physical environment, patient, and physician behaviours, the real optimum treatment effect does not meet expectations. In order to promote orderly patient access, this work provides a patient-flow prediction model that takes into account shifting dynamics and objective rules of patient-flow to handle this issue and forecast patients' medical requirements. First, we propose a high-performance optimization method (SRXGWO) and integrate the Sobol sequence, Cauchy random replacement strategy, and directional mutation mechanism into the grey wolf optimization (GWO) algorithm. The patient-flow prediction model (SRXGWO-SVR) is then proposed using SRXGWO to optimize the parameters of support vector regression (SVR). Twelve high-performance algorithms are examined in the benchmark function experiments' ablation and peer algorithm comparison tests, which are intended to validate SRXGWO's optimization performance. In order to forecast independently in the patient-flow prediction trials, the data set is split into training and test sets. The findings demonstrated that SRXGWO-SVR outperformed the other seven peer models in terms of prediction accuracy and error. As a result, SRXGWO-SVR is anticipated to be a reliable and efficient patient-flow forecast system that may help hospitals manage medical resources as effectively as possible.
Collapse
Affiliation(s)
- Xiang Zhang
- Wenzhou Data Management and Development Group Co.,Ltd, Wenzhou, Zhejiang, 325000, China.
| | - Bin Lu
- Wenzhou City Bureau of Justice, Wenzhou, Zhejiang, 325000, China.
| | - Lyuzheng Zhang
- B-soft Co.,Ltd., B-soft Wisdom Building, No.92 Yueda Lane, Binjiang District, Hangzhou, 310052, China.
| | - Zhifang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Minjie Liao
- Wenzhou Data Management and Development Group Co.,Ltd, Wenzhou, Zhejiang, 325000, China.
| | - Huihui Shen
- Wenzhou Data Management and Development Group Co.,Ltd, Wenzhou, Zhejiang, 325000, China.
| | - Li Zhang
- Wenzhou Hongsheng Intellectual Property Agency (General Partnership), Wenzhou, Zhejiang, 325000, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Zuxiang Li
- Organization Department of the Party Committee, Wenzhou University, Wenzhou, 325000, China.
| | - YiPao Hu
- Wenzhou Health Commission, Wenzhou, Zhejiang, 325000, China.
| | - Zhihong Gao
- Zhejiang Engineering Research Center of Intelligent Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
18
|
Lu H, Huang L, Xie Y, Zhou Z, Cui H, Jing S, Yang Z, Zhu D, Wang S, Bao D, Liang G, Cai Z, Chen H, He W. Prediction of fractional flow reserve with enhanced ant lion optimized support vector machine. Heliyon 2023; 9:e18832. [PMID: 37588610 PMCID: PMC10425907 DOI: 10.1016/j.heliyon.2023.e18832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The evaluation of coronary morphology provides important guidance for the treatment of coronary heart disease (CHD). A chaotic Gaussian mutation antlion optimizer algorithm (CGALO) is proposed in the paper, and it is combined with SVM to construct a classification prediction model for Fractional flow reserve (FFR). To overcome the limitations of the original antlion optimizer (ALO) algorithm, the chaotic Gaussian mutation strategy is introduced, which leads to an improvement in its convergence speed and accuracy. To evaluate the proposed algorithm's performance, comparative experiments were conducted on 23 benchmark functions alongside 12 other cutting-edge optimization algorithms. The experimental outcomes demonstrate that the proposed algorithm achieves superior convergence accuracy and speed compared to the alternative comparison algorithms. Additionally, it is combined with SVM and FS to construct a hierarchical FFR classification model, which is utilized to make effective predictions for 84 patients at the affiliated hospital of medical school, Ningbo university. The experimental results demonstrate that the proposed model achieves an average accuracy of 92%. Moreover, it concludes that smoking history, number of lesion vessels, lesion location, diffuse lesions and ST segment changes, and other factors are the most critical indicators for FFR. Therefore, the model that has been established is a new FFR intelligent classification prediction technology that can effectively assist doctors in making corresponding decisions and evaluation plans.
Collapse
Affiliation(s)
- Haoxuan Lu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Li Huang
- Department of Emergency, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Yanqing Xie
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Zhong Zhou
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Hanbin Cui
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Sheng Jing
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Zhuo Yang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Decai Zhu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Shiqi Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Donggang Bao
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou, 325035, China
| | - Zhennao Cai
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Wenming He
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, PR China
| |
Collapse
|
19
|
Chen J, Cai Z, Heidari AA, Chen H, He Q, Escorcia-Gutierrez J, Mansour RF. Multi-threshold image segmentation based on an improved differential evolution: Case study of thyroid papillary carcinoma. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
He X, Shan W, Zhang R, Heidari AA, Chen H, Zhang Y. Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification. Biomimetics (Basel) 2023; 8:268. [PMID: 37504156 PMCID: PMC10377160 DOI: 10.3390/biomimetics8030268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
Recently, swarm intelligence algorithms have received much attention because of their flexibility for solving complex problems in the real world. Recently, a new algorithm called the colony predation algorithm (CPA) has been proposed, taking inspiration from the predatory habits of groups in nature. However, CPA suffers from poor exploratory ability and cannot always escape solutions known as local optima. Therefore, to improve the global search capability of CPA, an improved variant (OLCPA) incorporating an orthogonal learning strategy is proposed in this paper. Then, considering the fact that the swarm intelligence algorithm can go beyond the local optimum and find the global optimum solution, a novel OLCPA-CNN model is proposed, which uses the OLCPA algorithm to tune the parameters of the convolutional neural network. To verify the performance of OLCPA, comparison experiments are designed to compare with other traditional metaheuristics and advanced algorithms on IEEE CEC 2017 benchmark functions. The experimental results show that OLCPA ranks first in performance compared to the other algorithms. Additionally, the OLCPA-CNN model achieves high accuracy rates of 97.7% and 97.8% in classifying the MIT-BIH Arrhythmia and European ST-T datasets.
Collapse
Affiliation(s)
- Xinxin He
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China
| | - Weifeng Shan
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China
| | - Ruilei Zhang
- School of Emergency Management, Institute of Disaster Prevention, Sanhe 065201, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
21
|
Chen Z, Xuan P, Heidari AA, Liu L, Wu C, Chen H, Escorcia-Gutierrez J, Mansour RF. An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection. iScience 2023; 26:106679. [PMID: 37216098 PMCID: PMC10193239 DOI: 10.1016/j.isci.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision. Therefore, this article designs a new wrapper gene selection algorithm named artificial bee bare-bone hunger games search (ABHGS), which is the hunger games search (HGS) integrated with an artificial bee strategy and a Gaussian bare-bone structure to address this issue. To evaluate and validate the performance of our proposed method, ABHGS is compared to HGS and a single strategy embedded in HGS, six classic algorithms, and ten advanced algorithms on the CEC 2017 functions. The experimental results demonstrate that the bABHGS outperforms the original HGS. Compared to peers, it increases classification accuracy and decreases the number of selected features, indicating its actual engineering utility in spatial search and feature selection.
Collapse
Affiliation(s)
- Zhiqing Chen
- School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325035, China
| | - Ping Xuan
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chengwen Wu
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla 080002, Colombia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
22
|
Chen J, Cai Z, Chen H, Chen X, Escorcia-Gutierrez J, Mansour RF, Ragab M. Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing. JOURNAL OF BIONIC ENGINEERING 2023; 20:1-36. [PMID: 37361683 PMCID: PMC10154766 DOI: 10.1007/s42235-023-00365-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/28/2023]
Abstract
Lupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm. The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset. In addition, the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images. Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution. According to the three image quality evaluation metrics: PSNR, FSIM, and SSIM, the proposed image segmentation method performs well in image segmentation experiments. Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.
Collapse
Affiliation(s)
- Jiaochen Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, 080002 Barranquilla, Colombia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, 72511, El-Kharga, Egypt
| | - Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, Cairo, 11884 Egypt
| |
Collapse
|
23
|
Zhang M, Wu Q, Chen H, Heidari AA, Cai Z, Li J, Md Abdelrahim E, Mansour RF. Whale optimization with random contraction and Rosenbrock method for COVID-19 disease prediction. Biomed Signal Process Control 2023; 83:104638. [PMID: 36741073 PMCID: PMC9889265 DOI: 10.1016/j.bspc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has hugely impacted global public health. To identify and intervene in critically ill patients early, this paper proposes an efficient, intelligent prediction model based on the machine learning approach, which combines the improved whale optimization algorithm (RRWOA) with the k-nearest neighbor (KNN) classifier. In order to improve the problem that WOA is prone to fall into local optimum, an improved version named RRWOA is proposed based on the random contraction strategy (RCS) and the Rosenbrock method. To verify the capability of the proposed algorithm, RRWOA is tested against nine classical metaheuristics, nine advanced metaheuristics, and seven well-known WOA variants based on 30 IEEE CEC2014 competition functions, respectively. The experimental results in mean, standard deviation, the Friedman test, and the Wilcoxon signed-rank test are considered, proving that RRWOA won first place on 18, 24, and 25 test functions, respectively. In addition, a binary version of the algorithm, called BRRWOA, is developed for feature selection problems. An efficient prediction model based on BRRWOA and KNN classifier is proposed and compared with seven existing binary metaheuristics based on 15 datasets of UCI repositories. The experimental results show that the proposed algorithm obtains the smallest fitness value in eleven datasets and can solve combinatorial optimization problems, indicating that it still performs well in discrete cases. More importantly, the model was compared with five other algorithms on the COVID-19 dataset. The experiment outcomes demonstrate that the model offers a scientific framework to support clinical diagnostic decision-making. Therefore, RRWOA is an effectively improved optimizer with efficient value.
Collapse
Affiliation(s)
- Meilin Zhang
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Qianxi Wu
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Ali Asghar Heidari
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Zhennao Cai
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China
| | - Jiaren Li
- Wenzhou People's Hospital, Wenzhou, Zhejiang 325099, China
| | - Elsaid Md Abdelrahim
- Faculty of Science, Northern Border University, Arar, Saudi Arabia.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Romany F Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| |
Collapse
|
24
|
Su H, Zhao D, Heidari AA, Liu L, Zhang X, Mafarja M, Chen H. RIME: A physics-based optimization. Neurocomputing 2023; 532:183-214. [DOI: 10.1016/j.neucom.2023.02.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
25
|
Weng X, Xuan P, Heidari AA, Cai Z, Chen H, Mansour RF, Ragab M. A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems. ENERGY 2023; 271:127000. [DOI: 10.1016/j.energy.2023.127000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
|
26
|
Qiao Z, Li L, Zhao X, Liu L, Zhang Q, Hechmi S, Atri M, Li X. An enhanced Runge Kutta boosted machine learning framework for medical diagnosis. Comput Biol Med 2023; 160:106949. [PMID: 37159961 DOI: 10.1016/j.compbiomed.2023.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 05/11/2023]
Abstract
With the development and maturity of machine learning methods, medical diagnosis aided with machine learning methods has become a popular method to assist doctors in diagnosing and treating patients. However, machine learning methods are greatly affected by their hyperparameters, for instance, the kernel parameter in kernel extreme learning machine (KELM) and the learning rate in residual neural networks (ResNet). If the hyperparameters are appropriately set, the performance of the classifier can be significantly improved. To boost the performance of the machine learning methods, this paper proposes to improve the Runge Kutta optimizer (RUN) to adaptively adjust the hyperparameters of the machine learning methods for medical diagnosis purposes. Although RUN has a solid mathematical theoretical foundation, there are still some performance defects when dealing with complex optimization problems. To remedy these defects, this paper proposes a new enhanced RUN method with a grey wolf mechanism and an orthogonal learning mechanism called GORUN. The superior performance of the GORUN was validated against other well-established optimizers on IEEE CEC 2017 benchmark functions. Then, the proposed GORUN is employed to optimize the machine learning models, including the KELM and ResNet, to construct robust models for medical diagnosis. The performance of the proposed machine learning framework was validated on several medical data sets, and the experimental results have demonstrated its superiority.
Collapse
Affiliation(s)
- Zenglin Qiao
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Lynn Li
- China Telecom Stocks Co.,Ltd., Hangzhou Branch, Hangzhou, 310000, China.
| | - Xinchao Zhao
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Qian Zhang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, Zhejiang, 325035, China.
| | - Shili Hechmi
- Dept. Computer Sciences, Tabuk University, Tabuk, Saudi Arabia.
| | - Mohamed Atri
- College of Computer Science, King Khalid University, Abha, Saudi Arabia.
| | - Xiaohua Li
- Library, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
27
|
Shi M, Chen C, Liu L, Kuang F, Zhao D, Chen X. A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation. Comput Biol Med 2023; 160:106950. [PMID: 37120988 DOI: 10.1016/j.compbiomed.2023.106950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
The segmentation of medical images is a crucial and demanding step in medical image processing that offers a solid foundation for subsequent extraction and analysis of medical image data. Although multi-threshold image segmentation is the most used and specialized basic image segmentation technique, it is computationally demanding and often produces subpar segmentation results, hence restricting its application. To solve this issue, this work develops a multi-strategy-driven slime mould algorithm (RWGSMA) for multi-threshold image segmentation. Specifically, the random spare strategy, the double adaptive weigh strategy, and the grade-based search strategy are used to improve the performance of SMA, resulting in an enhanced SMA version. The random spare strategy is mainly used to accelerate the convergence rate of the algorithm. To prevent SMA from falling towards the local optimum, the double adaptive weights are also applied. The grade-based search approach has also been developed to boost convergence performance. This study evaluates the efficacy of RWGSMA from many viewpoints using 30 test suites from IEEE CEC2017 to effectively demonstrate the importance of these techniques in RWGSMA. In addition, numerous typical images were used to show RWGSMA's segmentation performance. Using the multi-threshold segmentation approach with 2D Kapur's entropy as the RWGSMA fitness function, the suggested algorithm was then used to segment instances of lupus nephritis. The experimental findings demonstrate that the suggested RWGSMA beats numerous similar rivals, suggesting that it has a great deal of promise for segmenting histopathological images.
Collapse
Affiliation(s)
- Manrong Shi
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Chi Chen
- Wenzhou University of Technology, Wenzhou, 325035, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Fangjun Kuang
- School of Information engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Xiaowei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Zhao X, Liu L, Heidari AA, Chen Y, Ma BJ, Chen H, Quan S. An enhanced ant colony optimizer with Cauchy-Gaussian fusion and novel movement strategy for multi-threshold COVID-19 X-ray image segmentation. Front Neuroinform 2023; 17:1126783. [PMID: 37006638 PMCID: PMC10064065 DOI: 10.3389/fninf.2023.1126783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023] Open
Abstract
The novel coronavirus pneumonia (COVID-19) is a respiratory disease of great concern in terms of its dissemination and severity, for which X-ray imaging-based diagnosis is one of the effective complementary diagnostic methods. It is essential to be able to separate and identify lesions from their pathology images regardless of the computer-aided diagnosis techniques. Therefore, image segmentation in the pre-processing stage of COVID-19 pathology images would be more helpful for effective analysis. In this paper, to achieve highly effective pre-processing of COVID-19 pathological images by using multi-threshold image segmentation (MIS), an enhanced version of ant colony optimization for continuous domains (MGACO) is first proposed. In MGACO, not only a new move strategy is introduced, but also the Cauchy-Gaussian fusion strategy is incorporated. It has been accelerated in terms of convergence speed and has significantly enhanced its ability to jump out of the local optimum. Furthermore, an MIS method (MGACO-MIS) based on MGACO is developed, where it applies the non-local means, 2D histogram as the basis, and employs 2D Kapur’s entropy as the fitness function. To demonstrate the performance of MGACO, we qualitatively analyze it in detail and compare it with other peers on 30 benchmark functions from IEEE CEC2014, which proves that it has a stronger capability of solving problems over the original ant colony optimization for continuous domains. To verify the segmentation effect of MGACO-MIS, we conducted a comparison experiment with eight other similar segmentation methods based on real pathology images of COVID-19 at different threshold levels. The final evaluation and analysis results fully demonstrate that the developed MGACO-MIS is sufficient to obtain high-quality segmentation results in the COVID-19 image segmentation and has stronger adaptability to different threshold levels than other methods. Therefore, it has been well-proven that MGACO is an excellent swarm intelligence optimization algorithm, and MGACO-MIS is also an excellent segmentation method.
Collapse
Affiliation(s)
- Xiuzhi Zhao
- College of Artificial Intelligence, Zhejiang Industry & Trade Vocational College, Wenzhou, Zhejiang, China
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Lei Liu,
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Yi Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou, China
| | - Benedict Jun Ma
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huiling Chen
- Institute of Big Data and Information Technology, Wenzhou University, Wenzhou, China
- Huiling Chen,
| | - Shichao Quan
- Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
- Shichao Quan,
| |
Collapse
|
29
|
Zhao S, Wang P, Heidari AA, Zhao X, Chen H. Boosted crow search algorithm for handling multi-threshold image problems with application to X-ray images of COVID-19. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:119095. [PMID: 36313263 PMCID: PMC9595503 DOI: 10.1016/j.eswa.2022.119095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 is pervasive and threatens the safety of people around the world. Therefore, now, a method is needed to diagnose COVID-19 accurately. The identification of COVID-19 by X-ray images is a common method. The target area is extracted from the X-ray images by image segmentation to improve classification efficiency and help doctors make a diagnosis. In this paper, we propose an improved crow search algorithm (CSA) based on variable neighborhood descent (VND) and information exchange mutation (IEM) strategies, called VMCSA. The original CSA quickly falls into the local optimum, and the possibility of finding the best solution is significantly reduced. Therefore, to help the algorithm avoid falling into local optimality and improve the global search capability of the algorithm, we introduce VND and IEM into CSA. Comparative experiments are conducted at CEC2014 and CEC'21 to demonstrate the better performance of the proposed algorithm in optimization. We also apply the proposed algorithm to multi-level thresholding image segmentation using Renyi's entropy as the objective function to find the optimal threshold, where we construct 2-D histograms with grayscale images and non-local mean images and maximize the Renyi's entropy on top of the 2-D histogram. The proposed segmentation method is evaluated on X-ray images of COVID-19 and compared with some algorithms. VMCSA has a significant advantage in segmentation results and obtains better robustness than other algorithms. The available extra info can be found at https://github.com/1234zsw/VMCSA.
Collapse
Affiliation(s)
- Songwei Zhao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Xuehua Zhao
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
30
|
Houssein EH, Sayed A. A modified weighted mean of vectors optimizer for Chronic Kidney disease classification. Comput Biol Med 2023; 155:106691. [PMID: 36805229 DOI: 10.1016/j.compbiomed.2023.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Chronic kidney Disease (CKD), also known as chronic renal disease, is an illness that affects the majority of adults and is defined by a progressive decrease in kidney function over time, particularly in those with diabetes and high blood pressure. Metaheuristic (MH) algorithms based machine learning classifiers have become reliable for medical treatment. The weIghted meaN oF vectOrs (INFO) is a recently developed MH but suffers from a fall into local optimal and slow convergence speed. Therefore, to improve INFO, a modified INFO (mINFO) with two enhancement strategies has been developed. The developed variant utilizes the Opposition-Based Learning (OBL) to improve the local search ability to avoid trapping into the local optimum, and the Dynamic Candidate Solution (DCS) is used to overcome the premature convergence problem in INFO and achieve the appropriate balance between exploration and exploitation ability. The performance of the proposed mINFO based on the k-Nearest Neighbor (kNN) classifier is evaluated on the complex CEC'22 test suite and applied to predict Chronic Kidney Disease (CKD) on datasets extracted from UCI. The statistical results revealed the superiority of mINFO compared with several well-known MH algorithms, including the Harris Hawks Optimization (HHO), the Hunger Games Search (HGS) algorithm, the Moth-Flame Optimization (MFO) algorithm, the Whale Optimization Algorithm (WOA), the Sine Cosine Algorithm (SCA), the Gradient-Based Optimizer (GBO), and the original INFO algorithm. According to our knowledge, this paper is the first of its sort to try employing the proposed mINFO for solving the CEC'22 test suite. Furthermore, the experimental results of mINFO-kNN for classifying two CKD datasets demonstrated its superiority with an overall classification accuracy of 93.17% on two CKD datasets over other competitors.
Collapse
Affiliation(s)
- Essam H Houssein
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Awny Sayed
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
31
|
Wang Y, Fan J, Tong Y, Wang L, Wang L, Weng C, Lai C, Song J, Zhang W. Bioinformatics analysis of ferroptosis-related gene AKR1C3 as a potential biomarker of asthma and its identification in BEAS-2B cells. Comput Biol Med 2023; 158:106740. [PMID: 36996663 DOI: 10.1016/j.compbiomed.2023.106740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a newly discovered type of cell death and has recently been shown to be associated with asthma. However, the relationship between them at the genetic level has not been elucidated via informatics analysis. In this study, bioinformatics analyses are conducted using asthma and ferroptosis datasets to identify candidate ferroptosis-related genes using the R software. Weighted gene co-expression network analysis is performed to identify co-expressed genes. Protein-protein interaction networks, the Kyoto encyclopedia of genes and genomes, and gene ontology enrichment analysis are used to identify the potential functions of the candidate genes. We experimentally validate the results of our analysis using small interfering RNAs and plasmids to silence and upregulate the expression of the candidate gene in human bronchial epithelial cells (BEAS-2B). The ferroptosis signature levels are examined. Bioinformatics analysis of the asthma dataset GDS4896 shows that the level of the aldo-keto reductase family 1 member C3 (AKR1C3) gene in the peripheral blood of patients with severe therapy-resistant asthma and controlled persistent mild asthma (MA) is significantly upregulated. The AUC values for asthma diagnosis and MA are 0.823 and 0.915, respectively. The diagnostic value of AKR1C3 is verified using the GSE64913 dataset. The gene module of AKR1C3 is evident in MA and functions through redox reactions and metabolic processes. Ferroptosis indicators are downregulated by the overexpression of AKR1C3 and upregulated by silencing AKR1C3. The ferroptosis-related gene AKR1C3 can be used as a diagnostic biomarker for asthma, particularly for MA, and regulates ferroptosis in BEAS-2B cells.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junwen Fan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu Tong
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lingya Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuiye Weng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chuqiao Lai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
32
|
Chen K, Pan Y, Xiang X, Meng X, Yao D, Lin L, Li X, Wang Y. The nonalcoholic fatty liver risk in prediction of unfavorable outcome after stroke: A nationwide registry analysis. Comput Biol Med 2023; 157:106692. [PMID: 36924734 DOI: 10.1016/j.compbiomed.2023.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
Few researches have looked at the relationship between nonalcoholic fatty liver disease (NAFLD) at the time of admission and the long-term outcomes of patients suffering from acute ischemic stroke (AIS). We aimed to probe the relationship between NAFLD risk evaluated by NAFLD indices and long-term endpoints, along with the prognostic value of merging NAFLD indices with established risk markers for the prognosis of AIS patients. The fatty liver index (FLI) and the Hepatic steatosis index (HSI) were used to evaluate NAFLD risk in the Third China National Stroke Registry (CNSR-III), a large, prospective, national, multicenter cohort registry study. NAFLD was defined as FLI ≥35 for males and FLI ≥ 20 for females, as well as HSI>36. Death or major disability (modified Rankin Scale score ≥3) were the primary outcomes following the beginning of a stroke. On patient outcomes, the prognostic performance of two objective NAFLD parameters was evaluated. NAFLD was detected in 32.10-51.90% of AIS patients. After 1-year, 14.5% of the participants had died or suffered a severe outcome. After controlling for known risk factors, NAFLD was associated with a modest probability of adverse outcome (odds ratio,0.72[95% CI, 0.61-0.86] for FLI; odds ratio,0.68[95% CI, 0.55-0.85] for HSI). The inclusion of the two NAFLD indicators in the conventional prediction model was justified by the integrated discrimination index, continuing to increase the model's overall predictive value for long-term adverse outcomes. NAFLD risk was linked to a lower risk of long-term death or major disability in people with AIS. The predictive value of objective NAFLD after AIS was demonstrated in our study.
Collapse
Affiliation(s)
- Keyang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xianglong Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dongxiao Yao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China.
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, 2019RU018, China.
| | | |
Collapse
|
33
|
Zhang S, Wang S, Dong R, Zhang K, Zhang X. A Multi-strategy Improved Outpost and Differential Evolution Mutation Marine Predators Algorithm for Global Optimization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:1-24. [PMID: 36845881 PMCID: PMC9937532 DOI: 10.1007/s13369-023-07683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/29/2023] [Indexed: 02/20/2023]
Abstract
Marine Predators Algorithm (MPA) is a recent efficient metaheuristic algorithm that is enlightened by the biological behavior of ocean predators and prey. This algorithm simulates the Levy and Brownian movements of prevalent foraging strategy and has been applied to many complex optimization problems. However, the algorithm has defects such as a low diversity of the solutions, ease into the local optimal solutions, and decreasing convergence speed in dealing with complex problems. A modified version of this algorithm called ODMPA is proposed based on the tent map, the outpost mechanism, and the differential evolution mutation with simulated annealing (DE-SA) mechanism. The tent map and DE-SA mechanism are added to enhance the exploration capability of MPA by increasing the diversity of the search agents, and the outpost mechanism is mainly used to improve the convergence speed of MPA. To validate the outstanding performance of the ODMPA, a series of global optimization problems are selected as the test sets, including the standard IEEE CEC2014 benchmark functions, which are the authoritative test set, three well-known engineering problems, and photovoltaic model parameters tasks. Compared with some famous algorithms, the results reveal that ODMPA has achieved better performance than its counterparts in CEC2014 benchmark functions. And in solving real-world optimization problems, ODMPA could get higher accuracy than other metaheuristic algorithms. These practical results demonstrate that the mechanisms introduced positively affect the original MPA, and the proposed ODMPA can be a widely effective tool in tackling many optimization problems.
Collapse
Affiliation(s)
- Shuhan Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Shengsheng Wang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Ruyi Dong
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 China
| | - Kai Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
| | - Xiaohui Zhang
- 2012 Laboratories, Huawei Technology Co., Ltd., Beijing, 100095 China
| |
Collapse
|
34
|
Hao S, Huang C, Heidari AA, Xu Z, Chen H, Althobaiti MM, Mansour RF, Chen X. Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Yang X, Wang R, Zhao D, Yu F, Heidari AA, Xu Z, Chen H, Algarni AD, Elmannai H, Xu S. Multi-level threshold segmentation framework for breast cancer images using enhanced differential evolution. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Dong R, Du J, Liu Y, Heidari AA, Chen H. An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms. Front Neuroinform 2023; 17:1096053. [PMID: 36756212 PMCID: PMC9899791 DOI: 10.3389/fninf.2023.1096053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Aiming at the poor robustness and adaptability of traditional control methods for different situations, the deep deterministic policy gradient (DDPG) algorithm is improved by designing a hybrid function that includes different rewards superimposed on each other. In addition, the experience replay mechanism of DDPG is also improved by combining priority sampling and uniform sampling to accelerate the DDPG's convergence. Finally, it is verified in the simulation environment that the improved DDPG algorithm can achieve accurate control of the robot arm motion. The experimental results show that the improved DDPG algorithm can converge in a shorter time, and the average success rate in the robotic arm end-reaching task is as high as 91.27%. Compared with the original DDPG algorithm, it has more robust environmental adaptability.
Collapse
Affiliation(s)
- Ruyi Dong
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Junjie Du
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Yanan Liu
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| |
Collapse
|
37
|
Wu S, Heidari AA, Zhang S, Kuang F, Chen H. Gaussian bare-bone slime mould algorithm: performance optimization and case studies on truss structures. Artif Intell Rev 2023; 56:1-37. [PMID: 36694615 PMCID: PMC9853503 DOI: 10.1007/s10462-022-10370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 01/21/2023]
Abstract
The slime mould algorithm (SMA) is a new meta-heuristic algorithm recently proposed. The algorithm is inspired by the foraging behavior of polycephalus slime moulds. It simulates the behavior and morphological changes of slime moulds during foraging through adaptive weights. Although the original SMA's performance is better than most swarm intelligence algorithms, it still has shortcomings, such as quickly falling into local optimal values and insufficient exploitation. This paper proposes a Gaussian barebone mutation enhanced SMA (GBSMA) to alleviate the original SMA's shortcomings. First of all, the Gaussian function in the Gaussian barebone accelerates the convergence while also expanding the search space, which improves the algorithm exploration and exploitation capabilities. Secondly, the differential evolution (DE) update strategy in the Gaussian barebone, using rand as the guiding vector. It also enhances the algorithm's global search performance to a certain extent. Also, the greedy selection is introduced on this basis, which prevents individuals from performing invalid position updates. In the IEEE CEC2017 test function, the proposed GBSMA is compared with a variety of meta-heuristic algorithms to verify the performance of GBSMA. Besides, GBSMA is applied to solve truss structure optimization problems. Experimental results show that the convergence speed and solution accuracy of the proposed GBSMA are significantly better than the original SMA and other similar products. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-022-10370-7.
Collapse
Affiliation(s)
- Shubiao Wu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035 China
| | - Siyang Zhang
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035 China
| | - Fangjun Kuang
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035 China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035 China
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
38
|
Yang X, Ye X, Zhao D, Heidari AA, Xu Z, Chen H, Li Y. Multi-threshold image segmentation for melanoma based on Kapur’s entropy using enhanced ant colony optimization. Front Neuroinform 2022; 16:1041799. [PMID: 36387585 PMCID: PMC9663822 DOI: 10.3389/fninf.2022.1041799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Melanoma is a malignant tumor formed by the cancerous transformation of melanocytes, and its medical images contain much information. However, the percentage of the critical information in the image is small, and the noise is non-uniformly distributed. We propose a new multi-threshold image segmentation model based on the two-dimensional histogram approach to the above problem. We present an enhanced ant colony optimization for continuous domains (EACOR) in the proposed model based on the soft besiege and chase strategies. Further, EACOR is combined with two-dimensional Kapur’s entropy to search for the optimal thresholds. An experiment on the IEEE CEC2014 benchmark function was conducted to measure the reliable global search capability of the EACOR algorithm in the proposed model. Moreover, we have also conducted several sets of experiments to test the validity of the image segmentation model proposed in this paper. The experimental results show that the segmented images from the proposed model outperform the comparison method in several evaluation metrics. Ultimately, the model proposed in this paper can provide high-quality samples for subsequent analysis of melanoma pathology images.
Collapse
Affiliation(s)
- Xiao Yang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaojia Ye
- School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai, China
- *Correspondence: Xiaojia Ye,
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
- Dong Zhao,
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Yangyang Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Yangyang Li,
| |
Collapse
|
39
|
Li Y, Zhao D, Liu G, Liu Y, Bano Y, Ibrohimov A, Chen H, Wu C, Chen X. Intradialytic hypotension prediction using covariance matrix-driven whale optimizer with orthogonal structure-assisted extreme learning machine. Front Neuroinform 2022; 16:956423. [PMID: 36387587 PMCID: PMC9659657 DOI: 10.3389/fninf.2022.956423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/28/2022] [Indexed: 09/19/2023] Open
Abstract
Intradialytic hypotension (IDH) is an adverse event occurred during hemodialysis (HD) sessions with high morbidity and mortality. The key to preventing IDH is predicting its pre-dialysis and administering a proper ultrafiltration prescription. For this purpose, this paper builds a prediction model (bCOWOA-KELM) to predict IDH using indices of blood routine tests. In the study, the orthogonal learning mechanism is applied to the first half of the WOA to improve the search speed and accuracy. The covariance matrix is applied to the second half of the WOA to enhance the ability to get out of local optimum and convergence accuracy. Combining the above two improvement methods, this paper proposes a novel improvement variant (COWOA) for the first time. More, the core of bCOWOA-KELM is that the binary COWOA is utilized to improve the performance of the KELM. In order to verify the comprehensive performance of the study, the paper sets four types of comparison experiments for COWOA based on 30 benchmark functions and a series of prediction experiments for bCOWOA-KELM based on six public datasets and the HD dataset. Finally, the results of the experiments are analyzed separately in this paper. The results of the comparison experiments prove fully that the COWOA is superior to other famous methods. More importantly, the bCOWOA performs better than its peers in feature selection and its accuracy is 92.41%. In addition, bCOWOA improves the accuracy by 0.32% over the second-ranked bSCA and by 3.63% over the worst-ranked bGWO. Therefore, the proposed model can be used for IDH prediction with future applications.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Guangjie Liu
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Yi Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yasmeen Bano
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alisherjon Ibrohimov
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Chengwen Wu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Xumin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, China
| |
Collapse
|
40
|
Boosting Slime Mould Algorithm for High-Dimensional Gene Data Mining: Diversity Analysis and Feature Selection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8011003. [PMID: 36277020 PMCID: PMC9584684 DOI: 10.1155/2022/8011003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Slime mould algorithm (SMA) is a new metaheuristic algorithm, which simulates the behavior and morphology changes of slime mould during foraging. The slime mould algorithm has good performance; however, the basic version of SMA still has some problems. When faced with some complex problems, it may fall into local optimum and cannot find the optimal solution. Aiming at this problem, an improved SMA is proposed to alleviate the disadvantages of SMA. Based on the original SMA, Gaussian mutation and Levy flight are introduced to improve the global search performance of the SMA. Adding Gaussian mutation to SMA can improve the diversity of the population, and Levy flight can alleviate the local optimum of SMA, so that the algorithm can find the optimal solution as soon as possible. In order to verify the effectiveness of the proposed algorithm, a continuous version of the proposed algorithm, GLSMA, is tested on 33 classical continuous optimization problems. Then, on 14 high-dimensional gene datasets, the effectiveness of the proposed discrete version, namely, BGLSMA, is verified by comparing with other feature selection algorithm. Experimental results reveal that the performance of the continuous version of the algorithm is better than the original algorithm, and the defects of the original algorithm are alleviated. Besides, the discrete version of the algorithm has a higher classification accuracy when fewer features are selected. This proves that the improved algorithm has practical value in high-dimensional gene feature selection.
Collapse
|
41
|
Liu Y, Heidari AA, Cai Z, Liang G, Chen H, Pan Z, Alsufyani A, Bourouis S. Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.06.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Qiu F, Zheng P, Heidari AA, Liang G, Chen H, Karim FK, Elmannai H, Lin H. Mutational Slime Mould Algorithm for Gene Selection. Biomedicines 2022; 10:2052. [PMID: 36009599 PMCID: PMC9406076 DOI: 10.3390/biomedicines10082052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
A large volume of high-dimensional genetic data has been produced in modern medicine and biology fields. Data-driven decision-making is particularly crucial to clinical practice and relevant procedures. However, high-dimensional data in these fields increase the processing complexity and scale. Identifying representative genes and reducing the data's dimensions is often challenging. The purpose of gene selection is to eliminate irrelevant or redundant features to reduce the computational cost and improve classification accuracy. The wrapper gene selection model is based on a feature set, which can reduce the number of features and improve classification accuracy. This paper proposes a wrapper gene selection method based on the slime mould algorithm (SMA) to solve this problem. SMA is a new algorithm with a lot of application space in the feature selection field. This paper improves the original SMA by combining the Cauchy mutation mechanism with the crossover mutation strategy based on differential evolution (DE). Then, the transfer function converts the continuous optimizer into a binary version to solve the gene selection problem. Firstly, the continuous version of the method, ISMA, is tested on 33 classical continuous optimization problems. Then, the effect of the discrete version, or BISMA, was thoroughly studied by comparing it with other gene selection methods on 14 gene expression datasets. Experimental results show that the continuous version of the algorithm achieves an optimal balance between local exploitation and global search capabilities, and the discrete version of the algorithm has the highest accuracy when selecting the least number of genes.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Pan Zheng
- Information Systems, University of Canterbury, Christchurch 8014, New Zealand
| | - Ali Asghar Heidari
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou 325035, China
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Faten Khalid Karim
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Haiping Lin
- Department of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| |
Collapse
|
43
|
Ren L, Zhao D, Zhao X, Chen W, Li L, Wu T, Liang G, Cai Z, Xu S. Multi-level thresholding segmentation for pathological images: Optimal performance design of a new modified differential evolution. Comput Biol Med 2022; 148:105910. [DOI: 10.1016/j.compbiomed.2022.105910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023]
|
44
|
Predicting Entrepreneurial Intention of Students: Kernel Extreme Learning Machine with Boosted Crow Search Algorithm. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
College students are the group with the most entrepreneurial vitality and potential. How to cultivate their entrepreneurial and innovative ability is one of the important and urgent issues facing this current social development. This paper proposes a reliable, intelligent prediction model of entrepreneurial intentions, providing theoretical support for guiding college students’ positive entrepreneurial intentions. The model mainly uses the improved crow search algorithm (CSA) to optimize the kernel extreme learning machine (KELM) model with feature selection (FS), namely CSA-KELM-FS, to study entrepreneurial intention. To obtain the best fitting model and key features, the gradient search rule, local escaping operator, and levy flight mutation (GLL) mechanism are introduced to enhance the CSA (GLLCSA), and FS is used to extract the key features. To verify the performance of the proposed GLLCSA, it is compared with eight other state-of-the-art methods. Further, the GLLCSA-KELM-FS model and five other machine learning methods have been used to predict the entrepreneurial intentions of 842 students from the Wenzhou Vocational College in Zhejiang, China, in the past five years. The results show that the proposed model can correctly predict the students’ entrepreneurial intention with an accuracy rate of 93.2% and excellent stability. According to the prediction results of the proposed model, the key factors affecting the student’s entrepreneurial intention are mainly the major studied, campus innovation, entrepreneurship practice experience, and positive personality. Therefore, the proposed GLLCSA-KELM-FS is expected to be an effective tool for predicting students’ entrepreneurial intentions.
Collapse
|
45
|
Su H, Zhao D, Elmannai H, Heidari AA, Bourouis S, Wu Z, Cai Z, Gui W, Chen M. Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization. Comput Biol Med 2022; 146:105618. [PMID: 35690477 PMCID: PMC9113963 DOI: 10.1016/j.compbiomed.2022.105618] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Ali Asghar Heidari
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Sami Bourouis
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Zongda Wu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Zhennao Cai
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Wenyong Gui
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
46
|
Boosted machine learning model for predicting intradialytic hypotension using serum biomarkers of nutrition. Comput Biol Med 2022; 147:105752. [DOI: 10.1016/j.compbiomed.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
|
47
|
Tool for Predicting College Student Career Decisions: An Enhanced Support Vector Machine Framework. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The goal of this research is to offer an effective intelligent model for forecasting college students’ career decisions in order to give a useful reference for career decisions and policy formation by relevant departments. The suggested prediction model is mainly based on a support vector machine (SVM) that has been modified using an enhanced butterfly optimization approach with a communication mechanism and Gaussian bare-bones mechanism (CBBOA). To get a better set of parameters and feature subsets, first, we added a communication mechanism to BOA to improve its global search capability and balance exploration and exploitation trends. Then, Gaussian bare-bones was added to increase the population diversity of BOA and its ability to jump out of the local optimum. The optimal SVM model (CBBOA-SVM) was then developed to predict the career decisions of college students based on the obtained parameters and feature subsets that are already optimized by CBBOA. In order to verify the effectiveness of CBBOA, we compared it with some advanced algorithms on all benchmark functions of CEC2014. Simulation results demonstrated that the performance of CBBOA is indeed more comprehensive. Meanwhile, comparisons between CBBOA-SVM and other machine learning approaches for career decision prediction were carried out, and the findings demonstrate that the provided CBBOA-SVM has better classification and more stable performance. As a result, it is plausible to conclude that the CBBOA-SVM is capable of being an effective tool for predicting college student career decisions.
Collapse
|
48
|
An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis. Comput Biol Med 2022; 146:105563. [PMID: 35551010 DOI: 10.1016/j.compbiomed.2022.105563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022]
Abstract
The heap-based optimizer (HBO) is an optimization method proposed in recent years that may face local stagnation problems and show slow convergence speed due to the lack of detailed analysis of optimal solutions and a comprehensive search. Therefore, to mitigate these drawbacks and strengthen the performance of the algorithm in the field of medical diagnosis, a new MGOHBO method is proposed by introducing the modified Rosenbrock's rotational direction method (MRM), an operator from the grey wolf optimizer (GWM), and an orthogonal learning strategy (OL). The MGOHBO is compared with eleven famous and improved optimizers on IEEE CEC 2017. The results on benchmark functions indicate that the boosted MGOHBO has several significant advantages in terms of convergence accuracy and speed of the process. Additionally, this article analyzed the diversity and balance of MGOHBO in detail. Finally, the proposed MGOHBO algorithm is utilized to optimize the kernel extreme learning machines (KELM), and a new MGOHBO-KELM is proposed. To validate the performance of MGOHBO-KELM, seven disease diagnostic questions were introduced for testing in this work. In contrast to advanced models such as HBO-KELM and BP, it can be concluded that the MGOHBO-KELM model can achieve optimal results, which also proves that it has practical significance in solving medical diagnosis problems.
Collapse
|
49
|
Random Replacement Crisscross Butterfly Optimization Algorithm for Standard Evaluation of Overseas Chinese Associations. ELECTRONICS 2022. [DOI: 10.3390/electronics11071080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The butterfly optimization algorithm (BOA) is a swarm intelligence optimization algorithm proposed in 2019 that simulates the foraging behavior of butterflies. Similarly, the BOA itself has certain shortcomings, such as a slow convergence speed and low solution accuracy. To cope with these problems, two strategies are introduced to improve the performance of BOA. One is the random replacement strategy, which involves replacing the position of the current solution with that of the optimal solution and is used to increase the convergence speed. The other is the crisscross search strategy, which is utilized to trade off the capability of exploration and exploitation in BOA to remove local dilemmas whenever possible. In this case, we propose a novel optimizer named the random replacement crisscross butterfly optimization algorithm (RCCBOA). In order to evaluate the performance of RCCBOA, comparative experiments are conducted with another nine advanced algorithms on the IEEE CEC2014 function test set. Furthermore, RCCBOA is combined with support vector machine (SVM) and feature selection (FS)—namely, RCCBOA-SVM-FS—to attain a standardized construction model of overseas Chinese associations. It is found that the reasonableness of bylaws; the regularity of general meetings; and the right to elect, be elected, and vote are of importance to the planning and standardization of Chinese associations. Compared with other machine learning methods, the RCCBOA-SVM-FS model has an up to 95% accuracy when dealing with the normative prediction problem of overseas Chinese associations. Therefore, the constructed model is helpful for guiding the orderly and healthy development of overseas Chinese associations.
Collapse
|
50
|
Liu J, Wei J, Heidari AA, Kuang F, Zhang S, Gui W, Chen H, Pan Z. Chaotic simulated annealing multi-verse optimization enhanced kernel extreme learning machine for medical diagnosis. Comput Biol Med 2022; 144:105356. [PMID: 35299042 DOI: 10.1016/j.compbiomed.2022.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023]
Abstract
Classification models such as Multi-Verse Optimization (MVO) play a vital role in disease diagnosis. To improve the efficiency and accuracy of MVO, in this paper, the defects of MVO are mitigated and the improved MVO is combined with kernel extreme learning machine (KELM) for effective disease diagnosis. Although MVO obtains some relatively good results on some problems of interest, it suffers from slow convergence speed and local optima entrapment for some many-sided basins, especially multi-modal problems with high dimensions. To solve these shortcomings, in this study, a new chaotic simulated annealing overhaul of MVO (CSAMVO) is proposed. Based on MVO, two approaches are adopted to offer a relatively stable and efficient convergence speed. Specifically, a chaotic intensification mechanism (CIP) is applied to the optimal universe evaluation stage to increase the depth of the universe search. After obtaining relatively satisfactory results, the simulated annealing algorithm (SA) is employed to reinforce the capability of MVO to avoid local optima. To evaluate its performance, the proposed CSAMVO approach was compared with a wide range of classical algorithms on thirty-nine benchmark functions. The results show that the improved MVO outperforms the other algorithms in terms of solution quality and convergence speed. Furthermore, based on CSAMVO, a hybrid KELM model termed CSAMVO-KELM is established for disease diagnosis. To evaluate its effectiveness, the new hybrid system was compared with a multitude of competitive classifiers on two disease diagnosis problems. The results demonstrate that the proposed CSAMVO-assisted classifier can find solutions with better learning potential and higher predictive performance.
Collapse
Affiliation(s)
- Jiacong Liu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Jiahui Wei
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fangjun Kuang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Siyang Zhang
- School of Information Engineering, Wenzhou Business College, Wenzhou, 325035, China.
| | - Wenyong Gui
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhifang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|