1
|
Du X, Li J, Wang B, Zhang J, Wang T, Wang J. NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields. Interdiscip Sci 2025; 17:344-358. [PMID: 39775537 DOI: 10.1007/s12539-024-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.
Collapse
Affiliation(s)
- Xiaoxin Du
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China.
| | - Jingwei Li
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Bo Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Jianfei Zhang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Tongxuan Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Junqi Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
2
|
Tang X, Zhou C, Lu C, Meng Y, Xu J, Hu X, Tian G, Yang J. Enhancing Drug Repositioning Through Local Interactive Learning With Bilinear Attention Networks. IEEE J Biomed Health Inform 2025; 29:1644-1655. [PMID: 37988217 DOI: 10.1109/jbhi.2023.3335275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Drug repositioning has emerged as a promising strategy for identifying new therapeutic applications for existing drugs. In this study, we present DRGBCN, a novel computational method that integrates heterogeneous information through a deep bilinear attention network to infer potential drugs for specific diseases. DRGBCN involves constructing a comprehensive drug-disease network by incorporating multiple similarity networks for drugs and diseases. Firstly, we introduce a layer attention mechanism to effectively learn the embeddings of graph convolutional layers from these networks. Subsequently, a bilinear attention network is constructed to capture pairwise local interactions between drugs and diseases. This combined approach enhances the accuracy and reliability of predictions. Finally, a multi-layer perceptron module is employed to evaluate potential drugs. Through extensive experiments on three publicly available datasets, DRGBCN demonstrates better performance over baseline methods in 10-fold cross-validation, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.9399. Furthermore, case studies on bladder cancer and acute lymphoblastic leukemia confirm the practical application of DRGBCN in real-world drug repositioning scenarios. Importantly, our experimental results from the drug-disease network analysis reveal the successful clustering of similar drugs within the same community, providing valuable insights into drug-disease interactions. In conclusion, DRGBCN holds significant promise for uncovering new therapeutic applications of existing drugs, thereby contributing to the advancement of precision medicine.
Collapse
|
3
|
Wang Y, Lei X, Chen Y, Guo L, Wu FX. Circular RNA-Drug Association Prediction Based on Multi-Scale Convolutional Neural Networks and Adversarial Autoencoders. Int J Mol Sci 2025; 26:1509. [PMID: 40003977 PMCID: PMC11855705 DOI: 10.3390/ijms26041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
The prediction of circular RNA (circRNA)-drug associations plays a crucial role in understanding disease mechanisms and identifying potential therapeutic targets. Traditional methods often struggle to cope with the complexity of heterogeneous networks and the high dimensionality of biological data. In this study, we propose a circRNA-drug association prediction method based on multi-scale convolutional neural networks (MSCNN) and adversarial autoencoders, named AAECDA. First, we construct a feature network by integrating circRNA sequence similarity, drug structure similarity, and known circRNA-drug associations. Then, unlike conventional convolutional neural networks, we employ MSCNN to extract hierarchical features from this integrated network. Subsequently, adversarial characteristics are introduced to further refine these features through an adversarial autoencoder, obtaining low-dimensional representations. Finally, the learned representations are fed into a deep neural network to predict novel circRNA-drug associations. Experiments show that AAECDA outperforms various baseline methods in predicting circRNA-drug associations. Additionally, case studies demonstrate that our model is applicable in practical related tasks.
Collapse
Affiliation(s)
- Yao Wang
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (Y.C.)
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (Y.C.)
| | - Yuli Chen
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (Y.C.)
| | - Ling Guo
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, Department of Mechanical Engineering and Department of Computer Science, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Liang M, Liu X, Li J, Chen Q, Zeng B, Wang Z, Li J, Wang L. BANNMDA: a computational model for predicting potential microbe-drug associations based on bilinear attention networks and nuclear norm minimization. Front Microbiol 2025; 15:1497886. [PMID: 39911712 PMCID: PMC11794793 DOI: 10.3389/fmicb.2024.1497886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Predicting potential associations between microbes and drugs is crucial for advancing pharmaceutical research and development. In this manuscript, we introduced an innovative computational model named BANNMDA by integrating Bilinear Attention Networks(BAN) with the Nuclear Norm Minimization (NNM) to uncover hidden connections between microbes and drugs. Methods In BANNMDA, we initially constructed a heterogeneous microbe-drug network by combining multiple drug and microbe similarity metrics with known microbe-drug relationships. Subsequently, we applied both BAN and NNM to compute predicted scores of potential microbe-drug associations. Finally, we implemented 5-fold cross-validation frameworks to evaluate the prediction performance of BANNMDA. Results and discussion The experimental results indicated that BANNMDA outperformed state-of-the-art competitive methods. We conducted case studies on well-known drugs such as the Amoxicillin and Ceftazidime, as well as on pathogens such as Bacillus cereus and Influenza A virus, to further evaluate the efficacy of BANNMDA, and experimental outcomes showed that there were 9 out of the top 10 predicted drugs, along with 8 and 9 out of the top 10 predicted microbes having been corroborated by relevant literatures. These findings underscored the capability of BANNMDA to achieve commendable predictive accuracy.
Collapse
Affiliation(s)
- Mingmin Liang
- School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Xianzhi Liu
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Juncai Li
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Qijia Chen
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Bin Zeng
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Zhong Wang
- School of Humanities and Education, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Jing Li
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
5
|
Liang J, Sun Y, Ling J. GRL-PUL: predicting microbe-drug association based on graph representation learning and positive unlabeled learning. Mol Omics 2025; 21:38-50. [PMID: 39540771 DOI: 10.1039/d4mo00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Extensive research has confirmed the widespread presence of microorganisms in the human body and their crucial impact on human health, with drugs being an effective method of regulation. Hence it is essential to identify potential microbe-drug associations (MDAs). Owing to the limitations of wet experiments, such as high costs and long durations, computational methods for binary classification tasks have become valuable alternatives for traditional experimental approaches. Since validated negative MDAs are absent in existing datasets, most methods randomly sample negatives from unlabeled data, which evidently leads to false negative issues. In this manuscript, we propose a novel model based on graph representation learning and positive-unlabeled learning (GRL-PUL), to infer potential MDAs. Firstly, we screen reliable negative samples by applying weighted matrix factorization and the PU-bagging strategy on the known microbe-drug bipartite network. Then, we combine muti-model attributes and constructed a microbe-drug heterogeneous network. After that, graph attention auto-encoder module, an encoder combining graph convolutional networks and graph attention networks, is introduced to extract informative embeddings based on the microbe-drug heterogeneous network. Lastly, we adopt a modified random forest as the final classifier. Comparison experiments with five baseline models on three benchmark datasets show that our model surpasses other methods in terms of the AUC, AUPR, ACC, F1-score and MCC. Moreover, several case studies show that GRL-PUL could capably predict latent MDAs. Notably, we further verify the effectiveness of a reliable negative sample selection module by migrating it to other state-of-the-art models, and the experimental results demonstrate its ability to substantially improve their prediction performance.
Collapse
Affiliation(s)
- Jinqing Liang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuping Sun
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jie Ling
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Gu J, Zhang T, Gao Y, Chen S, Zhang Y, Cui H, Xuan P. Neighborhood Topology-Aware Knowledge Graph Learning and Microbial Preference Inferring for Drug-Microbe Association Prediction. J Chem Inf Model 2025; 65:435-445. [PMID: 39745733 DOI: 10.1021/acs.jcim.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities. In addition, they ignored the case that a microbe prefers to associate with its own specific drugs. A novel prediction method, PCMDA, was proposed by learning the neighborhood topologies of entities, inferring the association preferences, and integrating the features of each entity pair based on multiple biological premises. First, a knowledge graph consisting of microbe, disease, and drug entities is established to help the subsequent integration of the topological structure of entities and the similarity, interaction, and association relationship between any two entities. We generate various topological embeddings for each microbe (or drug) entity through random walks with neighborhood restarts on the microbe-disease-drug knowledge graph. Distance-level attention is designed to adaptively fuse neighborhood topologies covering multiple ranges. Second, the topological embeddings of entities imply the latent topological relationships between entities, while the relational embeddings of entities are derived from the semantics of connections among the entities. The topological structure and relational semantics of entities are fused by a designed knowledge graph learning module based on multilayer perceptron networks. Third, considering the preference that each microbe tends to especially associate with a group of drugs, information-level attention is designed to integrate the dependency between microbial preference and the candidate drug. Finally, a dual-gated network is established to encode the features of a microbe-drug entity pair from multiple biological perspectives. The comparative experiments with seven state-of-the-art methods demonstrate PCMDA's superior performance for microbe-drug association prediction. The case studies on three drugs and the recall rate evaluation for the top-ranked candidates indicate that PCMDA has the capability of discovering reliable candidate microbes associated with a drug. The datasets and source codes are freely available at https://github.com/pingxuan-hlju/pcmda.
Collapse
Affiliation(s)
- Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Tiangang Zhang
- School of Cyberspace Security, Hainan University, Haikou 570228, China
| | - Yihang Gao
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Sentao Chen
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Yuxin Zhang
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3083, Australia
| | - Ping Xuan
- Department of Computer Science and Technology, Shantou University, Shantou 515063, China
| |
Collapse
|
7
|
Tang X, Hou Y, Meng Y, Wang Z, Lu C, Lv J, Hu X, Xu J, Yang J. CDPMF-DDA: contrastive deep probabilistic matrix factorization for drug-disease association prediction. BMC Bioinformatics 2025; 26:5. [PMID: 39773275 PMCID: PMC11708303 DOI: 10.1186/s12859-024-06032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views. First, we decompose the original drug-disease association matrix into drug and disease feature matrices, which are then used to reconstruct the drug-disease association network, as well as the drug-drug and disease-disease similarity networks. This process effectively reduces noise in the data, establishing a reliable foundation for the networks produced. Next, we generate multiple contrastive views from both the original and generated networks. These views effectively capture hidden feature associations, significantly enhancing the model's ability to represent complex relationships. Extensive cross-validation experiments on three standard datasets show that CDPMF-DDA achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing models. Additionally, case studies on Alzheimer's disease and epilepsy further validate the model's effectiveness, demonstrating its high accuracy and robustness in drug-disease association prediction. Based on a multi-view contrastive learning framework, CDPMF-DDA is capable of integrating multi-source information and effectively capturing complex drug-disease associations, making it a powerful tool for drug repositioning and the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Xianfang Tang
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
| | - Yawen Hou
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
| | - Yajie Meng
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
| | - Zhaojing Wang
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
| | - Changcheng Lu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Juan Lv
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha, 410000, China
| | - Xinrong Hu
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, 430200, China
| | - Junlin Xu
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China.
| | | |
Collapse
|
8
|
Wei A, Zhan H, Xiao Z, Zhao W, Jiang X. A novel framework for phage-host prediction via logical probability theory and network sparsification. Brief Bioinform 2024; 26:bbae708. [PMID: 39780485 PMCID: PMC11711101 DOI: 10.1093/bib/bbae708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Bacterial resistance has emerged as one of the greatest threats to human health, and phages have shown tremendous potential in addressing the issue of drug-resistant bacteria by lysing host. The identification of phage-host interactions (PHI) is crucial for addressing bacterial infections. Some existing computational methods for predicting PHI are suboptimal in terms of prediction efficiency due to the limited types of available information. Despite the emergence of some supporting information, the generalizability of models using this information is limited by the small scale of the databases. Additionally, most existing models overlook the sparsity of association data, which severely impacts their predictive performance as well. In this study, we propose a dual-view sparse network model (DSPHI) to predict PHI, which leverages logical probability theory and network sparsification. Specifically, we first constructed similarity networks using the sequences of phages and hosts respectively, and then sparsified these networks, enabling the model to focus more on key information during the learning process, thereby improving prediction efficiency. Next, we utilize logical probability theory to compute high-order logical information between phages (hosts), which is known as mutual information. Subsequently, we connect this information in node form to the sparse phage (host) similarity network, resulting in a phage (host) heterogeneous network that better integrates the two information views, thereby reducing the complexity of model computation and enhancing information aggregation capabilities. The hidden features of phages and hosts are explored through graph learning algorithms. Experimental results demonstrate that mutual information is effective information in predicting PHI, and the sparsification procedure of similarity networks significantly improves the model's predictive performance.
Collapse
Affiliation(s)
- Ankang Wei
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Huanghan Zhan
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
| | - Zhen Xiao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
- School of Computer Science, Central China Normal University, Wuhan 430079, China
- National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
9
|
Wang B, Ma F, Du X, Zhang G, Li J. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest. Front Microbiol 2024; 15:1394302. [PMID: 38881658 PMCID: PMC11176502 DOI: 10.3389/fmicb.2024.1394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The identification of microbe-drug associations can greatly facilitate drug research and development. Traditional methods for screening microbe-drug associations are time-consuming, manpower-intensive, and costly to conduct, so computational methods are a good alternative. However, most of them ignore the combination of abundant sequence, structural information, and microbe-drug network topology. Methods In this study, we developed a computational framework based on a modified graph attention variational autoencoder (MGAVAEMDA) to infer potential microbedrug associations by combining biological information with the variational autoencoder. In MGAVAEMDA, we first used multiple databases, which include microbial sequences, drug structures, and microbe-drug association databases, to establish two comprehensive feature matrices of microbes and drugs after multiple similarity computations, fusion, smoothing, and thresholding. Then, we employed a combination of variational autoencoder and graph attention to extract low-dimensional feature representations of microbes and drugs. Finally, the lowdimensional feature representation and graphical adjacency matrix were input into the random forest classifier to obtain the microbe-drug association score to identify the potential microbe-drug association. Moreover, in order to correct the model complexity and redundant calculation to improve efficiency, we introduced a modified graph convolutional neural network embedded into the variational autoencoder for computing low dimensional features. Results The experiment results demonstrate that the prediction performance of MGAVAEMDA is better than the five state-of-the-art methods. For the major measurements (AUC =0.9357, AUPR =0.9378), the relative improvements of MGAVAEMDA compared to the suboptimal methods are 1.76 and 1.47%, respectively. Discussion We conducted case studies on two drugs and found that more than 85% of the predicted associations have been reported in PubMed. The comprehensive experimental results validated the reliability of our models in accurately inferring potential microbe-drug associations.
Collapse
Affiliation(s)
- Bo Wang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, China
| | - Fangjian Ma
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Xiaoxin Du
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Guangda Zhang
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
| | - Jingyou Li
- College of Computer and Control Engineering, Qiqihar University, Qiqihar, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, China
| |
Collapse
|
10
|
Gu X, Liu J, Yu Y, Xiao P, Ding Y. MFD-GDrug: multimodal feature fusion-based deep learning for GPCR-drug interaction prediction. Methods 2024; 223:75-82. [PMID: 38286333 DOI: 10.1016/j.ymeth.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
The accurate identification of drug-protein interactions (DPIs) is crucial in drug development, especially concerning G protein-coupled receptors (GPCRs), which are vital targets in drug discovery. However, experimental validation of GPCR-drug pairings is costly, prompting the need for accurate predictive methods. To address this, we propose MFD-GDrug, a multimodal deep learning model. Leveraging the ESM pretrained model, we extract protein features and employ a CNN for protein feature representation. For drugs, we integrated multimodal features of drug molecular structures, including three-dimensional features derived from Mol2vec and the topological information of drug graph structures extracted through Graph Convolutional Neural Networks (GCN). By combining structural characterizations and pretrained embeddings, our model effectively captures GPCR-drug interactions. Our tests on leading GPCR-drug interaction datasets show that MFD-GDrug outperforms other methods, demonstrating superior predictive accuracy.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfeng Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China.
| |
Collapse
|
11
|
Li G, Bai P, Chen J, Liang C. Identifying virulence factors using graph transformer autoencoder with ESMFold-predicted structures. Comput Biol Med 2024; 170:108062. [PMID: 38308869 DOI: 10.1016/j.compbiomed.2024.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
With the increasing resistance of bacterial pathogens to conventional antibiotics, antivirulence strategies targeting virulence factors (VFs) have become an effective new therapy for the treatment of pathogenic bacterial infections. Therefore, the identification and prediction of VFs can provide ideal candidate targets for the implementation of antivirulence strategies in treating infections caused by pathogenic bacteria. Currently, the existing computational models predominantly rely on the amino acid sequences of virulence proteins while overlooking structural information. Here, we propose a novel graph transformer autoencoder for VF identification (GTAE-VF), which utilizes ESMFold-predicted 3D structures and converts the VF identification problem into a graph-level prediction task. In an encoder-decoder framework, GTAE-VF adaptively learns both local and global information by integrating a graph convolutional network and a transformer to implement all-pair message passing, which can better capture long-range correlations and potential relationships. Extensive experiments on an independent test dataset demonstrate that GTAE-VF achieves reliable and robust prediction accuracy with an AUC of 0.963, which is consistently better than that of other structure-based and sequence-based approaches. We believe that GTAE-VF has the potential to emerge as a valuable tool for assessing VFs and devising antivirulence strategies.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Peihao Bai
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Jiao Chen
- School of Laboratory Medicine, Nanchang Medical College, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
| |
Collapse
|
12
|
Liang M, Liu X, Chen Q, Zeng B, Wang L. NMGMDA: a computational model for predicting potential microbe-drug associations based on minimize matrix nuclear norm and graph attention network. Sci Rep 2024; 14:650. [PMID: 38182635 PMCID: PMC10770326 DOI: 10.1038/s41598-023-50793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
The prediction of potential microbe-drug associations is of great value for drug research and development, especially, methods, based on deep learning, have been achieved significant improvement in bio-medicine. In this manuscript, we proposed a novel computational model named NMGMDA based on the nuclear norm minimization and graph attention network to infer latent microbe-drug associations. Firstly, we created a heterogeneous microbe-drug network in NMGMDA by fusing the drug and microbe similarities with the established drug-microbe associations. After this, by using GAT and NNM to calculate the predict scores. Lastly, we created a fivefold cross validation framework to assess the new model NMGMDA's progressiveness. According to the simulation results, NMGMDA outperforms some of the most advanced methods, with a reliable AUC of 0.9946 on both MDAD and aBioflm databases. Furthermore, case studies on Ciprofloxacin, Moxifoxacin, HIV-1 and Mycobacterium tuberculosis were carried out in order to assess the effectiveness of NMGMDA even more. The experimental results demonstrated that, following the removal of known correlations from the database, 16 and 14 medications as well as 19 and 17 microbes in the top 20 predictions were validated by pertinent literature. This demonstrates the potential of our new model, NMGMDA, to reach acceptable prediction performance.
Collapse
Affiliation(s)
- Mingmin Liang
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China
| | - Xianzhi Liu
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China
| | - Qijia Chen
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
| | - Bin Zeng
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
| | - Lei Wang
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, 410000, China.
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, 410022, China.
| |
Collapse
|
13
|
Wang W, Yu M, Sun B, Li J, Liu D, Zhang H, Wang X, Zhou Y. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:143-154. [PMID: 38051618 DOI: 10.1109/tcbb.2023.3339645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Accurately identifying potential drug-target interactions (DTIs) is a critical step in accelerating drug discovery. Despite many studies that have been conducted over the past decades, detecting DTIs remains a highly challenging and complicated process. Therefore, we propose a novel method called SMGCN, which combines multiple similarity and multiple kernel fusion based on Graph Convolutional Network (GCN) to predict DTIs. In order to capture the features of the network structure and fully explore direct or indirect relationships between nodes, we propose the method of multiple similarity, which combines similarity fusion matrices with Random Walk with Restart (RWR) and cosine similarity. Then, we use GCN to extract multi-layer low-dimensional embedding features. Unlike traditional GCN methods, we incorporate Multiple Kernel Learning (MKL). Finally, we use the Dual Laplace Regularized Least Squares method to predict novel DTIs through combinatorial kernels in drug and target spaces. We conduct experiments on a golden standard dataset, and demonstrate the effectiveness of our proposed model in predicting DTIs through showing significant improvements in Area Under the Curve (AUC) and Area Under the Precision-Recall Curve (AUPR). In addition, our model can also discover some new DTIs, which can be verified by the KEGG BRITE Database and relevant literature.
Collapse
|
14
|
Lu S, Liang Y, Li L, Liao S, Zou Y, Yang C, Ouyang D. Inferring circRNA-drug sensitivity associations via dual hierarchical attention networks and multiple kernel fusion. BMC Genomics 2023; 24:796. [PMID: 38129810 PMCID: PMC10734204 DOI: 10.1186/s12864-023-09899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Increasing evidence has shown that the expression of circular RNAs (circRNAs) can affect the drug sensitivity of cells and significantly influence drug efficacy. Therefore, research into the relationships between circRNAs and drugs can be of great significance in increasing the comprehension of circRNAs function, as well as contributing to the discovery of new drugs and the repurposing of existing drugs. However, it is time-consuming and costly to validate the function of circRNA with traditional medical research methods. Therefore, the development of efficient and accurate computational models that can assist in discovering the potential interactions between circRNAs and drugs is urgently needed. In this study, a novel method is proposed, called DHANMKF , that aims to predict potential circRNA-drug sensitivity interactions for further biomedical screening and validation. Firstly, multimodal networks were constructed by DHANMKF using multiple sources of information on circRNAs and drugs. Secondly, comprehensive intra-type and inter-type node representations were learned using bi-typed multi-relational heterogeneous graphs, which are attention-based encoders utilizing a hierarchical process. Thirdly, the multi-kernel fusion method was used to fuse intra-type embedding and inter-type embedding. Finally, the Dual Laplacian Regularized Least Squares method (DLapRLS) was used to predict the potential circRNA-drug sensitivity associations using the combined kernel in circRNA and drug spaces. Compared with the other methods, DHANMKF obtained the highest AUC value on two datasets. Code is available at https://github.com/cuntjx/DHANMKF .
Collapse
Affiliation(s)
- Shanghui Lu
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
- School of Mathematics and Physics, Hechi University, No.42, Longjiang, 546300, Guangxi, China
| | - Yong Liang
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China.
- Peng Cheng Laboratory, Shenzhen, 518055, Guangdong, China.
| | - Le Li
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
| | - Shuilin Liao
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
| | - Yongfu Zou
- School of Mathematics and Physics, Hechi University, No.42, Longjiang, 546300, Guangxi, China
| | - Chengjun Yang
- School of Artificial Intelligence and Manufacturing, Hechi University, No.42, Longjiang, 546300, Guangxi, China
| | - Dong Ouyang
- Faculty of Innovation Enginee, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, Macao Special Administrative Region of China, China
| |
Collapse
|
15
|
Li G, Zeng F, Luo J, Liang C, Xiao Q. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning. BMC Med Inform Decis Mak 2023; 23:291. [PMID: 38110886 PMCID: PMC10729363 DOI: 10.1186/s12911-023-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND circRNAs play an important role in drug resistance and cancer development. Recently, many studies have shown that the expressions of circRNAs in human cells can affect the sensitivity of cells to therapeutic drugs, thus significantly influencing the therapeutic effects of these drugs. Traditional biomedical experiments required to verify this sensitivity relationship are not only time-consuming but also expensive. Hence, the development of an efficient computational approach that can accurately predict the novel associations between drug sensitivities and circRNAs is a crucial and pressing need. METHODS In this research, we present a novel computational framework called MNCLCDA, which aims to predict the potential associations between drug sensitivities and circRNAs to assist with medical research. First, MNCLCDA quantifies the similarity between the given drug and circRNA using drug structure information, circRNA gene sequence information, and GIP kernel information. Due to the existence of noise in similarity information, we employ a preprocessing approach based on random walk with restart for similarity networks to efficiently capture the useful features of circRNAs and drugs. Second, we use a mixed neighbourhood graph convolutional network to obtain the neighbourhood information of nodes. Then, a graph-based contrastive learning method is used to enhance the robustness of the model, and finally, a double Laplace-regularized least-squares method is used to predict potential circRNA-drug associations through the kernel matrices in the circRNA and drug spaces. RESULTS Numerous experimental results show that MNCLCDA outperforms six other advanced methods. In addition, the excellent performance of our proposed model in case studies illustrates that MNCLCDA also has the ability to predict the associations between drug sensitivity and circRNA in practical situations. CONCLUSIONS After a large number of experiments, it is illustrated that MNCLCDA is an efficient tool for predicting the potential associations between drug sensitivities and circRNAs, thereby can provide some guidance for clinical trials.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Feifan Zeng
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Zhou Z, Zhuo L, Fu X, Zou Q. Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 2023; 25:bbad483. [PMID: 38171927 PMCID: PMC10764208 DOI: 10.1093/bib/bbad483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|
17
|
Ai C, Yang H, Ding Y, Tang J, Guo F. Low Rank Matrix Factorization Algorithm Based on Multi-Graph Regularization for Detecting Drug-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3033-3043. [PMID: 37159322 DOI: 10.1109/tcbb.2023.3274587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting potential associations between drugs and diseases plays an indispensable role in drug development, which has also become a research hotspot in recent years. Compared with traditional methods, some computational approaches have the advantages of fast speed and low cost, which greatly accelerate the progress of predicting the drug-disease association. In this study, we propose a novel similarity-based method of low-rank matrix decomposition based on multi-graph regularization. On the basis of low-rank matrix factorization with L2 regularization, the multi-graph regularization constraint is constructed by combining a variety of similarity matrices from drugs and diseases respectively. In the experiments, we analyze the difference in the combination of different similarities, resulting that combining all the similarity information on drug space is unnecessary, and only a part of the similarity information can achieve the desired performance. Then our method is compared with other existing models on three data sets (Fdataset, Cdataset and LRSSLdataset) and have a good advantage in the evaluation measurement of AUPR. Besides, a case study experiment is conducted and showing that the superior ability for predicting the potential disease-related drugs of our model. Finally, we compare our model with some methods on six real world datasets, and our model has a good performance in detecting real world data.
Collapse
|
18
|
Li H, Wu B, Sun M, Ye Y, Zhu Z, Chen K. Multi-view graph neural network with cascaded attention for lncRNA-miRNA interaction prediction. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
19
|
Tian Z, Yu Y, Fang H, Xie W, Guo M. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief Bioinform 2023; 24:7009077. [PMID: 36715986 DOI: 10.1093/bib/bbac634] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Predicting the associations between human microbes and drugs (MDAs) is one critical step in drug development and precision medicine areas. Since discovering these associations through wet experiments is time-consuming and labor-intensive, computational methods have already been an effective way to tackle this problem. Recently, graph contrastive learning (GCL) approaches have shown great advantages in learning the embeddings of nodes from heterogeneous biological graphs (HBGs). However, most GCL-based approaches don't fully capture the rich structure information in HBGs. Besides, fewer MDA prediction methods could screen out the most informative negative samples for effectively training the classifier. Therefore, it still needs to improve the accuracy of MDA predictions. RESULTS In this study, we propose a novel approach that employs the Structure-enhanced Contrastive learning and Self-paced negative sampling strategy for Microbe-Drug Association predictions (SCSMDA). Firstly, SCSMDA constructs the similarity networks of microbes and drugs, as well as their different meta-path-induced networks. Then SCSMDA employs the representations of microbes and drugs learned from meta-path-induced networks to enhance their embeddings learned from the similarity networks by the contrastive learning strategy. After that, we adopt the self-paced negative sampling strategy to select the most informative negative samples to train the MLP classifier. Lastly, SCSMDA predicts the potential microbe-drug associations with the trained MLP classifier. The embeddings of microbes and drugs learning from the similarity networks are enhanced with the contrastive learning strategy, which could obtain their discriminative representations. Extensive results on three public datasets indicate that SCSMDA significantly outperforms other baseline methods on the MDA prediction task. Case studies for two common drugs could further demonstrate the effectiveness of SCSMDA in finding novel MDA associations. AVAILABILITY The source code is publicly available on GitHub https://github.com/Yue-Yuu/SCSMDA-master.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Haichuan Fang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Weixin Xie
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150000, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| |
Collapse
|
20
|
Huang H, Sun Y, Lan M, Zhang H, Xie G. GNAEMDA: Microbe-Drug Associations Prediction on Graph Normalized Convolutional Network. IEEE J Biomed Health Inform 2023; 27:1635-1643. [PMID: 37022036 DOI: 10.1109/jbhi.2022.3233711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The importance of microbe-drug associations (MDA) prediction is evidenced in research. Since traditional wet-lab experiments are both time-consuming and costly, computational methods are widely adopted. However, existing research has yet to consider the cold-start scenarios that commonly seen in clinical research and practices where confirmed MDA data are highly sparse. Therefore, we aim to contribute by developing two novel computational approaches, the GNAEMDA (Graph Normalized Auto-Encoder to predict MDA), and its variational extension (called VGNAEMDA), to provide effective and efficient solutions for well-annotated cases and cold-start scenarios. Multi-modal attribute graphs are constructed by collecting multiple features of microbes and drugs, and then input into a graph normalized convolutional network, where a $\ell _{2}$-normalization is introduced to avoid the norm-towards-zero tendency of isolated nodes in embedding space. Then the reconstructed graph output by the network is used to infer undiscovered MDA. The difference between the two proposed models lays in the way to generate the latent variables in network. To verify their effectiveness, we conduct a series of experiments on three benchmark datasets in comparison with six state-of-the-art methods. The comparison results indicate that both GNAEMDA and VGNAEMDA have strong prediction performances in all cases, especially in identifying associations for new microbes or drugs. In addition, we conduct case studies on two drugs and two microbes and find that more than 75% of the predicted associations have been reported in PubMed. The comprehensive experimental results validate the reliability of our models in accurately inferring potential MDA.
Collapse
|
21
|
Alavi F, Hashemi S. Data-adaptive kernel clustering with half-quadratic-based neighborhood relationship preservation. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
22
|
Guo X, Tiwari P, Zou Q, Ding Y. Subspace projection-based weighted echo state networks for predicting therapeutic peptides. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Wei Q, Zhang Q, Gao H, Song T, Salhi A, Yu B. DEEPStack-RBP: Accurate identification of RNA-binding proteins based on autoencoder feature selection and deep stacking ensemble classifier. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Lu S, Liang Y, Li L, Liao S, Ouyang D. Inferring human miRNA–disease associations via multiple kernel fusion on GCNII. Front Genet 2022; 13:980497. [PMID: 36134032 PMCID: PMC9483142 DOI: 10.3389/fgene.2022.980497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence shows that the occurrence of human complex diseases is closely related to the mutation and abnormal expression of microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms, which makes it a promising target for drug discovery and disease diagnosis. Therefore, predicting the potential miRNA-disease associations has practical significance. In this paper, we proposed an miRNA–disease association predicting method based on multiple kernel fusion on Graph Convolutional Network via Initial residual and Identity mapping (GCNII), called MKFGCNII. Firstly, we built a heterogeneous network of miRNAs and diseases to extract multi-layer features via GCNII. Secondly, multiple kernel fusion method was applied to weight fusion of embeddings at each layer. Finally, Dual Laplacian Regularized Least Squares was used to predict new miRNA–disease associations by the combined kernel in miRNA and disease spaces. Compared with the other methods, MKFGCNII obtained the highest AUC value of 0.9631. Code is available at https://github.com/cuntjx/bioInfo.
Collapse
Affiliation(s)
- Shanghui Lu
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- School of Mathematics and Physics, Hechi University, Hechi, China
| | - Yong Liang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| | - Le Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Dong Ouyang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|