1
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Rai S, Tripathi S. Comparative efficacy of leading COVID-19 vaccines: A network meta-analysis. Indian J Med Res 2025; 161:9-20. [PMID: 40036106 PMCID: PMC11878698 DOI: 10.25259/ijmr_750_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 03/06/2025] Open
Abstract
In the fight against the COVID-19 virus, various vaccines using different technologies such as mRNA, viral vectors, protein subunits, and inactivated whole viruses have become primary defence strategies. This study aims to compare their effectiveness in controlling the spread of the pandemic. Using the comprehensive resources from three major databases-PubMed, EMBASE, and the Cochrane Library-we conducted an extensive literature review up to April 30, 2023. By employing a frequentist network meta-analysis, we analysed both direct and indirect estimates of vaccine efficacy, providing a clear comparison of the leading candidates in the global fight against COVID-19. Fifteen vaccines from 26 articles were used in our network meta-analysis. The statistically significant direct estimates were obtained by Spikevax [VE: 93.29 (91.31, 95.27); P<0.05], Pfizer BioNTech [VE: 92.07 (90.03, 94.12); P<0.05], Sputnik [VE: 91.60 (85.60, 97.60); P<0.05], Novavax [VE: 88.99 (83.55, 94.42); P<0.05], Sinovac [VE: 83.50 (65.40, 101.60); P<0.05], Covifenz [VE: 77.27 (68.48, 86.06); P<0.05], Zifivax [VE: 75.94 (70.86, 81.02); P<0.05], Covishield [VE: 72.34 (67.12, 77.56); P<0.05], S-Trimer [VE: 71.61 (56.23, 86.98); P<0.05], Covaxin [VE: 70.81 (65.33, 76.29); P<0.05], Soberna [VE: 69.70 (56.50, 82.90); P<0.05], Zydus Cadila [VE: 66.60 (47.60, 85.60); P<0.05], CVnCoV [VE: 63.70 (52.20, 75.20); P<0.05], Convidecia [VE: 57.50 (39.70, 75.30); P <0.05], and Jcovden [VE : 52.42 (47.28, 57.57); P<0.05]. Spikevax emerged triumphant with an unparalleled P score of 0.95, solidifying its status as a top ranking prevention tool against the COVID-19 in our investigation. Our analysis reveals a ranking of vaccine efficacy, with Spikevax emerging as the most effective, followed closely by Comirnaty, Sputnik, and others, collectively providing strong protection against the ongoing threat of COVID-19.
Collapse
Affiliation(s)
- Sanjay Rai
- Department of Centre of Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Tripathi
- Department of Biostatistics and Medical Informatics, University College of Medical Sciences and GTB Hospital, New Delhi, India
| |
Collapse
|
3
|
García-Rivera D, Puga-Gómez R, Fernández-Castillo S, Paredes-Moreno B, Ricardo-Delgado Y, Rodríguez-González M, Silva CV, Pérez-Nicado R, Rodríguez-Noda L, Santana-Mederos D, Climent-Ruiz Y, Noa-Romero E, Cruz-Sui O, Sánchez-Ramírez B, Hernández-García T, Palenzuela-Diaz A, Martínez-Perez M, García-López A, Valdés-Balbín Y, Vérez-Bencomo VG. Safety and durability of the immune response after vaccination with the heterologous schedule of anti-COVID-19 vaccines SOBERANA®02 and SOBERANA® Plus in children 3-18 years old. Vaccine X 2025; 22:100595. [PMID: 39737224 PMCID: PMC11683288 DOI: 10.1016/j.jvacx.2024.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Background The heterologous three-dose schedule of the protein subunit anti-COVID-19 SOBERANA®02 and SOBERANA® Plus vaccines has proved its safety, immunogenicity and efficacy in pediatric population, but durability of immunogenicity is not yet dilucidated. This study reports the safety and durability of the humoral and cellular responses in children and adolescents 5-7 months after receiving the heterologous vaccine schedule of SOBERANA® 02 and SOBERANA® Plus. Methods Children participating in a phase I/II clinical trial were followed-up for 5-7 months after the last dose. They were clinically examined by medical doctors, and their parents were interviewed searching for long-term adverse events. Blood samples were collected to evaluate the duration of humoral and cellular immune responses. Sera were tested for the presence of SARS-CoV-2 nucleocapsid (N) protein. Results There were no reports of severe adverse events such as coagulation disorders, myocarditis, or pericarditis. None of the participants who withdrew from the trial during the follow-up period did so due to post-vaccination adverse events. The humoral response waned in time for N-negative children, but levels of specific and neutralizing antibodies remained similar to those attained after the second dose of SOBERANA® 02 in the heterologous schedule. Neutralizing antibodies against SARS-CoV-2 D614G and omicron BA.1 were detected 5-7 months post-vaccination. RBD-specific IFN-γ secreting cells showed no significant change compared to levels following primary immunization, in both N-negative and N-positive children. Conclusions The vaccination regimen was safe over time, and both humoral and cellular immunity persisted in the vaccinated population aged 3-18 years, 5-7 months after receiving the heterologous SOBERANA® 02 and SOBERANA® Plus vaccine schedule.Trial registry: https://rpcec.sld.cu/trials/RPCEC00000374-En.
Collapse
Affiliation(s)
| | - Rinaldo Puga-Gómez
- Pediatric Hospital “Juan Manuel Márquez”. Av. 31, Marianao, Havana 11400, Cuba
| | | | | | | | | | | | | | | | | | - Yanet Climent-Ruiz
- Finlay Vaccine Institute, Av. 21 #19810, Atabey, Playa, Havana 11600, Cuba
| | - Enrique Noa-Romero
- National Civil Defense Research Laboratory. San José de Las Lajas, Mayabeque 32700, Cuba
| | - Otto Cruz-Sui
- National Civil Defense Research Laboratory. San José de Las Lajas, Mayabeque 32700, Cuba
| | - Belinda Sánchez-Ramírez
- Center for Molecular Immunology. Av 15th. and 216 Street, Siboney, Playa, Havana 11600, Cuba
| | - Tays Hernández-García
- Center for Molecular Immunology. Av 15th. and 216 Street, Siboney, Playa, Havana 11600, Cuba
| | | | | | - Arilia García-López
- National Clinical Trials Coordinating Center. Av. 5th and 62 Street, Miramar, Playa, Havana 11300, Cuba
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, Av. 21 #19810, Atabey, Playa, Havana 11600, Cuba
| | | |
Collapse
|
4
|
Doroud D, Sadat Larijani M, Biglari A, Ashrafian F, Sabouni T, Eybpoosh S, Verez-Bencomo V, Valdés-Balbín Y, García-Rivera D, Herrera-Rojas Y, Climent-Ruiz Y, Santana-Mederos D, Ramezani A. Comparative assessment of a COVID-19 vaccine after technology transfer to Iran from critical quality attributes to clinical and immunogenicity aspects. Sci Rep 2024; 14:26793. [PMID: 39501012 PMCID: PMC11538526 DOI: 10.1038/s41598-024-77331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
During COVID-19 pandemic, international pharmaceutical companies put effort to build global manufacturing networks for vaccines. Soberana Plus vaccine, a recombinant protein based vaccine (RBD dimer), with the trade name of PastoCovac Plus in Iran, is based on a protein subunit platform in Cuba and completed preclinical and toxicological assessments. This study aimed at presenting the steps of vaccine technology transfer from Cuba to Iran. This study provides the first practical comparability results in Iran to ensure the quality, safety and efficacy of a protein subunit vaccine against COVID-19 after a successful technology transfer from Cuba. PastoCovac Plus was transferred to Iran at the formulation stage. The assessment of the active ingredient pharmaceutical (API) was achieved through physicochemical and clinical data collection and tests to assure if there was any adverse impact on the vaccination results. In order to assess the quality of the vaccine product after technology transfer, we sought different properties including regulatory features, physicochemical quality, vaccine potency and stability as well as its immunogenicity and safety. Following the evaluation of the clinical quality attributes (CQAs) based on the standard protocols, the results showed that the two vaccines are highly similar and comparable, with no considerable effect on safety or efficacy profiles. The CQAs were all in the acceptance limits in terms of safety and efficacy as well as clinical evaluation results. The immunogenicity evaluation also confirmed no significant differences between the vaccines regarding reinfection (P = 0.199) or vaccine breakthrough (P = 0.176). Furthermore, the level of anti-spike and neutralizing antibodies in the both vaccine groups was not significantly different indicating the equality of performance between the two vaccines. According to the results of the quality and clinical assessment of this study, we achieved an acceptable quality attributes and acceptant limits in terms of safety and efficacy of the vaccines pre and post technology transfer.
Collapse
Affiliation(s)
- Delaram Doroud
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, P.O. BOX 14155-6559, Tehran, Tehran, Iran.
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran
| | - Talieh Sabouni
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Research Centre for Emerging and Reemerging Infectious Diseases, Tehran, Iran
| | | | | | | | | | | | | | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
5
|
Ramos-Bermúdez PE, Pousa S, Carvalho P, Brant RSC, Batista M, Hojo H, Garay HE, Roscoe A, Mallón AR, Besada V, Takao T, González LJ. A hydrolyzed N-propionylthiosuccinimide linker is cleaved by metastable fragmentation, increasing reliability of conjugation site identification in conjugate vaccines. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9859. [PMID: 39034666 DOI: 10.1002/rcm.9859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE Conjugation sites are a quality attribute of conjugate vaccines. Proteolysis of bioconjugates synthesized by maleimide-thiol chemistry generates type 2 peptides with a hydrolyzed thiosuccinimide linker containing information on the conjugation sites. A mass spectrometry (MS)-cleavable linker could make the identification of conjugation sites by MS more reliable. METHODS Four synthetic type 2 peptides with a hydrolyzed thiosuccinimide linker were analyzed by matrix-assisted laser desorption ionization (MALDI) MS/MS with and without collision gas. These peptides were also partially labeled with 18O in the linker to confirm the proposed fragmentation mechanism. A conjugate vaccine with the hydrolyzed thiosuccinimide linker was reduced and S-alkylated, digested with trypsin and analyzed by liquid chromatography-MS/MS using collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation methods at a normalized collision energy of 30. RESULTS A metastable fragmentation preferentially cleaves the newly formed pseudopeptide bond within the hydrolyzed thiosuccinimide linker of type 2 peptides to yield P + 71 and C + 98 ions. These ions make the assignment of conjugation sites more reliable. Partial 18O-labeling and MS/MS analysis confirmed the proposed structures. CID produces these ions as the two most intense signals more favorably than HCD. The latter also yields these ions, guarantees better sequence coverage and promotes other fragmentations in the linker. CONCLUSIONS Hydrolyzed thiosuccinimide linker is cleavable in MALDI and electrospray ionization MS/MS analysis by a gas-phase metastable fragmentation. The resulting fragment ions (P + 71 and C + 98) make the identification of conjugation sites more reliable. These results could be extended to self-hydrolyzing maleimides, which efficiently stabilize the thiosuccinimide linker upon hydrolysis, in antibody-drug conjugates.
Collapse
Affiliation(s)
| | - Satomy Pousa
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Paulo Carvalho
- Carlos Chagas Institute/FioCruz Rua Professor Algacyr Munhoz Mader, Curitiba, Brazil
| | | | - Michel Batista
- Carlos Chagas Institute/FioCruz Rua Professor Algacyr Munhoz Mader, Curitiba, Brazil
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Hilda E Garay
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Abel Roscoe
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Vladimir Besada
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Luis Javier González
- Carlos Chagas Institute/FioCruz Rua Professor Algacyr Munhoz Mader, Curitiba, Brazil
| |
Collapse
|
6
|
Kabi F, Contreras M, Semakula J, Sánchez-Sánchez M, Muñoz-Hernández C, Mugerwa S, Kasaija P, Kirunda H, de la Fuente G, Fernández-Melgar R, Rafael M, Fernández de Mera IG, Matovu M, Kyakuwa I, Dhikusooka M, Nsereko G, Boma P, Bugeza J, Moses M, Namukasa A, Obonyo P, Ssekabunga N, Adyero OE, Rutaisire J, Gortazar C, de la Fuente J. Evaluation of effectiveness and safety of Subolesin anti-tick vaccine in Ugandan multi-site field trial. NPJ Vaccines 2024; 9:174. [PMID: 39294184 PMCID: PMC11410822 DOI: 10.1038/s41541-024-00966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccines are the most effective and sustainable intervention to control ticks and tick-borne diseases (TBD). Using a personalized vaccine design based on regional tick genotypes, a Rhipicephalus appendiculatus Subolesin protective antigen was used in a field trial evaluating tick vaccine efficacy, effectiveness, and safety in cattle infested with multiple tick species in different Ugandan agro-ecological zones. Vaccination with SUB was safe with a protective capacity against anemia and infection, and reduced the number of infested cattle, tick fitness (feeding and reproduction) with vaccine effectiveness against multiple tick species between 93.2% at 167-196 days post-vaccination (dpv) and 61.4% at 251-327 dpv. Total integrated vaccine efficacy/effectiveness was estimated as 98.8%. The Subolesin-based vaccine is protective against multiple cattle tick infestations under field conditions in Uganda. These results support registration and commercialization of the vaccine to reduce tick populations and associated risks for human and animal TBD and chemical acaracides in Uganda.
Collapse
Affiliation(s)
- Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda.
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Jimmy Semakula
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Clara Muñoz-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Paul Kasaija
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Halid Kirunda
- Mbarara Zonal Agricultural Research and Development Institute (Mbarara ZARDI), National Agricultural Research Organization, Mbarara City, Uganda
| | - Gabriela de la Fuente
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Rubén Fernández-Melgar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Marta Rafael
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Moses Matovu
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Ivan Kyakuwa
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Moses Dhikusooka
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Godfrey Nsereko
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Paul Boma
- Nabuin ZARDI, 9HQG+5R7 Lorengdwat road, Lorengedwat, Uganda
| | - James Bugeza
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Mwesigwa Moses
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | | | - Philip Obonyo
- Uganda government prison farm, 3FJ7+PCH, Kiburara, Uganda
| | - Nicholas Ssekabunga
- Mbarara Zonal Agricultural Research and Development Institute (Mbarara ZARDI), National Agricultural Research Organization, Mbarara City, Uganda
| | | | - Justus Rutaisire
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
7
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
8
|
Alonso Ruiz A, Bezruki A, Shinabargar E, Large K, Vieira M, Slovenski I, Liu Y, Agarwal S, Becker A, Moon S. Which roads lead to access? A global landscape of six COVID-19 vaccine innovation models. Global Health 2024; 20:25. [PMID: 38532484 DOI: 10.1186/s12992-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Unequal and inequitable access to Covid-19 vaccines in low- and middle-income countries (L&MICs) was a major political, ethical and public health failure in the pandemic. However, vaccine developers' practices were not monolithic, but rather, took diverse approaches to supplying different countries, with important implications for global access. RESULTS Using data on R&D investments, regulatory approvals, manufacturing and purchase agreements, and vaccine deliveries, we identified six distinct innovation models that apply across the 14 COVID-19 vaccines with more international presence from 2020-2022. "Western Early Arrivers" Pfizer/BioNTech and Moderna supplied the largest volumes quickly and prioritized high-income countries (HICs) from registration to vaccine delivery. "Western Latecomers" Janssen and Novavax supplied intermediate volumes later, also prioritizing HICs but with a greater proportion to L&MICs. "Major Chinese Developers" Sinopharm and Sinovac supplied intermediate volumes early, primarily to middle-income countries (MICs). "Russian Developer" Gamaleya completed development early but ultimately supplied small volumes, primarily to middle-income countries (MICs). "Cosmopolitan Developer" Oxford/AstraZeneca supplied large volumes early to HICs and MICs at the lowest prices. Finally, "Small MIC Developers" CanSino, Bharat Biotech, Medigen, Finlay Institute and the Center for Genetic Engineering and Biotechnology (CGEB), exported relatively small volumes to a few MICs. Low-income countries (LICs) were not targeted by any developer, and received far fewer doses, later, than any other income group. Almost all developers received public funding and other forms of support, but we found little evidence that such support was leveraged to expand global access. CONCLUSIONS Each of the six innovation models has different implications for which countries get access to which vaccines, how quickly, and at which prices. Each offers different strengths and weaknesses for achieving equitable access. Our findings also suggest that Western firms had the greatest capacity to develop and deliver vaccines quickly during the pandemic, but such capacity is rapidly becoming more globally distributed with MICs playing a significant role, especially in supplying other MICs. Given the critical role of public support in enabling pandemic vaccine development and supply, governments have both the capacity and responsibility to craft international rules that will make responses to future pandemics more equitable and effective.
Collapse
Affiliation(s)
- Adrián Alonso Ruiz
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland.
| | - Anna Bezruki
- Georgetown University, 3700 O St NW, Washington, DC, 20057, USA
| | - Erika Shinabargar
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Kaitlin Large
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Marcela Vieira
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Iulia Slovenski
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Yiqi Liu
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Surabhi Agarwal
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Anna Becker
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| | - Suerie Moon
- Global Health Centre, Graduate Institute of International and Development Studies, Chem. Eugène-Rigot 2, Genève, 1202, Switzerland
| |
Collapse
|
9
|
Samanta S, Banerjee J, Das A, Das S, Ahmed R, Das S, Pal A, Ali KM, Mukhopadhyay R, Giri B, Dash SK. Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants. Curr Microbiol 2024; 81:91. [PMID: 38311669 DOI: 10.1007/s00284-023-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
A growing number of re-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals has sparked discussions about the potential need for a booster vaccine dosage to counteract declining antibody levels and new strains. The protective immunity produced by vaccinations, and past illnesses relies on immunological memory. CD4 + T cells, CD8 + T cells, B cells, and long-lasting antibody responses are all components of the adaptive immune system that can generate and maintain this immunological memory. Since novel mutant variants have emerged one after the other, the world has been hit by repeated waves. Various vaccine formulations against SARS-CoV-2 have been administered across the globe. Thus, estimating the efficacy of those vaccines against gradually developed mutant stains is the essential parameter regarding the fate of those vaccine formulations and the necessity of booster doses and their frequency. In this review, focus has also been given to how vaccination stacks up against moderate and severe acute infections in terms of the longevity of the immune cells, neutralizing antibody responses, etc. However, hybrid immunity shows a greater accuracy of re-infection of variants of concern (VOCs) of SARS-CoV-2 than infection and immunization. The review conveys knowledge of detailed information about several marketed vaccines and the status of their efficacy against specific mutant strains of SARS-CoV-2. Furthermore, this review discusses the status of immunological memory after infection, mixed infection, and vaccination.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Aparna Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sourav Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Amitava Pal
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Kazi Monjur Ali
- Department of Nutrition, Maharajadhiraj Uday Chand Women's College, B.C. Road, Bardhaman, 713104, West Bengal, India
| | - Rupanjan Mukhopadhyay
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
10
|
Ahmed N, Athavale A, Tripathi AH, Subramaniam A, Upadhyay SK, Pandey AK, Rai RC, Awasthi A. To be remembered: B cell memory response against SARS-CoV-2 and its variants in vaccinated and unvaccinated individuals. Scand J Immunol 2024; 99:e13345. [PMID: 38441373 DOI: 10.1111/sji.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 03/07/2024]
Abstract
COVID-19 disease has plagued the world economy and affected the overall well-being and life of most of the people. Natural infection as well as vaccination leads to the development of an immune response against the pathogen. This involves the production of antibodies, which can neutralize the virus during future challenges. In addition, the development of cellular immune memory with memory B and T cells provides long-lasting protection. The longevity of the immune response has been a subject of intensive research in this field. The extent of immunity conferred by different forms of vaccination or natural infections remained debatable for long. Hence, understanding the effectiveness of these responses among different groups of people can assist government organizations in making informed policy decisions. In this article, based on the publicly available data, we have reviewed the memory response generated by some of the vaccines against SARS-CoV-2 and its variants, particularly B cell memory in different groups of individuals.
Collapse
Affiliation(s)
- Nafees Ahmed
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Atharv Athavale
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ankita H Tripathi
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Adarsh Subramaniam
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | | | - Ramesh Chandra Rai
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
11
|
Sadeghi L, Bolhassani A, Mohit E, Baesi K, Aghasadeghi MR. Heterologous DNA Prime/Protein Boost Immunization Targeting Nef-Tat Fusion Antigen Induces Potent T-cell Activity and in vitro Anti-SCR HIV-1 Effects. Curr HIV Res 2024; 22:109-119. [PMID: 38712371 DOI: 10.2174/011570162x297602240430142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate. METHODS At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA-nef-tat and Nef-Tat protein) were prepared in large scale and high purity. The generation of the Nef-Tat protein was performed in the E. coli expression system using an IPTG inducer. Then, we evaluated and compared immune responses of homologous DNA prime/ DNA boost, homologous protein prime/ protein boost, and heterologous DNA prime/protein boost regimens in BALB/c mice. Finally, the ability of mice splenocytes to secret cytokines after exposure to single-cycle replicable (SCR) HIV-1 was compared between immunized and control groups in vitro. RESULTS The nef-tat gene was successfully subcloned in eukaryotic pcDNA3.1 (-) and prokaryotic pET-24a (+) expression vectors. The recombinant Nef-Tat protein was generated in the E. coli Rosetta strain under optimized conditions as a clear band of ~ 35 kDa detected on SDS-PAGE. Moreover, transfection of pcDNA-nef-tat into HEK-293T cells was successfully performed using Lipofectamine 2000, as confirmed by western blotting. The immunization studies showed that heterologous DNA prime/protein boost regimen could significantly elicit the highest levels of Ig- G2a, IFN-γ, and Granzyme B in mice as compared to homologous DNA/DNA and protein/protein regimens. Moreover, the secretion of IFN-γ was higher in DNA/protein regimens than in DNA/DNA and protein/protein regimens after exposure of mice splenocytes to SCR HIV-1 in vitro. CONCLUSION The chimeric HIV-1 Nef-Tat antigen was highly immunogenic, especially when applied in a heterologous prime/ boost regimen. This regimen could direct immune response toward cellular immunity (Th1 and CTL activity) and increase IFN-γ secretion after virus exposure.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
12
|
Bello-Rivero I, Crombet-Ramos T, Mesa-Pardillo C, Morera-Díaz Y, Mazorra-Herrera Z, Garcia-Rivera D, Nodarse-Cuní H, Hernández-Bernal F, Muzio-Gonzalez V, Aguilera-Barreto A, Vazquez-Blomquist D, Domínguez-Horta MDC, Guillen-Nieto G. BioHabana 2022: Preventive and Immunotherapeutic Strategies Against COVID-19 and Cancer in Cuba. J Interferon Cytokine Res 2023; 43:571-580. [PMID: 38048299 DOI: 10.1089/jir.2023.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The convergence of life sciences with neurosciences, nanotechnology, data management, and engineering has caused a technological diversification of the biotechnology, pharmaceutical, and medical technology industries, including the phenomenon of digital transformation, which has given rise to the so-called Fourth Industrial Revolution (Industry 4.0). Confronting the COVID-19 pandemic revealed the outstanding response capacity of the scientific community and the biopharmaceutical industry, based on a multidisciplinary and interinstitutional approach that has achieved an unprecedented integration in the history of biomedical science. Cuba, a small country, with scarce material resources, has had remarkable success in controlling the disease, which also highlights the impact of social factors. This report presents a summary of the most relevant presentations of selected topics during the scientific meeting, "BioHabana 2022: Cancer Immunotherapy and the COVID-19 Pandemic," which was held in Havana Cuba in April 2022.
Collapse
Affiliation(s)
- Iraldo Bello-Rivero
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Tania Crombet-Ramos
- Clinical Trial Directions, Center for Molecular Immunology (CIM), Havana, Cuba
| | - Circe Mesa-Pardillo
- Clinical Trial Directions, Center for Molecular Immunology (CIM), Havana, Cuba
| | - Yanelys Morera-Díaz
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | | | - Hugo Nodarse-Cuní
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Francisco Hernández-Bernal
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Verena Muzio-Gonzalez
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Ana Aguilera-Barreto
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Dania Vazquez-Blomquist
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Maria Del Carmen Domínguez-Horta
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Gerardo Guillen-Nieto
- Clinical Investigation and Biomedical Research Directions, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
13
|
Ashrafian F, Bagheri Amiri F, Bavand A, Zali M, Sadat Larijani M, Ramezani A. A Comparative Study of Immunogenicity, Antibody Persistence, and Safety of Three Different COVID-19 Boosters between Individuals with Comorbidities and the Normal Population. Vaccines (Basel) 2023; 11:1376. [PMID: 37631944 PMCID: PMC10459403 DOI: 10.3390/vaccines11081376] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Data on immunogenicity, immune response persistency, and safety of COVID-19 boosters in patients with comorbidities are limited. Therefore, we aimed to evaluate three different boosters' immunogenicity and safety in individuals with at least one underlying disease (UD) (obesity, hypertension, and diabetes mellitus) with healthy ones (HC) who were primed with two doses of the BBIBP-CorV vaccine and received a booster shot of the same priming vaccine or protein subunit vaccines, PastoCovac Plus or PastoCovac. One hundred and forty subjects including sixty-three ones with a comorbidity and seventy-seven healthy ones were enrolled. The presence of SARS-CoV-2 antibodies was assessed before the booster injection and 28, 60, 90, and 180 days after it. Moreover, the adverse events (AEs) were recorded on days 7 and 21 postbooster shot for evaluating safety outcomes. Significantly increased titers of antispike, antiRBD, and neutralizing antibodies were observed in both UD and HC groups 28 days after the booster dose. Nevertheless, the titer of antispike IgG and anti-RBD IgG was lower in the UD group compared to the HC group. The long-term assessment regarding persistence of humoral immune responses showed that the induced antibodies were detectable up to 180 days postbooster shots though with a declined titer in both groups with no significant differences (p > 0.05). Furthermore, no significant difference in antibody levels was observed between each UD subgroup and the HC group, except for neutralizing antibodies in the hypertension subgroup. PastoCovac Plus and PastoCovac boosters induced a higher fold rise in antibodies in UD individuals than BBIBP-CorV booster recipients. No serious AEs after the booster injection were recorded. The overall incidence of AEs after the booster injection was higher in the UD group than the HC group among whom the highest systemic rate of AEs was seen in the BBIBP-CorV booster recipients. In conclusion, administration of COVID-19 boosters could similarly induce robust and persistent humoral immune responses in individuals with or without UD primarily vaccinated with two doses of the BBIBP-CorV. Protein-based boosters with higher a higher fold rise in antibodies and lower AEs in individuals with comorbidities might be considered a better choice for these individuals.
Collapse
Affiliation(s)
- Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran; (F.A.); (A.B.); (M.Z.)
| |
Collapse
|
14
|
Sharifi Aliabadi L, Karami M, Barkhordar M, Hashemi Nazari SS, Kavousi A, Ahmadvand M, Vaezi M. Homologous versus Heterologous prime-boost COVID-19 Vaccination in autologous hematopoietic stem cell transplantation recipients: a blinded randomized controlled trial. Front Immunol 2023; 14:1237916. [PMID: 37593732 PMCID: PMC10427916 DOI: 10.3389/fimmu.2023.1237916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Background/Purpose Optimizing vaccine efficacy is of particular concern in patients undergoing hematopoietic stem cell transplantation (HSCT), which mainly have an inadequate immune response to primary SARS-CoV-2 vaccination. This investigation aimed to explore the potential prime-boost COVID-19 vaccination strategies following autologous (auto-) HSCT. Methods In a randomized clinical trial, patients who had already received two primary doses of receptor-binding domain (RBD) tetanus toxoid (TT) conjugated SARS-CoV-2 vaccine during three to nine months after auto-HSCT were randomized to receive either a homologous RBD-TT conjugated or heterologous inactivated booster dose four weeks after the primary vaccination course. The primary outcome was comparing the anti-S IgG Immune status ratio (ISR) four weeks after the heterologous versus homologous booster dose. The assessment of safety and reactogenicity adverse events was considered as the secondary outcome. Results Sixty-one auto-HSCT recipients were recruited and randomly assigned to receive either homologous or heterologous booster doses four weeks after the primary vaccination course. The mean ISR was 3.40 (95% CI: 2.63- 4.16) before the booster dose with a 90.0% seropositive rate. The ISR raised to 5.12 (95% CI: 4.15- 6.08) with a 100% seropositive rate after heterologous (P= 0.0064) and to 3.42 (95% CI: 2.67- 4.17) with a 93.0% seropositivity after the homologous booster doses (P= 0.96). In addition, the heterologous group suffered more AEs following the booster dosage than the homologous group, but this difference was not statistically significant (p = 0.955). In multivariable analysis, the prime-boost vaccination strategy (heterologous versus homologous), the level of ISR before the booster dose, and the length of time between auto-HSCT and booster dose were the positive predictors of serologic response to a booster dose. No serious adverse event is attributed to booster vaccination. Conclusion In patients who were primed with two SARS-CoV-2 vaccine doses during the first year after auto-HSCT, heterologous prime-boost COVID-19 vaccination with inactivated platform resulted in considerably enhanced serologic response and non-significantly higher reactogenicity adverse events than homologous RBD-TT conjugated prime-boost COVID-19 vaccination strategy.
Collapse
Affiliation(s)
- Leyla Sharifi Aliabadi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopotic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi Nazari
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Kavousi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopotic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopotic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Hernández-Bernal F, Ricardo-Cobas MC, Martín-Bauta Y, Rodríguez-Martínez E, Urrutia-Pérez K, Urrutia-Pérez K, Quintana-Guerra J, Navarro-Rodríguez Z, Piñera-Martínez M, Rodríguez-Reinoso JL, Chávez-Chong CO, Baladrón-Castrillo I, Melo-Suárez G, Batista-Izquierdo A, Pupo-Micó A, Mora-Betancourt R, Bizet-Almeida J, Martínez-Rodríguez MC, Lobaina-Lambert L, Velázquez-Pérez VM, Soler-Díaz J, Laurencio-Vallina S, Meriño-Hechavarría T, Carmenaty-Campos N, Rodríguez-Montero E, Limonta-Fernández M, Alonso-Valdés M, Hernández-Rodríguez R, Pimentel-Vázquez E, Catasús-Álvarez KM, Cabrera-Núñez MV, Ayala-Ávila M, Muzio-González VL. A phase 3, randomised, double-blind, placebo-controlled clinical trial evaluation of the efficacy and safety of a SARS-CoV-2 recombinant spike RBD protein vaccine in adults (ABDALA-3 study). LANCET REGIONAL HEALTH. AMERICAS 2023; 21:100497. [PMID: 37192953 PMCID: PMC10160525 DOI: 10.1016/j.lana.2023.100497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023]
Abstract
Background The pandemic of COVID-19 raised the urgent need for safe and efficacious vaccines against SARS-CoV-2. We evaluated the efficacy and safety of a new SARS-CoV-2 virus receptor-binding domain (RBD) vaccine. Methods A phase 3, multicentre, randomised, double-blind, placebo-controlled trial was carried out at 18 clinical sites in three provinces of the south-eastern region of Cuba. Subjects (healthy or those with controlled chronic diseases) aged between 19 and 80 years, who gave written informed consent were eligible. Subjects were randomly assigned (1:1, in blocks) to two groups: placebo, and 50 μg RBD vaccine (Abdala). The product was administered intramuscularly, 0.5 mL in the deltoid region, in a three-dose immunization schedule at 0-14-28 days. The organoleptic characteristics and presentations of the vaccine and placebo were identical. All participants (subjects, clinical researchers, statisticians, laboratory technicians, and monitors) remained blinded during the study period. The main endpoint was to evaluate the efficacy of the Abdala vaccine in the prevention of symptomatic COVID-19. The trial is registered with the Cuban Public Registry of Clinical Trials, RPCEC00000359. Findings Between March 22 to April 03, 2021, 48,290 subjects were included (24,144 and 24,146 in the placebo and Abdala groups, respectively) in the context of predominant D614G variant circulation. The evaluation of the main efficacy outcomes occurred during May-June 2021, starting at May 3rd, in the context of high circulation of mutant viruses, predominantly VOC Beta. The incidence of adverse reactions for individuals in the placebo and Abdala vaccine groups were 1227/24,144 (5.1%) and 1621/24,146 (6.7%), respectively. Adverse reactions were mostly mild, and from the injection site, which resolved in the first 24-48 h. No severe adverse events with demonstrated cause-effect relationship attributable to the vaccine were reported. Symptomatic COVID-19 disease was confirmed in 142 participants in the placebo group (78.44 incidence per 1000 person-years, 95% confidence interval [CI], 66.07-92.46) and in 11 participants in Abdala vaccine group (6.05 incidence per 1000 person years; 95% CI 3.02-10.82). The Abdala vaccine efficacy against symptomatic COVID-19 was 92.28% (95% CI 85.74-95.82). Moderate/serious forms of COVID-19 occurred in 30 participants (28 in the placebo group and only 2 in the Abdala vaccine group) for a vaccine efficacy of 92.88% (95% CI 70.12-98.31). There were five critical patients (of which four died), all in the placebo group. Interpretation The Abdala vaccine was safe, well tolerated, and highly effective, fulfilling the WHO target product profile for COVID-19 vaccines. Those results, along with its immunization schedule and the advantage of easy storage and handling conditions at 2-8 °C, make this vaccine an option for the use in immunization strategies as a key tool for the control of the pandemic. Funding Centre for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Maria V. Cabrera-Núñez
- Virology Laboratory of the Center for Hygiene, Epidemiology and Microbiology, Santiago de Cuba, Cuba
| | | | | |
Collapse
|
16
|
Mostafavi E, Eybpoosh S, Karamouzian M, Khalili M, Haji-Maghsoudi S, Salehi-Vaziri M, Khamesipour A, Jalali T, Nakhaeizadeh M, Sharifi H, Mansoori Y, Keramat F, Ghodrati S, Javanian M, Doroud D, Omrani MD, Asadi H, Pouriayevali MH, Ghasemian R, Farshidi H, Pourahmad M, Ghasemzadeh I, Mounesan L, Darvishian M, Mirjalili MR, Toledo-Romani ME, Valenzuela-Silva C, Verez-Bencomo V, Gouya MM, Emadi-Koochak H, Haghdoost AA, Biglari A. Efficacy and Safety of a Protein-Based SARS-CoV-2 Vaccine: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2310302. [PMID: 37133864 PMCID: PMC10157429 DOI: 10.1001/jamanetworkopen.2023.10302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Importance The protein-based SARS-CoV-2 vaccines FINLAY-FR-2 (Soberana 02) and FINLAY-FR-1A (Soberana Plus) showed good safety and immunogenicity in phase 1 and 2 trials, but the clinical efficacy of the vaccine remains unknown. Objective To evaluate the efficacy and safety of a 2-dose regimen of FINLAY-FR-2 (cohort 1) and a 3-dose regimen of FINLAY-FR-2 with FINLAY-FR-1A (cohort 2) in Iranian adults. Design, Setting, and Participants A multicenter, randomized, double-blind, placebo-controlled, phase 3 trial was conducted at 6 cities in cohort 1 and 2 cities in cohort 2. Participants included individuals aged 18 to 80 years without uncontrolled comorbidities, coagulation disorders, pregnancy or breastfeeding, recent immunoglobulin or immunosuppressive therapy, and clinical presentation or laboratory-confirmed COVID-19 on enrollment. The study was conducted from April 26 to September 25, 2021. Interventions In cohort 1, 2 doses of FINLAY-FR-2 (n = 13 857) or placebo (n = 3462) were administered 28 days apart. In cohort 2, 2 doses of FINLAY-FR-2 plus 1 dose of FINLAY-FR-1A (n = 4340) or 3 placebo doses (n = 1081) were administered 28 days apart. Vaccinations were administered via intramuscular injection. Main Outcomes and Measures The primary outcome was polymerase chain reaction-confirmed symptomatic COVID-19 infection at least 14 days after vaccination completion. Other outcomes were adverse events and severe COVID-19. Intention-to-treat analysis was performed. Results In cohort 1 a total 17 319 individuals received 2 doses and in cohort 2 5521 received 3 doses of the vaccine or placebo. Cohort 1 comprised 60.1% men in the vaccine group and 59.1% men in the placebo group; cohort 2 included 59.8% men in the vaccine group and 59.9% in the placebo group. The mean (SD) age was 39.3 (11.9) years in cohort 1 and 39.7 (12.0) years in cohort 2, with no significant difference between the vaccine and placebo groups. The median follow-up time in cohort 1 was 100 (IQR, 96-106) days and, in cohort 2, 142 (137-148) days. In cohort 1, 461 (3.2%) cases of COVID-19 occurred in the vaccine group and 221 (6.1%) in the placebo group (vaccine efficacy: 49.7%; 95% CI, 40.8%-57.3%) vs 75 (1.6%) and 51 (4.3%) in cohort 2 (vaccine efficacy: 64.9%; 95% CI, 49.7%-59.5%). The incidence of serious adverse events was lower than 0.1%, with no vaccine-related deaths. Conclusions and Relevance In this multicenter, randomized, double-blind, placebo-controlled, phase 3 trial of the efficacy and safety of FINLAY-FR-2 and FINLAY-FR-1A, 2 doses of FINLAY-FR-2 plus the third dose of FINLAY-FR-1A showed acceptable vaccine efficacy against symptomatic COVID-19 as well as COVID-19-related severe infections. Vaccination was generally safe and well tolerated. Therefore, Soberana may have utility as an option for mass vaccination of the population, especially in resource-limited settings, because of its storage condition and affordable price. Trial Registration isrctn.org Identifier: IRCT20210303050558N1.
Collapse
Affiliation(s)
- Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Karamouzian
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- School of Public Health, Brown University, Providence, Rhode Island
- Centre on Drug Policy Evaluation, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Malahat Khalili
- The Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Saiedeh Haji-Maghsoudi
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mehran Nakhaeizadeh
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samad Ghodrati
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Delaram Doroud
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Davood Omrani
- Department of Genetics, School of Medicine, Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Asadi
- Pasteur Institute of Iran, Tehran, Iran
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | | - Roya Ghasemian
- Department of Infectious Diseases, Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Morteza Pourahmad
- Department of Infectious Diseases, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Ghasemzadeh
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Leila Mounesan
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Darvishian
- Cancer Control Research, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | - Mohammad Mehdi Gouya
- Centre for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran
- Department of Infectious Disease and Tropical Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Emadi-Koochak
- Department of Infectious Disease, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Haghdoost
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Biglari
- Pasteur Institute of Iran, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E, Kolla L, Gitter A, Greene CS. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. mSystems 2023; 8:e0092722. [PMID: 36861991 PMCID: PMC10134813 DOI: 10.1128/msystems.00927-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, in either an inactivated or an attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion article (H. M. Rando, R. Lordan, L. Kolla, E. Sell, et al., mSystems 8:e00928-22, 2023, https://doi.org/10.1128/mSystems.00928-22), we review the more recent and novel development of nucleic acid-based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2. IMPORTANCE The development, production, and distribution of vaccines is imperative to saving lives, preventing illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Vaccines that use cutting-edge biotechnology have played an important role in mitigating the effects of SARS-CoV-2. However, more traditional methods of vaccine development that were refined throughout the 20th century have been especially critical to increasing vaccine access worldwide. Effective deployment is necessary to reducing the susceptibility of the world's population, which is especially important in light of emerging variants. In this review, we discuss the safety, immunogenicity, and distribution of vaccines developed using established technologies. In a separate review, we describe the vaccines developed using nucleic acid-based vaccine platforms. From the current literature, it is clear that the well-established vaccine technologies are also highly effective against SARS-CoV-2 and are being used to address the challenges of COVID-19 globally, including in low- and middle-income countries. This worldwide approach is critical for reducing the devastating impact of SARS-CoV-2.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Likhitha Kolla
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Dickey TH, Ma R, Orr-Gonzalez S, Ouahes T, Patel P, McAleese H, Butler B, Eudy E, Eaton B, Murphy M, Kwan JL, Salinas ND, Holbrook MR, Lambert LE, Tolia NH. Design of a stabilized RBD enables potently neutralizing SARS-CoV-2 single-component nanoparticle vaccines. Cell Rep 2023; 42:112266. [PMID: 36943870 PMCID: PMC9986124 DOI: 10.1016/j.celrep.2023.112266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Waning immunity and emerging variants necessitate continued vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Improvements in vaccine safety, tolerability, and ease of manufacturing would benefit these efforts. Here, we develop a potent and easily manufactured nanoparticle vaccine displaying the spike receptor-binding domain (RBD). Computational design to stabilize the RBD, eliminate glycosylation, and focus the immune response to neutralizing epitopes results in an RBD immunogen that resolves issues hindering the efficient nanoparticle display of the native RBD. This non-glycosylated RBD can be genetically fused to diverse single-component nanoparticle platforms, maximizing manufacturing ease and flexibility. All engineered RBD nanoparticles elicit potently neutralizing antibodies in mice that far exceed monomeric RBDs. A 60-copy particle (noNAG-RBD-E2p) also elicits potently neutralizing antibodies in non-human primates. The neutralizing antibody titers elicited by noNAG-RBD-E2p are comparable to a benchmark stabilized spike antigen and reach levels against Omicron BA.5 that suggest that it would provide protection against emerging variants.
Collapse
Affiliation(s)
- Thayne H Dickey
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Rui Ma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Palak Patel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Holly McAleese
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Elizabeth Eudy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Brett Eaton
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Michael Murphy
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jennifer L Kwan
- Epidemiology and Population Studies Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20894, USA.
| |
Collapse
|
19
|
Barkhordar M, Chahardouli B, Biglari A, Ahmadvand M, Bahri T, Alaeddini F, Sharifi Aliabadi L, Noorani SS, Bagheri Amiri F, Biglari M, Shemshadi MR, Ghavamzadeh A, Vaezi M. Three doses of a recombinant conjugated SARS-CoV-2 vaccine early after allogeneic hematopoietic stem cell transplantation: predicting indicators of a high serologic response-a prospective, single-arm study. Front Immunol 2023; 14:1169666. [PMID: 37153556 PMCID: PMC10154585 DOI: 10.3389/fimmu.2023.1169666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Background Allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients must be vaccinated against SARS-CoV-2 as quickly as possible after transplantation. The difficulty in obtaining recommended SARS-CoV-2 vaccines for allo-HSCT recipients motivated us to utilize an accessible and affordable SARS-CoV-2 vaccine with a recombinant receptor-binding domain (RBD)-tetanus toxoid (TT)-conjugated platform shortly after allo-HSCT in the developing country of Iran. Methods This prospective, single-arm study aimed to investigate immunogenicity and its predictors following a three-dose SARS-CoV-2 RBD-TT-conjugated vaccine regimen administered at 4-week (± 1-week) intervals in patients within 3-12 months post allo-HSCT. An immune status ratio (ISR) was measured at baseline and 4 weeks (± 1 week) after each vaccine dose using a semiquantitative immunoassay. Using the median ISR as a cut-off point for immune response intensity, we performed a logistic regression analysis to determine the predictive impact of several baseline factors on the intensity of the serologic response following the third vaccination dose. Results Thirty-six allo-HSCT recipients, with a mean age of 42.42 years and a median time of 133 days between hematopoietic stem cell transplant (allo-HSCT) and the start of vaccination, were analyzed. Our findings, using the generalized estimating equation (GEE) model, indicated that, compared with the baseline ISR of 1.55 [95% confidence interval (CI) 0.94 to 2.17], the ISR increased significantly during the three-dose SARS-CoV-2 vaccination regimen. The ISR reached 2.32 (95% CI 1.84 to 2.79; p = 0.010) after the second dose and 3.87 (95% CI 3.25 to 4.48; p = 0.001) after the third dose of vaccine, reflecting 69.44% and 91.66% seropositivity, respectively. In a multivariate logistic regression analysis, the female sex of the donor [odds ratio (OR) 8.67; p = 0.028] and a higher level donor ISR at allo-HSCT (OR 3.56; p = 0.050) were the two positive predictors of strong immune response following the third vaccine dose. No serious adverse events (i.e., grades 3 and 4) were observed following the vaccination regimen. Conclusions We concluded that early vaccination of allo-HSCT recipients with a three-dose RBD-TT-conjugated SARS-CoV-2 vaccine is safe and could improve the early post-allo-HSCT immune response. We further believe that the pre-allo-HSCT SARS-CoV-2 immunization of donors may enhance post-allo-HSCT seroconversion in allo-HSCT recipients who receive the entire course of the SARS-CoV-2 vaccine during the first year after allo-HSCT.
Collapse
Affiliation(s)
- Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| | - Bahram Chahardouli
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Biglari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Alaeddini
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seied Saeid Noorani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Biglari
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shemshadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Cancer & Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Vaezi, ; Maryam Barkhordar,
| |
Collapse
|