1
|
Prasad YR, Anakha J, Jawalekar SS, Pande AH. Broad-spectrum anti-cancer activity of fused human arginase variants. Invest New Drugs 2024; 42:531-537. [PMID: 39160429 DOI: 10.1007/s10637-024-01466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
The rapid increase in cancer cases worldwide necessitates the development of novel therapeutic approaches. Therapies targeting cancer's altered metabolism, especially those that deplete critical amino acids, have emerged as promising ones, some of which are already being used in clinical practice and many others are under development. This study reports the anti-cancer activity of two novel fused human arginase I (FHA) variants, FHA-3 and FHA-12, assessed using the NCI-60 human tumor cell line panel. Both variants have demonstrated a range of potencies in a single-dose assay (10 µM), but FHA-3 was found to be more potent with significant growth inhibition in most tested cell lines. To calculate 50% growth inhibition (GI50), FHA-3 was further evaluated in a five-dose assay, where notable anti-cancer activity was observed across the nine cancer types of the NCI-60 panel. Our results demonstrated the broad-spectrum anti-cancer activity of novel FHA variants, with FHA-3 being the most potent. Further studies elucidating its efficacy in animal models will help explore its therapeutic potential.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Mohali, S.A.S. Nagar, 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Mohali, S.A.S. Nagar, 160062, Punjab, India
| | - Snehal Sainath Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Mohali, S.A.S. Nagar, 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, Mohali, S.A.S. Nagar, 160062, Punjab, India.
| |
Collapse
|
2
|
Yuxiao C, Jiachen W, Yanjie L, Shenglan L, Yuji W, Wenbin L. Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature. Front Pharmacol 2024; 15:1446725. [PMID: 39239650 PMCID: PMC11375294 DOI: 10.3389/fphar.2024.1446725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.
Collapse
Affiliation(s)
- Chen Yuxiao
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital (The First Clinical College of Capital Medical University), Beijing, China
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wang Jiachen
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Yanjie
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Shenglan
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Yuji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Li Wenbin
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
You S, Han X, Xu Y, Yao Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids 2023; 55:1213-1222. [PMID: 37572157 DOI: 10.1007/s00726-023-03313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Shijing You
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiahui Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yuance Xu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qin Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
4
|
Chu YD, Lai MW, Yeh CT. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int J Mol Sci 2023; 24:10668. [PMID: 37445845 DOI: 10.3390/ijms241310668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Arginine is a semi-essential amino acid that supports protein synthesis to maintain cellular functions. Recent studies suggest that arginine also promotes wound healing, cell division, ammonia metabolism, immune system regulation, and hormone biosynthesis-all of which are critical for tumor growth. These discoveries, coupled with the understanding of cancer cell metabolic reprogramming, have led to renewed interest in arginine deprivation as a new anticancer therapy. Several arginine deprivation strategies have been developed and entered clinical trials. The main principle behind these therapies is that arginine auxotrophic tumors rely on external arginine sources for growth because they carry reduced key arginine-synthesizing enzymes such as argininosuccinate synthase 1 (ASS1) in the intracellular arginine cycle. To obtain anticancer effects, modified arginine-degrading enzymes, such as PEGylated recombinant human arginase 1 (rhArg1-PEG) and arginine deiminase (ADI-PEG 20), have been developed and shown to be safe and effective in clinical trials. They have been tried as a monotherapy or in combination with other existing therapies. This review discusses recent advances in arginine deprivation therapy, including the molecular basis of extracellular arginine degradation leading to tumor cell death, and how this approach could be a valuable addition to the current anticancer arsenal.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
El-Mais N, Fakhoury I, Al Haddad M, Nohra S, Abi-Habib R, El-Sibai M. Human Recombinant Arginase I [HuArgI(Co)-PEG5000]-Induced Arginine Depletion Inhibits Pancreatic Cancer Cell Migration and Invasion Through Autophagy. Pancreas 2021; 50:1187-1194. [PMID: 34714283 DOI: 10.1097/mpa.0000000000001891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Pancreatic cancer is one of the most aggressive solid cancers and the fourth leading cause of cancer death in men and women. We previously showed that arginine depletion, using arginase I [HuArgI(Co)-PEG5000], selectively triggers cell death by autophagy in PANC-1 pancreatic cancer cells. The mechanism of action of [HuArgI(Co)-PEG5000], however, has remained poorly understood. In this study, we investigated the effects of arginine depletion on PANC-1 cell migration, adhesion, and invasion and determined the main molecular targets, which mediate PANC-1 cell response to treatment with HuArgI(Co)-PEG5000. METHODS This was done through examining 2-dimensional (2D) cell motility assays (wound healing and time lapse), cell adhesion, and cell invasion assays, as well as immunostaining for focal adhesions and invadopodia in cells without or with the treatment with arginase. RESULTS We demonstrate that arginine depletion decreases PANC-1 2D cell migration, adhesion, and 3D invasion. Moreover, our data suggest that these effects are mediated by autophagy and subsequent decrease in the activation of members of Ras homolog gene family (Rho) GTPase family. CONCLUSIONS Altogether, these findings uncover the mechanism of action of [HuArgI(Co)-PEG5000] and highlight the promising and selective anticancer potential for arginine depletion in the treatment of pancreatic cancer cells.
Collapse
Affiliation(s)
- Nour El-Mais
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sarah Nohra
- Department of Biosciences, School of Science and Technology, Università degli Studi di Milano, Milan, Italy
| | - Ralph Abi-Habib
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mirvat El-Sibai
- From the Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
6
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
7
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
9
|
Zhao Z, Zhang P, Li W, Wang D, Ke C, Liu Y, Ho JCM, Cheng PNM, Xu S. Pegylated Recombinant Human Arginase 1 Induces Autophagy and Apoptosis via the ROS-Activated AKT/mTOR Pathway in Bladder Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5510663. [PMID: 33791071 PMCID: PMC7996046 DOI: 10.1155/2021/5510663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Bladder cancer is one of the most commonly diagnosed cancers worldwide, especially in males. Current therapeutic interventions, including surgery, radiation therapy, chemotherapy, and immunotherapy, have not been able to improve the clinical outcome of bladder cancer patients with satisfaction. Recombinant human arginase (rhArg, BCT-100) is a novel agent with great anticancer effects on arginine-auxotrophic tumors. However, the effects of BCT-100 on bladder cancer remain unclear. In this study, the in vitro anticancer effects of BCT-100 were assessed using four bladder cancer cell lines (J82, SCaBER, T24, and 5637), while the in vivo effects were evaluated by establishing T24 nude mice xenograft models. Intracellular arginine level was observed to be sharply decreased followed by the onset of apoptotic events. Furthermore, BCT-100 was found to induce H2O2 production and mitochondrial membrane depolarization, leading to the release of mitochondrial cytochrome c and Smac to the cytosol. Treatment with BCT was observed to upregulate the expression of LC3B and Becllin-1, but downregulate the expression of p62 in a time-dependent manner. Autophagic flux was also observed upon BCT-100 treatment. Besides, the phosphorylation of the AKT/mTOR pathway was suppressed in a time-dependent fashion in BCT-100-treated T24 cells. While N-acetyl-L-cysteine was shown to alleviate BCT-100-induced apoptosis and autophagy, chloroquine, MK-2206, and rapamycin were found to potentiate BCT-100-triggered apoptosis. Finally, BCT-100 was demonstrated to induce autophagy and apoptosis via the ROS-mediated AKT/mTOR signaling pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, China
| | - Wei Li
- Department of Urology, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Paul Ning-Man Cheng
- Bio-Cancer Treatment International, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong SAR, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
El-Mais N, Fakhoury I, Abdellatef S, Abi-Habib R, El-Sibai M. Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits ovarian cancer cell adhesion and migration through autophagy-mediated inhibition of RhoA. J Ovarian Res 2021; 14:13. [PMID: 33423701 PMCID: PMC7798344 DOI: 10.1186/s13048-021-00767-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
Ovarian carcinoma is the second most common malignancy of the female reproductive system and the leading cause of death from female reproductive system malignancies. Cancer cells have increased proliferation rate and thus require high amounts of amino acids, including arginine. L-arginine is a non-essential amino acid synthesized from L-citrulline by the Arginosuccinate synthetase (ASS1) enzyme. We have previously shown that the ovarian cancer cells, SKOV3, are auxotrophic to arginine, and that arginine deprivation by treatment with the genetically engineered human arginase I (HuArgI (Co)-PEG5000) triggers the death of SKOV3 cells by autophagy. In this study we examine the effect of HuArgI (Co)-PEG5000 on ovarian cancer cell migration and we dissect the mechanism involved. Wound healing assays, 2D random cell migration assays and cell adhesion analysis indicate that arginine deprivation decreases SKOV3 cell migration and adhesion. This effect was mimicked when autophagy was induced through rapamycin and reversed with the autophagy inhibitor chloroquine when autophagy was inhibited. This proved that arginine deprivation leads to the inhibition of cancer cell migration through autophagy, in addition to cell death. In addition, we were able to establish through pull-down assays and reversal experiments, that arginine deprivation-mediated autophagy inhibits cell migration through a direct inhibition of RhoA, member of the Rho family of GTPases. In conclusion, here we identify, for the first time, an autophagy-mediated inhibition of RhoA that plays an important role in regulating ovarian cancer cells motility and adhesion in response to arginine depletion.
Collapse
Affiliation(s)
- Nour El-Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
11
|
Zhang Y, Chung SF, Tam SY, Leung YC, Guan X. Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Lett 2021; 502:58-70. [PMID: 33429005 DOI: 10.1016/j.canlet.2020.12.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022]
Abstract
Extensive studies have shown that cancer cells have specific nutrient auxotrophy and thus have much a higher demand for certain nutrients than normal cells. Amino acid deprivation has attracted much attention in cancer therapy with positive outcomes from clinical trials. Arginine, as one of the conditionally essential amino acids, plays a pivotal role in cellular division and metabolism. Since many types of cancer cells exhibit decreased expression of argininosuccinate synthetase and/or ornithine transcarbamylase, they are auxotrophic for arginine, which makes arginine deprivation an accessible choice for cancer treatment. Arginine deiminase (ADI) and human arginase (hArg) are the two major protein drugs used for arginine deprivation and are undergoing many clinical trials. However, the clinical application of ADI and hArg is facing some common problems, including their short half-lives, immunogenicity and inconsistent production, which underlines the importance of improving these drugs using protein engineering techniques. Thus, we systematically review the latest studies of protein engineering and anti-cancer studies based on in vitro, in vivo and clinical models of ADI and hArg, and we include the latest studies on drug combinations consisting of ADI/hArg with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, China
| | - Sai-Fung Chung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Center for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiao Guan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
12
|
Swayden M, Bekdash A, Fakhoury I, El-Atat O, Borjac-Natour J, El-Sibai M, Abi-Habib RJ. Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells. Hum Cell 2020; 34:152-164. [PMID: 32979152 DOI: 10.1007/s13577-020-00437-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/17/2020] [Indexed: 01/07/2023]
Abstract
Deregulating cellular energetics by reprogramming metabolic pathways, including arginine metabolism, is critical for cancer cell onset and survival. Drugs that target the specific metabolic requirements of cancer cells have emerged as promising targeted cancer therapeutics. In this study, we investigate the therapeutic potential of targeting colon cancer cells using arginine deprivation induced by a pegylated cobalt-substituted recombinant human Arginase I [HuArgI (Co)-PEG5000]. Four colon cancer cell lines were tested for their sensitivity to [HuArgI (Co)-PEG5000] as well as for their mechanism of cell death following arginine deprivation. All four cell lines were sensitive to arginine deprivation induced by [HuArgI (Co)-PEG5000]. All cells expressed ASS1 and were rescued from arginine deprivation-induced cytotoxicity by the addition of excess L-citrulline, indicating they are partially auxotrophic for arginine. Mechanistically, cells treated with [HuArgI (Co)-PEG5000] were negative for AnnexinV and lacked caspase activation. Further investigation revealed that arginine deprivation leads to a marked and prolonged activation of autophagy in both Caco-2 and T84 cell lines. Finally, we show that [HuArgI (Co)-PEG5000] causes cell death by sustained activation of autophagy as evidenced by the decrease in cell cytotoxicity upon treatment with chloroquine, an autophagy inhibitor. Altogether, these data demonstrate that colon cancer cells are partially auxotrophic for arginine and sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation. They also show that the activation of autophagy does not play protective roles but rather, induces cytotoxicity and leads to cell death.
Collapse
Affiliation(s)
- Mirna Swayden
- Department of Biological and Environmental Sciences, School of Arts and Sciences, Beirut Arab University, Beirut, Lebanon
| | - Amira Bekdash
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Oula El-Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Jamila Borjac-Natour
- Department of Biological and Environmental Sciences, School of Arts and Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
13
|
Al-Koussa H, El Mais N, Maalouf H, Abi-Habib R, El-Sibai M. Arginine deprivation: a potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int 2020; 20:150. [PMID: 32390765 PMCID: PMC7201942 DOI: 10.1186/s12935-020-01232-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Arginine is a semi essential amino acid that is used in protein biosynthesis. It can be obtained from daily food intake or synthesized in the body through the urea cycle using l-citrulline as a substrate. Arginine has a versatile role in the body because it helps in cell division, wound healing, ammonia disposal, immune system, and hormone biosynthesis. It is noteworthy that l-arginine is the precursor for the biosynthesis of nitric oxide (NO) and polyamines. In the case of cancer cells, arginine de novo synthesis is not enough to compensate for their high nutritional needs, forcing them to rely on extracellular supply of arginine. In this review, we will go through the importance of arginine deprivation as a novel targeting therapy by discussing the different arginine deprivation agents and their mechanism of action. We will also focus on the factors that affect cell migration and on the influence of arginine on metastases through polyamine and NO.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Nour El Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| |
Collapse
|
14
|
Métayer LE, Brown RD, Carlebur S, Burke GAA, Brown GC. Mechanisms of cell death induced by arginase and asparaginase in precursor B-cell lymphoblasts. Apoptosis 2020; 24:145-156. [PMID: 30578463 PMCID: PMC6373273 DOI: 10.1007/s10495-018-1506-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arginase has therapeutic potential as a cytotoxic agent in some cancers, but this is unclear for precursor B acute lymphoblastic leukaemia (pre-B ALL), the commonest form of childhood leukaemia. We compared arginase cytotoxicity with asparaginase, currently used in pre-B ALL treatment, and characterised the forms of cell death induced in a pre-B ALL cell line 697. Arginase and asparaginase both efficiently killed 697 cells and mature B lymphoma cell line Ramos, but neither enzyme killed normal lymphocytes. Arginase depleted cellular arginine, and arginase-treated media induced cell death, blocked by addition of arginine or arginine-precursor citrulline. Asparaginase depleted both asparagine and glutamine, and asparaginase-treated media induced cell death, blocked by asparagine, but not glutamine. Both enzymes induced caspase cleavage and activation, chromatin condensation and phosphatidylserine exposure, indicating apoptosis. Both arginase- and asparaginase-induced death were blocked by caspase inhibitors, but with different sensitivities. BCL-2 overexpression inhibited arginase- and asparaginase-induced cell death, but did not prevent arginase-induced cytostasis, indicating a different mechanism of growth arrest. An autophagy inhibitor, chloroquine, had no effect on the cell death induced by arginase, but doubled the cell death induced by asparaginase. In conclusion, arginase causes death of lymphoblasts by arginine-depletion induced apoptosis, via mechanism distinct from asparaginase. Therapeutic implications for childhood ALL include: arginase might be used as treatment (but antagonised by dietary arginine and citrulline), chloroquine may enhance efficacy of asparaginase treatment, and partial resistance to arginase and asparaginase may develop by BCL-2 expression. Arginase or asparaginase might potentially be used to treat Burkitt lymphoma.
Collapse
Affiliation(s)
- Lucy E Métayer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Richard D Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Saskia Carlebur
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - G A Amos Burke
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
15
|
Khalil N, Abi-Habib RJ. [HuArgI (co)-PEG5000]-induced arginine deprivation leads to autophagy dependent cell death in pancreatic cancer cells. Invest New Drugs 2019; 38:1236-1246. [PMID: 31823161 DOI: 10.1007/s10637-019-00883-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
In this study, we examined the sensitivity of pancreatic cancer cells to [HuArgI (Co)-PEG5000]-induced arginine deprivation as well as the mechanisms underlying deprivation-induced cell death. [HuArgI (Co)-PEG5000]-induced arginine deprivation was cytotoxic to all cell lines tested with IC50 values in the pM range at 72 h post-treatment. Three of the five cell lines were rescued by the addition of excess L-citrulline and expressed ASS1, indicating partial arginine auxotrophy. The remaining two cell lines, on the other hand, were not rescued by the addition of L-citrulline and did not express ASS1, indicating complete auxotrophy to arginine. In addition, all cell lines exhibited G0/G1 cell cycle arrest, in the surviving cell fraction, at 72 h following arginine deprivation. Analysis of the type of cell death revealed negative staining for annexin V and a lack of caspase activation in all five cancer cell lines, following treatment, indicating that arginine deprivation leads to caspase-independent, non-apoptotic cell death. Finally, we demonstrated that arginine deprivation leads to a marked activation of autophagy and that inhibition of this autophagy greatly decreases cytotoxicity, indicating that arginine deprivation induces autophagic cell death in pancreatic cancer cells. We have shown that pancreatic cancer cells are auxotrophic for arginine and sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation, hence demonstrating that arginine deprivation is a potentially potent and selective treatment for pancreatic cancer. We have also demonstrated that autophagy is activated following arginine-deprivation and that its prolonged activation leads to autophagic cell death.
Collapse
Affiliation(s)
- Nathalie Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
16
|
Human Recombinant Arginase I [HuArgI (Co)-PEG5000]-Induced Arginine Depletion Inhibits Colorectal Cancer Cell Migration and Invasion. Int J Mol Sci 2019; 20:ijms20236018. [PMID: 31795337 PMCID: PMC6929075 DOI: 10.3390/ijms20236018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose: Colorectal cancer (CRC) is the third most common type of cancer worldwide, and it represents over half of all gastrointestinal cancer deaths. Knowing that cancer cells have a high proliferation rate, they require high amounts of amino acids, including arginine. In addition, several tumor types have been shown to downregulate ASS-1 expression, becoming auxotrophic for arginine. Therefore, Arginine deprivation is one of the promising therapeutic approaches to target cancer cells. This can be achieved through the use of a recombinant human arginase, HuArgI(Co)-PEG5000, an arginine degrading enzyme. Methods: In this present study, the cytotoxic effect of HuArgI(Co)-PEG5000 on CRC cell lines (HT-29, Caco-2, Sw837) is examined though cytotoxicity assays. Wound healing assays, invasion assays, and adhesion assays were also performed to detect the effect on metastasis. Results: Wound healing and invasion assays revealed a decrease in cell migration and invasion after treatment with arginase. Cells that were treated with arginase also showed a decrease in adhesion, which coincided with a decrease in RhoA activation, demonstrated though the use of a FRET biosensor to detect RhoA activation in a single cell assay, and a decrease in MMP-9 expression. Treating cells with both arginase and L-citrulline, which significantly restores intracellular arginine levels, reversed the effect of HuArgI(Co)-PEG5000 on cell viability, migration, and invasion. Conclusion: We can, therefore, conclude that colorectal cancer is partially auxotrophic to arginine and that arginine depletion is a potential selective inhibitory approach for motility and invasion in colon cancer cells.
Collapse
|
17
|
Nasreddine G, El-Sibai M, Abi-Habib RJ. Cytotoxicity of [HuArgI (co)-PEG5000]-induced arginine deprivation to ovarian Cancer cells is autophagy dependent. Invest New Drugs 2019; 38:10-19. [PMID: 30887252 DOI: 10.1007/s10637-019-00756-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
In this study, we assess arginine auxotrophy in ovarian cancer cells and attempt to target them using arginine deprivation induced by a pegylated recombinant human Arginase I cobalt [HuArgI (Co)-PEG5000]. Ovarian cancer cells were sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation with IC50 values in the low pM range. Addition of excess L-citrulline rescued only one of three cell lines tested, indicating that the majority of cell lines are completely auxotrophic for arginine. The expression pattern of argininosuccinate synthetase (ASS1) confirmed the degree of auxotrophy of ovarian cancer cell lines with completely auxotrophic cells not expressing ASS1 and partially auxotrophic cells expressing the enzyme. Ovarian cancer cell lines were negative for annexinV staining while showing loss of membrane integrity and absence of caspase activation, indicating caspase-independent, non-apoptotic cell death. [HuArgI (Co)-PEG5000]-induced arginine deprivation led to extensive and prolonged activation of autophagy, which proved to be deleterious to cell survival since its inhibition led to a significant decrease in cytotoxicity. This indicates that the activation of autophagy following arginine-deprivation, rather than being protective, mediates cell cytotoxicity leading to death by autophagy.
Collapse
Affiliation(s)
- Ghenwa Nasreddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102 2801, Lebanon.
| |
Collapse
|
18
|
Endogenous arginase 2 as a potential biomarker for PEGylated arginase 1 treatment in xenograft models of squamous cell lung carcinoma. Oncogenesis 2019; 8:18. [PMID: 30808864 PMCID: PMC6391460 DOI: 10.1038/s41389-019-0128-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Depletion of arginine induced by PEGylated arginase 1 (ARG1) (BCT-100) has shown anticancer effects in arginine auxotrophic cancers that lack argininosuccinate synthetase (ASS1) and ornithine transcarbamylase (OTC). High levels of endogenous arginase 2 (ARG2) have been previously reported in human lung cancers. Although a high-ARG2 level neither causes immunosuppression nor affects disease progression, it may theoretically affect the efficacy of PEGylated ARG1 treatment. ARG2 was shown to be highly expressed in H520 squamous cell lung carcinoma (lung SCC) xenografts but undetectable in SK-MES-1 and SW900 lung SCC xenografts. We propose that high-endogenous expression of ARG2 could impede the anti-tumor effect of PEGylated ARG1 in lung SCC. The in vivo effect of PEGylated ARG1 was investigated using three xenograft models of lung SCC. PEGylated ARG1 (60 mg/kg) suppressed tumor growth in SK-MES-1 and SW900 but not H520 xenografts. ASS1 was expressed in SK-MES-1 and SW900 xenografts while OTC expression remained low in all xenografts. A high-endogenous ARG2 level was detected only in H520 xenografts. Serum arginine level was decreased significantly by PEGylated ARG1 in all xenografts. Nonetheless intratumoral arginine level was decreased by PEGylated ARG1 in SK-MES-1 and SW900, not H520 xenografts. In SK-MES-1 xenografts, PEGylated ARG1 treatment induced G1 arrest, downregulation of Ki67 and Mcl-1 and activation of apoptosis. In SW900 xenografts, upregulation of Bim and activation of apoptosis were observed upon PEGylated ARG1 treatment. Silencing of ARG2 re-sensitized the H520 xenografts to PEGylated ARG1 treatment, partially mediated through arginine depletion via G1 arrest and apoptosis. PEGylated ARG1 treatment (BCT-100) was effective in lung SCC xenografts with low-endogenous levels of ASS1/OTC and ARG2. High-endogenous ARG2 expression may cause resistance to PEGylated ARG1 treatment in lung SCC xenografts. ARG2 may serve as a third predictive biomarker in PEGylated ARG1 treatment in lung SCC.
Collapse
|
19
|
Current Outlook on Autophagy in Human Leukemia: Foe in Cancer Stem Cells and Drug Resistance, Friend in New Therapeutic Interventions. Int J Mol Sci 2019; 20:ijms20030461. [PMID: 30678185 PMCID: PMC6387281 DOI: 10.3390/ijms20030461] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process in cell homeostasis and stress adaptation. It confers protection and promotes survival in response to metabolic/environmental stress, and is upregulated in response to nutrient deprivation, hypoxia, and chemotherapies. Autophagy is also known to sustain malignant cell growth and contributes to cancer stem cell survival when challenged by cytotoxic and/or targeted therapies, a potential mechanism of disease persistence and drug resistance that has gathered momentum. However, different types of human leukemia utilize autophagy in complex, context-specific manners, and the molecular and cellular mechanisms underlying this process involve multiple protein networks that will be discussed in this review. There is mounting preclinical evidence that targeting autophagy can enhance the efficacy of cancer therapies. Chloroquine and other lysosomal inhibitors have spurred initiation of clinical trials and demonstrated that inhibition of autophagy restores chemosensitivity of anticancer drugs, but with limited autophagy-dependent effects. Intriguingly, several autophagy-specific inhibitors, with better therapeutic indexes and lower toxicity, have been developed. Promising preclinical studies with novel combination approaches as well as potential challenges to effectively eradicate drug-resistant cells, particularly cancer stem cells, in human leukemia are also detailed in this review.
Collapse
|
20
|
Maggi M, Scotti C. Enzymes in Metabolic Anticancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:173-199. [PMID: 31482500 DOI: 10.1007/978-981-13-7709-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer treatment has greatly improved over the last 50 years, but it remains challenging in several cases. Useful therapeutic targets are normally unique peculiarities of cancer cells that distinguish them from normal cells and that can be tackled with appropriate drugs. It is now known that cell metabolism is rewired during tumorigenesis and metastasis as a consequence of oncogene activation and oncosuppressors inactivation, leading to a new cellular homeostasis typically directed towards anabolism. Because of these modifications, cells can become strongly or absolutely dependent on specific substrates, like sugars, lipids or amino acids. Cancer addictions are a relevant target for therapy, as removal of an essential substrate can lead to their selective cell-cycle arrest or even to cell death, leaving normal cells untouched. Enzymes can act as powerful agents in this respect, as demonstrated by asparaginase, which has been included in the treatment of Acute Lymphoblastic Leukemia for half a century. In this review, a short outline of cancer addictions will be provided, focusing on the main cancer amino acid dependencies described so far. Therapeutic enzymes which have been already experimented at the clinical level will be discussed, along with novel potential candidates that we propose as new promising molecules. The intrinsic limitations of their present molecular forms, along with molecular engineering solutions to explore, will also be presented.
Collapse
Affiliation(s)
- Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy.
| | - Claudia Scotti
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Ianniciello A, Rattigan KM, Helgason GV. The Ins and Outs of Autophagy and Metabolism in Hematopoietic and Leukemic Stem Cells: Food for Thought. Front Cell Dev Biol 2018; 6:120. [PMID: 30320108 PMCID: PMC6169402 DOI: 10.3389/fcell.2018.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Discovered over fifty years ago, autophagy is a double-edged blade. On one hand, it regulates cellular energy sources by "cannibalization" of its own cellular components, feeding on proteins and other unused cytoplasmic factors. On the other, it is a recycling process that removes dangerous waste from the cytoplasm keeping the cell clean and healthy. Failure of the autophagic machinery is translated in dysfunction of the immune response, in aging, and in the progression of pathologies such as Parkinson disease, diabetes, and cancer. Further investigation identified autophagy with a protective role in specific types of cancer, whereas in other cases it can promote tumorigenesis. Evidence shows that treatment with chemotherapeutics can upregulate autophagy in order to maintain a stable intracellular environment promoting drug resistance and cell survival. Leukemia, a blood derived cancer, represents one of the malignancies in which autophagy is responsible for drug treatment failure. Inhibition of autophagy is becoming a strategic target for leukemic stem cell (LSC) eradication. Interestingly, the latest findings demonstrate that LSCs show higher levels of mitochondrial metabolism compared to normal stem cells. With this review, we aim to explore the links between autophagy and metabolism in the hematopoietic system, with special focus on primitive LSCs.
Collapse
Affiliation(s)
| | | | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Alexandrou C, Al-Aqbi SS, Higgins JA, Boyle W, Karmokar A, Andreadi C, Luo JL, Moore DA, Viskaduraki M, Blades M, Murray GI, Howells LM, Thomas A, Brown K, Cheng PN, Rufini A. Sensitivity of Colorectal Cancer to Arginine Deprivation Therapy is Shaped by Differential Expression of Urea Cycle Enzymes. Sci Rep 2018; 8:12096. [PMID: 30108309 PMCID: PMC6092409 DOI: 10.1038/s41598-018-30591-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023] Open
Abstract
Tumors deficient in the urea cycle enzymes argininosuccinate synthase-1 (ASS1) and ornithine transcarbamylase (OTC) are unable to synthesize arginine and can be targeted using arginine-deprivation therapy. Here, we show that colorectal cancers (CRCs) display negligible expression of OTC and, in subset of cases, ASS1 proteins. CRC cells fail to grow in arginine-free medium and dietary arginine deprivation slows growth of cancer cells implanted into immunocompromised mice. Moreover, we report that clinically-formulated arginine-degrading enzymes are effective anticancer drugs in CRC. Pegylated arginine deiminase (ADI-PEG20), which degrades arginine to citrulline and ammonia, affects growth of ASS1-negative cells, whereas recombinant human arginase-1 (rhArg1peg5000), which degrades arginine into urea and ornithine, is effective against a broad spectrum of OTC-negative CRC cell lines. This reflects the inability of CRC cells to recycle citrulline and ornithine into the urea cycle. Finally, we show that arginase antagonizes chemotherapeutic drugs oxaliplatin and 5-fluorouracil (5-FU), whereas ADI-PEG20 synergizes with oxaliplatin in ASS1-negative cell lines and appears to interact with 5-fluorouracil independently of ASS1 status. Overall, we conclude that CRC is amenable to arginine-deprivation therapy, but we warrant caution when combining arginine deprivation with standard chemotherapy.
Collapse
Affiliation(s)
- Constantinos Alexandrou
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Saif Sattar Al-Aqbi
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK.,Department of Pathology and Poultry Diseases, Faculty of Veterinary Medicine, University of Kufa, Kufa, Iraq
| | - Jennifer A Higgins
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - William Boyle
- Birmingham Women's Hospital, Birmingham, B15 2TG, UK
| | - Ankur Karmokar
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Catherine Andreadi
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Jin-Li Luo
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - David A Moore
- Department of Pathology, UCL Cancer Centre, UCL, London, UK
| | - Maria Viskaduraki
- Bioinformatics and Biostatistics Support Hub, University of Leicester, Leicester, LE1 7RH, UK
| | - Matthew Blades
- Bioinformatics and Biostatistics Support Hub, University of Leicester, Leicester, LE1 7RH, UK
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25, 2ZD, UK
| | - Lynne M Howells
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Anne Thomas
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Karen Brown
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Paul N Cheng
- Bio-Cancer Treatment International Limited, Hong Kong, Hong Kong
| | - Alessandro Rufini
- Department of Genetics and Genome Biology, Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK.
| |
Collapse
|
23
|
Yan S, Yang L, Lu L, Guo Q, Hu X, Yuan Y, Li Y, Wu M, Zhang J. Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems. Expert Opin Drug Metab Toxicol 2018; 14:951-960. [DOI: 10.1080/17425255.2018.1505863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Lan Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luyang Lu
- College of Pharmacy, Southwest University for Nationalities, Chengdu, China
| | - Qi Guo
- Center for Certification and Evaluation, Chongqing Food and Drug Administration, Chongqing, China
| | - Xueyuan Hu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuming Yuan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yao Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Mingjun Wu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Lam SK, U KP, Li YY, Xu S, Cheng PNM, Ho JCM. Inhibition of ornithine decarboxylase 1 facilitates pegylated arginase treatment in lung adenocarcinoma xenograft models. Oncol Rep 2018; 40:1994-2004. [PMID: 30066894 PMCID: PMC6111542 DOI: 10.3892/or.2018.6598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022] Open
Abstract
Arginine depletion has shown anticancer effects among arginine auxotrophic cancers. An anti-proliferative effect of pegylated arginase (BCT-100) has been shown in acute myeloid leukaemia, hepatocellular carcinoma and mesothelioma. The aim of the present study was to evaluate the effect of BCT-100 in lung adenocarcinoma. A panel of lung adenocarcinoma cell lines and xenograft models were used to investigate the effect of BCT-100. Protein expression, arginine level, putrescine level, spermidine level and apoptosis were analyzed by western blotting, ELISA, high performance liquid chromatography, dot blot and TUNEL assay, respectively. BCT-100 converts arginine to ornithine. BCT-100 reduced in vitro cell viability across different lung adenocarcinoma cell lines and suppressed tumour growth in an HCC4006 ×enograft, while paradoxical growth stimulation was observed in H358, HCC827, H1650 and H1975 ×enografts. Upon BCT-100 treatment, ornithine decarboxylase 1 (ODC1) was induced in two solid tumour xenografts (H1650 and H1975). It was postulated that the accumulated ornithine could be channeled via ODC1 to produce polyamines that promoted tumour growth. The action of an ODC1 inhibitor (α-difluoromethylornithine, DFMO) was studied in the restoration of the anticancer effects of BCT-100 in lung adenocarcinoma. In both H1650 and H1975 ×enografts, a combination of DFMO and BCT-100 significantly suppressed tumour growth, resulting in doubled median survival compared with the control. Putrescine was decreased in almost all treatment arms in the H1650, H1975 and HCC4006 ×enografts. Nonetheless spermidine was reduced only following DFMO/BCT-100 treatment in the H1650 and H1975 ×enografts. Apoptosis was enhanced in the combined treatment arm in both H1650 and H1975 ×enografts. In the HCC4006 ×enograft, addition of DFMO did not alter the tumour suppressive effect of BCT-100. In conclusion, inhibition of ODC1 by DFMO was crucial in facilitating BCT-100 treatment in lung adenocarcinoma that was partially mediated by depleting arginine and polyamines with consequent apoptosis.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Kin Pong U
- Bio‑Cancer Treatment International, Hong Kong, SAR, P.R. China
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | - Shi Xu
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| | | | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, SAR, P.R. China
| |
Collapse
|
25
|
Wang H, Wang Y, Gao H, Wang B, Dou L, Li Y. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways. Oncol Lett 2018; 15:1423-1428. [PMID: 29434833 PMCID: PMC5774427 DOI: 10.3892/ol.2017.7498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/16/2017] [Indexed: 01/22/2023] Open
Abstract
Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.
Collapse
Affiliation(s)
- Hongfei Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Yongqiang Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Hongmei Gao
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Bing Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Lin Dou
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Yin Li
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| |
Collapse
|
26
|
Audi H, Azar DF, Mahjoub F, Farhat S, El Masri Z, El-Sibai M, Abi-Habib RJ, Khnayzer RS. Cytotoxicity modulation of ruthenium(II) tris-bathophenanthroline complexes with systematically varied charge. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Ogrodzinski MP, Bernard JJ, Lunt SY. Deciphering metabolic rewiring in breast cancer subtypes. Transl Res 2017; 189:105-122. [PMID: 28774752 DOI: 10.1016/j.trsl.2017.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/02/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming, an emerging hallmark of cancer, is observed in breast cancer. Breast cancer cells rewire their cellular metabolism to meet the demands of survival, proliferation, and invasion. However, breast cancer is a heterogeneous disease, and metabolic rewiring is not uniform. Each subtype of breast cancer displays distinct metabolic alterations. Here, we focus on unique metabolic reprogramming associated with subtypes of breast cancer, as well as common features. Therapeutic opportunities based on subtype-specific metabolic alterations are also discussed. Through this discussion, we aim to provide insight into subtype-specific metabolic rewiring and vulnerabilities that have the potential to better guide therapy and improve outcomes for patients.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mich; Department of Physiology, Michigan State University, East Lansing, Mich
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Mich
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Mich; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Mich.
| |
Collapse
|
28
|
Abstract
Hematological malignancies manifest as lymphoma, leukemia, and myeloma, and remain a burden on society. From initial therapy to endless relapse-related treatment, societal burden is felt not only in the context of healthcare cost, but also in the compromised quality of life of patients. Long-term therapeutic strategies have become the standard in keeping hematological malignancies at bay as these cancers develop resistance to each round of therapy with time. As a result, there is a continual need for the development of new drugs to combat resistant disease in order to prolong patient life, if not to produce a cure. This review aims to summarize advances in targeting lymphoma, leukemia, and myeloma through both cutting-edge and well established platforms. Current standard of treatment will be reviewed for these malignancies and emphasis will be made on new therapy development in the areas of antibody engineering, epigenetic small molecule inhibiting drugs, vaccine development, and chimeric antigen receptor cell engineering. In addition, platforms for the delivery of these and other drugs will be reviewed including antibody-drug conjugates, micro- and nanoparticles, and multimodal hydrogels. Lastly, we propose that tissue engineered constructs for hematological malignancies are the missing link in targeted drug discovery alongside mouse and patient-derived xenograft models.
Collapse
|
29
|
Lam SK, Li YY, Xu S, Leung LL, U KP, Zheng YF, Cheng PNM, Ho JCM. Growth suppressive effect of pegylated arginase in malignant pleural mesothelioma xenografts. Respir Res 2017; 18:80. [PMID: 28464918 PMCID: PMC5414232 DOI: 10.1186/s12931-017-0564-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a difficult-to-treat global disease. Pegylated arginase (BCT-100) has recently shown anti-tumor effects in hepatocellular carcinoma, acute myeloid leukemia and melanoma. This study aims to investigate the effects of PEG-BCT-100 in MPM. Methods A panel of 5 mesothelioma cell lines (H28, 211H, H226, H2052 and H2452) was used to study the in vitro effects of BCT-100 by crystal violet staining. The in vivo effects of BCT-100 were studied using 211H and H226 nude mice xenografts. Protein expression (argininosuccinate synthetase, ornithine transcarbamylase, cleaved PARP, cleaved caspase 3, cyclins (A2, D3, E1 and H), CDK4 and Ki67) and arginine concentration were evaluated by Western blot and ELISA respectively. Cellular localization of BCT-100 was detected by immunohistochemistry and immunoflorescence. TUNEL assay was used to identify cellular apoptotic events. Results Argininosuccinate synthetase was expressed in H28, H226, and H2452 cells as well as 211H and H266 xenografts. Ornithine transcarbamylase was undetectable in all cell lines and xenograft models. BCT-100 reduced in vitro cell viability (IC50 values at 13–24 mU/ml, 72 h) across different cell lines and suppressed tumor growth in both 211H and H226 xenograft models. BCT-100 (60 mg/kg) significantly suppressed tumor growth (p < 0.01) with prolonged median survival (p < 0.01) in both xenograft models. Combining BCT-100 with pemetrexed or cisplatin conferred no additional benefits over single agents. Serum and intratumoral arginine levels were effectively decreased by BCT-100, associated with cytosolic accumulation of BCT-100 within tumor cells. Apoptosis (PARP cleavage in 211H xenografts; Bcl-2 downregulation, and cleavage of PARP and caspase 3 in H226 xenografts; positive TUNEL staining in both) and G1 arrest (downregulation of cyclin A2, D3, E1 and CDK4 in 211H xenografts; suppression of cyclin A2, E1, H and CDK4 in H226 xenografts) were evident with BCT-100 treatment. Furthermore, proliferative factor Ki67 was downregulated in BCT-100 treatments arms. Conclusions BCT-100 suppressed tumor growth with prolonged median survival partially mediated by intratumoral arginine depletion resulting in apoptosis and G1 arrest in mesothelioma xenograft models. The findings provide scientific evidence to support further clinical development of BCT-100 in treatment of MPM.
Collapse
Affiliation(s)
- Sze-Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, SAR, Hong Kong
| | - Yuan-Yuan Li
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, SAR, Hong Kong
| | - Shi Xu
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, SAR, Hong Kong
| | - Leanne Lee Leung
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, SAR, Hong Kong
| | - Kin-Pong U
- Bio-cancer Treatment International Limited, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong, SAR, China
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Paul Ning-Man Cheng
- Bio-cancer Treatment International Limited, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong, SAR, China
| | - James Chung-Man Ho
- Division of Respiratory Medicine, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, SAR, Hong Kong.
| |
Collapse
|
30
|
Autophagy, a key mechanism of oncogenesis and resistance in leukemia. Blood 2016; 129:547-552. [PMID: 27956388 DOI: 10.1182/blood-2016-07-692707] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a lysosomal pathway involved in degradation of intracellular material. It appears as an adaptation mechanism that is essential for cellular homeostasis in response to various stress conditions. Over the past decade, many studies have linked alteration of autophagy with cancer initiation and progression, autoimmune, inflammatory, metabolic, and degenerative diseases. This review highlights recent findings on the impact of autophagy on leukemic transformation of normal hematopoietic stem cells and summarizes its role on leukemic cell response to chemotherapy.
Collapse
|
31
|
Zhou HS, Carter BZ, Andreeff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med 2016; 13:248-59. [PMID: 27458532 PMCID: PMC4944541 DOI: 10.20892/j.issn.2095-3941.2016.0023] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the accumulation of circulating immature blasts that exhibit uncontrolled growth, lack the ability to undergo normal differentiation, and have decreased sensitivity to apoptosis. Accumulating evidence shows the bone marrow (BM) niche is critical to the maintenance and retention of hematopoietic stem cells (HSC), including leukemia stem cells (LSC), and an increasing number of studies have demonstrated that crosstalk between LSC and the stromal cells associated with this niche greatly influences leukemia initiation, progression, and response to therapy. Undeniably, stromal cells in the BM niche provide a sanctuary in which LSC can acquire a drug-resistant phenotype and thereby evade chemotherapy-induced death. Yin and Yang, the ancient Chinese philosophical concept, vividly portrays the intricate and dynamic interactions between LSC and the BM niche. In fact, LSC-induced microenvironmental reprogramming contributes significantly to leukemogenesis. Thus, identifying the critical signaling pathways involved in these interactions will contribute to target optimization and combinatorial drug treatment strategies to overcome acquired drug resistance and prevent relapse following therapy. In this review, we describe some of the critical signaling pathways mediating BM niche-LSC interaction, including SDF1/CXCL12, Wnt/β-catenin, VCAM/VLA-4/NF-κB, CD44, and hypoxia as a newly-recognized physical determinant of resistance, and outline therapeutic strategies for overcoming these resistance factors.
Collapse
Affiliation(s)
- Hong-Sheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Bekdash A, Darwish M, Timsah Z, Kassab E, Ghanem H, Najjar V, Ghosn M, Nasser S, El-Hajj H, Bazerbachi A, Liu S, Leppla SH, Frankel AE, Abi-Habib RJ. Phospho-MEK1/2 and uPAR Expression Determine Sensitivity of AML Blasts to a Urokinase-Activated Anthrax Lethal Toxin (PrAgU2/LF). Transl Oncol 2015; 8:347-357. [PMID: 26500025 PMCID: PMC4630967 DOI: 10.1016/j.tranon.2015.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023] Open
Abstract
In this study, we attempt to target both the urokinase plasminogen activator and the mitogen-activated protein kinase pathway in acute myeloid leukemia (AML) cell lines and primary AML blasts using PrAgU2/LF, a urokinase-activated anthrax lethal toxin. PrAgU2/LF was cytotoxic to five out of nine AML cell lines. Cytotoxicity of PrAgU2/LF appeared to be nonapoptotic and was associated with MAPK activation and urokinase activity because all the PrAgU2/LF-sensitive cell lines showed both uPAR expression and high levels of MEK1/2 phosphorylation. Inhibition of uPAR or desensitization of cells to MEK1/2 inhibition blocked toxicity of PrAgU2/LF, indicating requirement for both uPAR expression and MAPK activation for activity. PrAgU2/LF was also cytotoxic to primary blasts from AML patients, with blasts from four out of five patients showing a cytotoxic response to PrAgU2/LF. Cytotoxicity of primary AML blasts was also dependent on uPAR expression and phos-MEK1/2 levels. CD34(+) bone marrow blasts and peripheral blood mononuclear cells lacked uPAR expression and were resistant to PrAgU2/LF, demonstrating the lack of toxicity to normal hematological cells and, therefore, the tumor selectivity of this approach. Dose escalation in mice revealed that the maximal tolerated dose of PrAgU2/LF is at least 5.7-fold higher than that of the wild-type anthrax lethal toxin, PrAg/LF, further demonstrating the increased safety of this molecule. We have shown, in this study, that PrAgU2/LF is a novel, dual-specific molecule for the selective targeting of AML.
Collapse
Affiliation(s)
- Amira Bekdash
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Manal Darwish
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Zahra Timsah
- School of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Elias Kassab
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hadi Ghanem
- Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Vicky Najjar
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Marwan Ghosn
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Selim Nasser
- Department of Pathology, School of Medicine, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Hiba El-Hajj
- Department of Internal Medicine and Experimental Pathology, School of Medicine, American University of Beirut, Lebanon; Department of Immunology and Microbiology, School of Medicine, American University of Beirut, Lebanon
| | - Ali Bazerbachi
- Department of Internal Medicine, School of Medicine, American University of Beirut, Lebanon; Department of Anatomy, School of Medicine, American University of Beirut, Lebanon; Department of Cell Biology and Physiological Sciences, School of Medicine, American University of Beirut, Lebanon
| | - Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Arthur E Frankel
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph J Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| |
Collapse
|
34
|
Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015; 125:4060-8. [PMID: 25896651 DOI: 10.1182/blood-2014-10-608133] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/12/2015] [Indexed: 01/02/2023] Open
Abstract
The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.
Collapse
|
35
|
Tawil M, Bekdash A, Mroueh M, Daher CF, Abi-Habib RJ. Wild Carrot Oil Extract is Selectively Cytotoxic to Human Acute Myeloid Leukemia Cells. Asian Pac J Cancer Prev 2015; 16:761-7. [DOI: 10.7314/apjcp.2015.16.2.761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol 2015; 122:75-85. [PMID: 25567351 DOI: 10.1007/s11060-014-1698-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
In this study, we attempt to target Arginine auxotrophy in glioblastoma multiforme (GBM) cells using a pegylated recombinant human Arginase I cobalt [HuArgI (Co)-PEG5000]. We tested and characterized the activity of HuArgI (Co)-PEG5000 on a panel of 9 GBM cell lines and on human fetal glial cells (SVG-p12). HuArgI (Co)-PEG5000 was cytotoxic to all GBM cells tested. SVG-p12 cells were not sensitive demonstrating the selective cytotoxicity of HuArgI (Co)-PEG5000-induced arginine deprivation. Addition of L-citrulline led to the rescue of 6 GBM cell lines but only at concentrations of 11.4 mM, reflecting the extent of arginine auxotrophy in GBM. The ability of L-citrulline to rescue cells was dependent on the expression of argininosuccinate synthetase-1 (ASS1) with the cells that were not rescued by L-citrulline being negative for ASS1 expression. Knocking-down ASS1 reversed the ability of L-citrulline to rescue GBM cells, further illustrating the dependence of arginine auxotrophy on ASS1 expression. Inhibition of autophagy increased cell sensitivity to HuArgI (Co)-PEG5000 indicating that, following arginine deprivation, autophagy plays a protective role in GBM cells. Analysis of the type of cell death revealed a lack of AnnexinV staining and caspase activation in HuArgI (Co)-PEG5000-treated cells, indicating that arginine deprivation induces caspase-independent, non-apoptotic cell death in GBM. We have shown that GBM cells are auxotrophic for arginine and can be selectively targeted using HuArgI (Co)-PEG5000-induced arginine depletion, thus demonstrating that L-Arginine deprivation is a potent and selective potential treatment for GBM.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW There has been an increased and renewed interest in metabolic therapy for cancer, particularly Arg deprivation. The purpose of this review is to highlight recent studies that focus on Arg-dependent malignancies with Arginine (Arg)-degrading enzymes, including arginase and Arg deiminase. RECENT FINDINGS New developments in this area include understanding of the role of most significantly downregulated gene regulating amino acid metabolism, argininosuccinate synthetase and its expression and therapeutic relevance in different tumors. Recent studies have also shed light on the mechanism of tumor cell death with Arg deprivation, with arginase and pegylated Arg deiminase. Particularly important is understanding the mechanism of resistance that cancers develop after such drug exposure. Finally, recent clinical trials have been performed or are ongoing to use Arg deprivation as treatment for advanced malignancies. SUMMARY Arg deprivation is a promising approach for the treatment of various malignancies.
Collapse
Affiliation(s)
- Lynn G Feun
- aSylvester Comprehensive Cancer Center, University of Miami, Miami, Florida bDepartment of Translational Molecular Pathology, The University of Texas MD, Anderson Cancer Center, Houston, Texas cSylvester Comprehensive Cancer Center, University of Miami, VA Medical Center, Miami, Florida, USA
| | | | | |
Collapse
|
38
|
Wang Z, Shi X, Li Y, Fan J, Zeng X, Xian Z, Wang Z, Sun Y, Wang S, Song P, Zhao S, Hu H, Ju D. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells. Cell Death Dis 2014; 5:e1563. [PMID: 25501824 PMCID: PMC4454157 DOI: 10.1038/cddis.2014.503] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022]
Abstract
Depletion of arginine by recombinant human arginase (rhArg) has proven to be an effective cancer therapeutic approach for a variety of malignant tumors. Triple-negative breast cancers (TNBCs) lack of specific therapeutic targets, resulting in poor prognosis and limited therapeutic efficacy. To explore new therapeutic approaches for TNBC we studied the cytotoxicity of rhArg in five TNBC cells. We found that rhArg could inhibit cell growth in these five TNBC cells. Intriguingly, accumulation of autophagosomes and autophagic flux was observed in rhArg-treated MDA-MB-231 cells. Inhibition of autophagy by chloroquine (CQ), 3-methyladenine (3-MA) and siRNA targeting Beclin1 significantly enhanced rhArg-induced cytotoxic effect, indicating the cytoprotective role of autophagy in rhArg-induced cell death. In addition, N-acetyl-l-cysteine (NAC), a common antioxidant, blocked autophagy induced by rhArg, suggesting that reactive oxygen species (ROS) had an essential role in the cytotoxicity of rhArg. This study provides new insights into the molecular mechanism of autophagy involved in rhArg-induced cytotoxicity in TNBC cells. Meanwhile, our results revealed that rhArg, either alone or in combination with autophagic inhibitors, might be a potential novel therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Z Wang
- 1] Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China [2] Department of Biopharmaceutical Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - X Shi
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Y Li
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - J Fan
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - X Zeng
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Z Xian
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - Z Wang
- Department of Pulmonary Medicine, People's Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Y Sun
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - S Wang
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - P Song
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| | - S Zhao
- Department of Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - H Hu
- Department of Biopharmaceutical Research, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - D Ju
- Department of Biosynthesis and Key Lab of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat 2013; 45:251-62. [PMID: 24453997 PMCID: PMC3893322 DOI: 10.4143/crt.2013.45.4.251] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022] Open
Abstract
Arginine deprivation is a novel antimetabolite strategy for the treatment of arginine-dependent cancers that exploits differential expression and regulation of key urea cycle enzymes. Several studies have focused on inactivation of argininosuccinate synthetase 1 (ASS1) in a range of malignancies, including melanoma, hepatocellular carcinoma (HCC), mesothelial and urological cancers, sarcomas, and lymphomas. Epigenetic silencing has been identified as a key mechanism for loss of the tumor suppressor role of ASS1 leading to tumoral dependence on exogenous arginine. More recently, dysregulation of argininosuccinate lyase has been documented in a subset of arginine auxotrophic glioblastoma multiforme, HCC and in fumarate hydratase-mutant renal cancers. Clinical trials of several arginine depletors are ongoing, including pegylated arginine deiminase (ADI-PEG20, Polaris Group) and bioengineered forms of human arginase. ADI-PEG20 is furthest along the path of clinical development from combinatorial phase 1 to phase 3 trials and is described in more detail. The challenge will be to identify tumors sensitive to drugs such as ADI-PEG20 and integrate these agents into multimodality drug regimens using imaging and tissue/fluid-based biomarkers as predictors of response. Lastly, resistance pathways to arginine deprivation require further study to optimize arginine-targeted therapies in the oncology clinic.
Collapse
Affiliation(s)
- Melissa M. Phillips
- Center for Molecular Oncology, Barts Cancer Institute - a Cancer Research UK Centre of Excellence, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
- St Bartholomew's Hospital, London, UK
| | - Michael T. Sheaff
- Pathology Group, Institute of Cell and Molecular Sciences, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Peter W. Szlosarek
- Center for Molecular Oncology, Barts Cancer Institute - a Cancer Research UK Centre of Excellence, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
- St Bartholomew's Hospital, London, UK
| |
Collapse
|