1
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
2
|
Chang X, Wang J, Bian J, Liu Z, Guo M, Li Z, Wu Y, Zhai X, Zuo D. 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42) inhibits cell proliferation and induces apoptosis via inhibiting ALK and its downstream pathways in Karpas299 cells. Toxicol Appl Pharmacol 2022; 450:116156. [PMID: 35803438 DOI: 10.1016/j.taap.2022.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Anaplastic lymphoma kinase (ALK) belongs to the family of receptor tyrosine kinases. Recently, the incidence of anaplastic large cell lymphoma (ALCL) with ALK rearrangement has raised considerably. The application of ALK-targeted inhibitors such as ceritinib provides an effective therapy for the treatment of ALK-positive cancers. However, with the prolongation of treatment time, the emergence of resistance is inevitable. We found that 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42), a novel ceritinib derivative, could inhibit the proliferation of ALK-positive ALCL cells, induce the apoptosis of Karpas299 cells through the mitochondrial pathway in a caspase-dependent manner. In addition, ZX-42 could suppress ALK and downstream pathways including PI3K/Akt, Erk and JAK3/STAT3 and reduce the nuclear translocation of NFκB by inhibiting TRAF2/IKK/IκB pathway. Taken together, our findings indicate that ZX-42 shows more effective activity than ceritinib against ALK-positive ALCL. We hope this study can provide a direction for the structural modification of ceritinib and lay the foundation for the further development of clinical research in ALK-positive ALCL.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Junfang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
3
|
Congras A, Hoareau-Aveilla C, Caillet N, Tosolini M, Villarese P, Cieslak A, Rodriguez L, Asnafi V, Macintyre E, Egger G, Brousset P, Lamant L, Meggetto F. ALK-transformed mature T lymphocytes restore early thymus progenitor features. J Clin Invest 2021; 130:6395-6408. [PMID: 33141118 DOI: 10.1172/jci134990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.
Collapse
Affiliation(s)
- Annabelle Congras
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Coralie Hoareau-Aveilla
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Nina Caillet
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Marie Tosolini
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Pôle Technologique du CRCT, Plateau Bioinformatique, Toulouse, France
| | - Patrick Villarese
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Agata Cieslak
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laura Rodriguez
- Etablissement Français du Sang, Nouvelle Aquitaine, INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Vahid Asnafi
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Elisabeth Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pierre Brousset
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France
| | - Laurence Lamant
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| | - Fabienne Meggetto
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| |
Collapse
|
4
|
Combined crizotinib and endocrine drugs inhibit proliferation, migration, and colony formation of breast cancer cells via downregulation of MET and estrogen receptor. Med Oncol 2021; 38:8. [DOI: 10.1007/s12032-021-01458-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
|
5
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Hu Y, Zhang X, Zhao Z, Chen X, Zhou Z, Yang X, Yang B, He Q, Luo P. Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett 2020; 319:102-110. [DOI: 10.1016/j.toxlet.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
|
7
|
Mechanisms of suppression of cell growth by dual inhibition of ALK and MEK in ALK-positive non-small cell lung cancer. Sci Rep 2019; 9:18842. [PMID: 31827192 PMCID: PMC6906283 DOI: 10.1038/s41598-019-55376-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangement, a key oncogenic driver in a small subset of non-small cell lung cancers, confers sensitivity to ALK tyrosine kinase inhibitors (TKIs). Crizotinib, a first generation ALK-TKI, has superiority to standard chemotherapy with longer progression-free survival and higher objective response rate. However, clinical benefit is limited by development of resistance, typically within a year of therapy. In this study the combined effect of crizotinib and the MEK inhibitor selumetinib was investigated in both crizotinib naïve (H3122) and crizotinib resistant (CR-H3122) ALK-positive lung cancer cells. Results showed that combination treatment potently inhibited the growth of both H3122 and CR-H3122 cells, resulting from increased apoptosis and decreased cell proliferation as a consequence of suppressed downstream RAS/MAPK signalling. The drug combination also elicited a greater than 3-fold increase in Bim, a mediator of apoptosis, and p27, a cyclin dependent kinase inhibitor compared to crizotinib alone. The results support the hypothesis that combining MEK inhibitors with ALK inhibitor can overcome ALK inhibitor resistance, and identifies Bim, PARP and CDK1 as druggable targets for possible triple drug therapy.
Collapse
|
8
|
Li B, Lu M, Jin L, Zheng M, Sun P, Lei S, Xiong S, Chen S. Simultaneous Quantification of Brigatinib and Brigatinib-Analog in Rat Plasma and Brain Homogenate by LC-MS/MS: Application to Comparative Pharmacokinetic and Brain Distribution Studies. Int J Anal Chem 2019; 2019:9028309. [PMID: 31885594 PMCID: PMC6915135 DOI: 10.1155/2019/9028309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Brigatinib and brigatinib-analog are potent and selective ALK inhibitors with the similar structure. A simple and sensitive high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of brigatinib and brigatinib-analog in rat plasma and brain homogenate was developed and validated. Chromatographic separation was carried out on an ODS column with acetonitrile and 0.1% formic acid in water as the mobile phase with gradient elution at a flow rate of 0.5 mL/min. Detections were performed using a TSQ Quantum Ultra mass spectrometric detector with electrospray ionization (ESI) interface, which was operated in the positive ion mode. A simple protein precipitation preparation process was used. The lower limits of quantification (LLOQs) were 1.0 ng/mL and 0.5 ng/mL for analytes in rat plasma and brain homogenate, respectively. The intrabatch and interbatch precision and accuracy of brigatinib and brigatinib-analog were well within the acceptable limits of variation. The simple and sensitive LC-MS/MS method was successfully applied to the pharmacokinetic and brain distribution studies following a single oral administration of brigatinib and brigatinib-analog to rats. The above studies would lay a good foundation for the further applications of brigatinib and brigatinib-analog.
Collapse
Affiliation(s)
- Bo Li
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Min Lu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, China
| | - Lei Jin
- Department of Pharmaceutical Engineering, Shandong Drug and Food Vocational College, Weihai 264210, China
| | - Maoen Zheng
- Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250002, China
| | - Peilu Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Shanshan Lei
- Zhejiang University of Technology, Hangzhou 310014, China
| | - Shan Xiong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Suhong Chen
- Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Kwon JH, Kim KJ, Sung JH, Suh KJ, Lee JY, Kim JW, Kim SH, Lee JO, Kim JW, Kim YJ, Lee KW, Kim JH, Bang SM, Kim S, Yoon SS, Lee JS. Afatinib Overcomes Pemetrexed-Acquired Resistance in Non-Small Cell Lung Cancer Cells Harboring an EML4-ALK Rearrangement. Cells 2019; 8:cells8121538. [PMID: 31795298 PMCID: PMC6953071 DOI: 10.3390/cells8121538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study is to elucidate the mechanisms of acquired resistance to pemetrexed in echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer. Methods: We analyzed the sensitivity to pemetrexed and the expression patterns of various proteins after pemetrexed treatment in the cell lines, A549, NCI-H460, NCI-H2228 harboring EML4-ALK variant 3, and NCI-H3122 harboring EML4-ALK variant 1. Pemetrexed-resistant cell lines were also generated through long-term exposure to pemetrexed. Results: The EML4-ALK variant 1 rearranged NCI-H3122 was found to be more sensitive than the other cell lines. Cell cycle analysis after pemetrexed treatment showed that the fraction of cells in the S phase increased in A549, NCI-H460, and NCI-H2228, whereas the fraction in the apoptotic sub-G1 phase increased in NCI-H3122. The pemetrexed-resistant NCI-H3122 cell line showed increased expression of EGFR and HER2 compared to the parent cell line, whereas A549 and NCI-H460 did not show this change. The pan-HER inhibitor afatinib inhibited this alternative signaling pathway, resulting in a superior cytotoxic effect in pemetrexed-resistant NCI-H3122 cell lines compared to that in the parental cells line. Conclusion: The activation of EGFR-HER2 contributes to the acquisition of resistance to pemetrexed in EML4-ALK rearranged non-small cell lung cancer. However, the inhibition of this alternative survival signaling pathway with RNAi against EGFR-HER2 and with afatinib overcomes this resistance.
Collapse
Affiliation(s)
- Ji-Hyun Kwon
- Translational Medicine, Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jong Seok Lee
- Translational Medicine, Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.H.S.); (K.J.S.); (J.Y.L.); (J.-W.K.); (S.H.K.); (J.-O.L.); (J.W.K.); (Y.J.K.); (K.-W.L.); (J.H.K.); (S.-M.B.)
- Correspondence: ; Tel.: +82-31-787-7022; Fax: +82-31-787-4052
| |
Collapse
|
10
|
A novel ALK inhibitor ZYY inhibits Karpas299 cell growth in vitro and in a mouse xenograft model and induces protective autophagy. Toxicol Appl Pharmacol 2019; 383:114781. [DOI: 10.1016/j.taap.2019.114781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
|
11
|
Wang R, Li L, Duan A, Li Y, Liu X, Miao Q, Gong J, Zhen Y. Crizotinib enhances anti-CD30-LDM induced antitumor efficacy in NPM-ALK positive anaplastic large cell lymphoma. Cancer Lett 2019; 448:84-93. [PMID: 30742941 DOI: 10.1016/j.canlet.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Combining antibody-drug conjugates (ADCs) with targeted small-molecule inhibitors can enhance antitumor effects beyond those attainable with monotherapy. In this study, we investigated the therapeutic combination of a CD30-targeting ADC (anti-CD30-lidamycin [LDM]) with a small-molecule inhibitor (crizotinib) of nucleophosmin-anaplastic lymphoma kinase NPM-ALK in CD30+/ALK+ anaplastic large cell lymphoma (ALCL). In vitro, anti-CD30-LDM showed strong synergistic antiproliferative activity when combined with crizotinib. Furthermore, treatment with anti-CD30-LDM plus crizotinib resulted in a stronger induction of cell apoptosis than monotherapy with either treatment. Western blot analysis revealed that ERK1/2 phosphorylation was increased in response to anti-CD30-LDM-induced DNA damage. Interestingly, the addition of crizotinib inhibited the expression of phosphorylated ERK1/2 and further augmented anti-CD30-LDM-mediated apoptosis, providing a potential synergistic mechanism for DNA-damaging agents combined with NPM-ALK inhibitors. In Karpas299 and SU-DHL-1 xenograft models, anti-CD30-LDM plus crizotinib was more effective in inhibiting tumor growth than either treatment alone. This research demonstrated for the first time that the combination of anti-CD30-LDM and crizotinib exhibits a synergistic inhibitory effect in tumor cells. These results provide scientific support for future clinical evaluations of anti-CD30-LDM, or other DNA-damaging agents, combined with NPM-ALK inhibitors.
Collapse
Affiliation(s)
- Rong Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aijun Duan
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yongsu Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Xu W, Kim JW, Jung WJ, Koh Y, Yoon SS. Crizotinib in Combination with Everolimus Synergistically Inhibits Proliferation of Anaplastic Lymphoma Kinase‒Positive Anaplastic Large Cell Lymphoma. Cancer Res Treat 2018; 50:599-613. [PMID: 28675026 PMCID: PMC5912135 DOI: 10.4143/crt.2016.357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 06/10/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Anaplastic large cell lymphoma (ALCL) is a rare aggresive non-Hodgkin lymphoma, of which over 50% of cases have an aberrant nucleophosmin (NPM)‒anaplastic lymphoma kinase (ALK) fusion protein. Both mechanistic target of rapamycin (mTOR) inhibitor everolimus and ALK inhibitor crizotinib have shown promising antitumor activity in ALK-positive cancer cell lines. However, their combined effect has not yet been investigated. MATERIALS AND METHODS We evaluated the anti-proliferative effects of everolimus and/or crizotinib in ALK-positive ALCL cell lines, Karpas 299 and SU-DHL-1, and lung adenocarcinoma cell line, NCI-H2228. RESULTS We found that individually, both everolimus and crizotinib potently inhibited cell growth in a dose-dependent manner in both Karpas 299 and SU-DHL-1 cells. A combination of these agents synergistically inhibited proliferation in the two cell lines. Crizotinib down-regulated aberrant AKT and ERK phosphorylation induced by everolimus. Combination treatment also significantly increased G0/G1 cell-cycle arrest, DNA damage, and apoptosis compared with everolimus or crizotinib alone in ALK-positive ALCL cells. In the Karpas 299 xenograft model, the combination treatment exerted a stronger antitumor effect than monotherapies, without significant change in body weight. The synergistic effect of everolimus and crizotinib was also reproduced in the ALK-positive lung adenocarcinoma cell line NCI-H2228. The combination treatment abrogated phosphoinositide 3-kinase/AKT and mTOR signaling pathways with little effect on the Ras/ERK pathway in NCI-H2228 cells. CONCLUSION Crizotinib combinedwith everolimus synergistically inhibits proliferation of ALK-positive ALCL cells. Our results suggest that this novel combination is worthy of further clinical development in patients with ALK-positive ALCL.
Collapse
Affiliation(s)
- Wendan Xu
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ji-Won Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woo June Jung
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
Han M, Shen J, Wang L, Wang Y, Zhai X, Li Y, Liu M, Li Z, Zuo D, Wu Y. 5-chloro-N4-(2-(isopropylsulfonyl)phenyl)-N2-(2-methoxy-4-(4-((4-methylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)pyrimidine-2,4-diamine (WY-135), a novel ALK inhibitor, induces cell cycle arrest and apoptosis through inhibiting ALK and its downstream pathways in Karpas299 and H2228 cells. Chem Biol Interact 2018; 284:24-31. [DOI: 10.1016/j.cbi.2018.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/30/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
|
14
|
Wei Y, Li C, Zhang Y, He H, Zhang G, Hao X, Liu H, Wang H, Tian W. Hydroxycamptothecin mediates antiproliferative effects through apoptosis and autophagy in A549 cells. Oncol Lett 2018; 15:6322-6328. [PMID: 29616109 PMCID: PMC5876437 DOI: 10.3892/ol.2018.8107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Hydroxycamptothecin (HCPT) represents a new generation of anticancer drugs, with almost no side effects when used for the treatment of a number of types of cancer. Autophagy is becoming recognized as an important biological mechanism in human cancer, including lung cancer. However, the involvement of autophagy in the antiproliferative effects of HCPT on lung cancer remains unclear. In the present study, A549 cells, an accepted model of non-small cell lung cancer (NSCLC) cells, were employed. It was demonstrated that HCPT was able to suppress proliferation and induce apoptosis and autophagy in A549 cells. The molecular mechanism underlying HCPT-induced cell death was attributed to apoptosis and autophagy. Furthermore, it was demonstrated that an autophagy inhibitor, 3-methyladenine, accelerated HCPT-induced cell death in A549 cells. The results of the present study may lead to a deeper understanding of the molecular mechanism by which HCPT regulates NSCLC A549 cells. These results highlight the potential use of autophagy inhibitors in combination with traditional chemotherapy drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanjie Wei
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Chenhao Li
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yuan Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Hailan He
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Guozhi Zhang
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaohui Hao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Heliang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Hongli Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Public Health School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Wei Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
15
|
Hu L, Zhang X, Wang J, Wang S, Amin HM, Shi P. Involvement of oncogenic tyrosine kinase NPM-ALK in trifluoperazine-induced cell cycle arrest and apoptosis in ALK+ anaplastic large cell lymphoma. Hematology 2017; 23:284-290. [DOI: 10.1080/10245332.2017.1396045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Linlin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Cuyàs E, Pérez-Sánchez A, Micol V, Menendez JA, Bosch-Barrera J. STAT3-targeted treatment with silibinin overcomes the acquired resistance to crizotinib in ALK-rearranged lung cancer. Cell Cycle 2016; 15:3413-3418. [PMID: 27753543 DOI: 10.1080/15384101.2016.1245249] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) has been suggested to play a prominent role in mediating non-small-cell lung cancer (NSCLC) resistance to some tyrosine kinase inhibitor (TKI)-mediated therapies. Using a model of anaplastic lymphoma kinase gene (ALK)-translocated NSCLC with acquired resistance to the ALK TKI crizotinib, but lacking amplifications or mutations in the kinase domain of ALK, we herein present evidence that STAT3 activation is a novel mechanism of crizotinib resistance that involves the upregulation of immune escape and epithelial to mesenchymal transition (EMT) signaling pathways. Taking advantage of the flavonolignan silibinin as a naturally occurring STAT3-targeted pharmacological inhibitor, we confirmed that STAT3 activation protects ALK-translocated NSCLC from crizotinib. Accordingly, silibinin-induced inhibition of STAT3 worked synergistically with crizotinib to reverse acquired resistance and restore sensitivity in crizotinib-resistant cells. Moreover, silibinin treatment significantly inhibited the upregulation of the immune checkpoint regulator PD-L1 and also EMT regulators (e.g., SLUG, VIM, CD44) in crizotinib-refractory cells. These findings provide a valuable strategy to potentially improve the efficacy of ALK inhibition by cotreatment with silibinin-based therapeutics, which merit clinical investigation for ALK TKI-resistant NSCLC patients.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | | | - Vicente Micol
- c Molecular and Cell Biology Institute, Miguel Hernández University , Elche , Spain
| | - Javier A Menendez
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Joaquim Bosch-Barrera
- b Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI) , Girona , Spain.,d Deparment of Medical Oncology , Catalan Institute of Oncology , Girona , Catalonia , Spain.,e Department of Medical Sciences , Medical School, University of Girona , Girona , Spain
| |
Collapse
|
17
|
You L, Shou J, Deng D, Jiang L, Jing Z, Yao J, Li H, Xie J, Wang Z, Pan Q, Pan H, Huang W, Han W. Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines. Oncotarget 2016; 6:40268-82. [PMID: 26384345 PMCID: PMC4741894 DOI: 10.18632/oncotarget.5592] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved survival pathway in eukaryote and is frequently upregulated in cancer cells after chemotherapy or targeted therapy. Thus induction of autophagy has emerged as a drug resistance mechanism. In this study, we found that crizotinib induced a high level of autophagy in lung cancer cells through inhibition of STAT3. Ectopic expression of wild-type or constitutive activated STAT3 significantly suppressed the effect of crizotinib on autophagy. Interestingly, crizotinib-mediated inhibition of STAT3 is in a step-wise manner. Firstly it inhibited cytoplasmic STAT3, which leads to the phosphorylation of EIF2A, then inhibited nuclear STAT3, which leads to the downregulation of BCL-2. Cell death induced by crizotinib was greatly enhanced after the inhibition of autophagy by the pharmacological inhibitors or shRNAs against Beclin-1. Moreover, the autophagy inhibitor HCQ significantly augmented the anti-tumor effect of crizotinib in a mouse xenograft model. In conclusion, crizotinib can induce cytoprotective autophagy by suppression of STAT3 in lung cancer cells. Thus, autophagy inhibition represents a promising approach to improve the efficacy of crizotinib in the treatment of targeted lung cancer patients.
Collapse
Affiliation(s)
- Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danchen Deng
- Department of Gynaecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liming Jiang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhanggui Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
PI3 Kinase Pathway and MET Inhibition is Efficacious in Malignant Pleural Mesothelioma. Sci Rep 2016; 6:32992. [PMID: 27623107 PMCID: PMC5021085 DOI: 10.1038/srep32992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is commonly associated with prior asbestos exposure. Receptor tyrosine kinases (RTKs) such as MET and its downstream target PI3K are overexpressed and activated in a majority of MPMs. Here, we studied the combinatorial therapeutic efficacy of the MET/ALK inhibitor crizotinib, with either a pan-class I PI3K inhibitor, BKM120, or with a PI3K/mTOR dual inhibitor, GDC-0980, in mesothelioma. Cell viability results showed that MPM cells were highly sensitive to crizotinib, BKM120 and GDC-0980 when used individually and their combination was more effective in suppressing growth. Treatment of MPM cells with these inhibitors also significantly decreased cell migration, and the combination of them was synergistic. Treatment with BKM120 alone or in combination with crizotinib induced G2-M arrest and apoptosis. Both crizotinib and BKM120 strongly inhibited the activity of MET and PI3K as evidenced by the decreased phosphorylation of MET, AKT and ribosomal S6 kinase. Using a PDX mouse model, we showed that a combination of crizotinib with BKM120 was highly synergetic in inhibiting MPM tumor growth. In conclusion our findings suggest that dual inhibition of PI3K and MET pathway is an effective strategy in treating MPM as compared to a single agent.
Collapse
|
19
|
Kothari S, Ud-Din N, Lisi M, Coyle T. Crizotinib in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma in the setting of renal insufficiency: a case report. J Med Case Rep 2016; 10:176. [PMID: 27301488 PMCID: PMC4908805 DOI: 10.1186/s13256-016-0963-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/31/2016] [Indexed: 12/26/2022] Open
Abstract
Background In vitro studies confirmed cytoreductive anti-tumor activity of crizotinib in experimental models of anaplastic large cell lymphoma in 2007. One case series and a few case reports describe the use of crizotinib in relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Even though data are limited regarding the dose of crizotinib in renal insufficiency, our case was successfully treated with a lower dose of crizotinib. Case presentation We report the case of a 48-year-old white man who had progressive disease after three prior cycles of cyclophosphamide, doxorubicin, vincristine and prednisone and three cycles of ifosfamide, carboplatin, and etoposide, and was not a candidate for high-dose chemotherapy and transplant due to poor performance status and renal insufficiency; he had a complete and durable response to single agent crizotinib. Crizotinib was given at a reduced dose (250 mg once daily) due to his renal insufficiency. He has been in complete remission for more than 2 years. Conclusions Our experience confirms the activity of crizotinib in this disease; it suggests that long-term treatment with crizotinib is a reasonable option in patients who are not candidates for more aggressive therapy and indicates that crizotinib can be used successfully at reduced doses in patients with pre-existing renal insufficiency. The role and timing of crizotinib in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma is unclear, but the current literature that we review here provides promising results that may lead to studies of crizotinib earlier in the course of disease.
Collapse
Affiliation(s)
- Shalin Kothari
- Department of Medicine, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY, 13210, USA.
| | - Najam Ud-Din
- Division of Hematology/Oncology, Department of Medicine, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY, 13210, USA
| | - Michele Lisi
- Department of Radiology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY, 13210, USA
| | - Thomas Coyle
- Division of Hematology/Oncology, Department of Medicine, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY, 13210, USA
| |
Collapse
|
20
|
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.
Collapse
Key Words
- ALK, anaplastic lymphoma receptor tyrosine kinase
- ATF4, activating transcription factor 4
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- CNTF, ciliary neurotrophic factor
- COX8, cytochrome c oxidase subunit VIII
- CTSB, cathepsin B
- CTSL, cathepsin L
- CYCS, cytochrome c, somatic
- ConA, concanavalin A
- CuB, cucurbitacin B
- EGF, epidermal growth factor
- EIF2A, eukaryotic initiation factor 2A, 65kDa
- EIF2AK2, eukaryotic translation initiation factor 2-α kinase 2
- ER, endoplasmic reticulum
- ETC, electron transport chain
- FOXO1/3, forkhead box O1/3
- HDAC3, histone deacetylase 3
- HIF1A, hypoxia inducible factor 1, α subunit (basic helix-loop-helix transcription factor)
- IL6, interleukin 6
- IMM, inner mitochondrial membrane
- KDR, kinase insert domain receptor
- LMP, lysosomal membrane permeabilization
- MAP1LC3A, microtubule-associated protein 1 light chain 3 α
- MAPK1, mitogen-activated protein kinase 1
- MLS, mitochondrial localization sequence
- MMP14, matrix metallopeptidase 14 (membrane-inserted)
- NDUFA13, NADH dehydrogenase (ubiquinone) 1 α subcomplex, 13
- NES, nuclear export signal
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- NLS, nuclear localization signal
- PDGFRB, platelet-derived growth factor receptor, β polypeptide
- PRKAA2, protein kinase, AMP-activated, α 2 catalytic subunit
- PTPN11, protein tyrosine phosphatase, non-receptor type 11
- PTPN2, protein tyrosine phosphatase, non-receptor type 2
- PTPN6, protein tyrosine phosphatase, non-receptor type 6
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinases
- SH2, src homology 2
- STAT3
- STAT3, signal transducer and activator of transcription 3 (acute-phase response factor)
- VHL, von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase
- XPO1, exportin 1
- autophagy
- cancer
- miRNA, microRNA
- mitoSTAT3, mitochondrial STAT3
- mitophagy
- receptor tyrosine kinases
- targeted therapy
Collapse
Affiliation(s)
- Liangkun You
- a Department of Medical Oncology; Zhejiang University ; Hangzhou , Zhejiang , China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015; 22:29-49. [PMID: 25461779 DOI: 10.1097/pap.0000000000000047] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) comprise a group of CD30-positive non-Hodgkin lymphomas that generally are of T-cell origin and share common morphologic and phenotypic characteristics. The World Health Organization recognizes 3 entities: primary cutaneous ALCL (pcALCL), anaplastic lymphoma kinase (ALK)-positive ALCL, and, provisionally, ALK-negative ALCL. Despite overlapping pathologic features, these tumors differ in clinical behavior and genetics. pcALCL presents in the skin and, while it may involve locoregional lymph nodes, rarely disseminates. Outcomes typically are excellent. ALK-positive ALCL and ALK-negative ALCL are systemic diseases. ALK-positive ALCLs consistently have chromosomal rearrangements involving the ALK gene with varied gene partners, and generally have a favorable prognosis. ALK-negative ALCLs lack ALK rearrangements and their genetic and clinical features are more variable. A subset of ALK-negative ALCLs has rearrangements in or near the DUSP22 gene and has a favorable prognosis similar to that of ALK-positive ALCL. DUSP22 rearrangements also are seen in a subset of pcALCLs. In this review, we discuss the clinical, morphologic, phenotypic, genetic, and biological features of ALCLs.
Collapse
|