1
|
Tiso F, in 't Hout FEM, Knops R, Kroeze LI, van Rooij A, van de Loosdrecht AA, Westers TM, Langemeijer SMC, Preudhomme C, Duployez N, Fenaux P, Kosmider O, Bouscary D, de Graaf AO, Martens JHA, van der Reijden BA, Adès L, Fontenay M, Jansen JH. High levels of global hydroxymethylation predict worse overall survival in MDS patients treated with azacitidine. Hemasphere 2025; 9:e70034. [PMID: 39760001 PMCID: PMC11695669 DOI: 10.1002/hem3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
- Francesca Tiso
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Florentien E. M. in 't Hout
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Ruth Knops
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Leonie I. Kroeze
- Department of PathologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Arno van Rooij
- Department of Laboratory Medicine, Laboratory for Genetic, Endocrine, and Metabolic DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Theresia M. Westers
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Claude Preudhomme
- Department HematologyLille University HospitalLille and INSERM UMR‐S 1277LilleFrance
| | - Nicolas Duployez
- Department HematologyLille University HospitalLille and INSERM UMR‐S 1277LilleFrance
| | - Pierre Fenaux
- Department HematologyHôpital Saint Louis, Assistance publique hôpitaux de paris, and Université de Paris CitéParisFrance
| | - Olivier Kosmider
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Didier Bouscary
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Aniek O. de Graaf
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | | | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Lionel Adès
- Department HematologyHôpital Saint Louis, Assistance publique hôpitaux de paris, and Université de Paris CitéParisFrance
| | - Michaela Fontenay
- Division INSERM U1016, Assistance Publique‐Hôpitaux de Paris, Cochin Hospital and Université Paris Cité, CNRS, INSERMCochin InstituteParisFrance
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical Center and Radboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| |
Collapse
|
2
|
Hara R, Kitahara T, Numata H, Toyosaki M, Watanabe S, Kikkawa E, Ogawa Y, Kawada H, Ando K. Fetal hemoglobin level predicts lower-risk myelodysplastic syndrome. Int J Hematol 2022; 117:684-693. [PMID: 36574168 DOI: 10.1007/s12185-022-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The relationship between fetal hemoglobin (HbF) levels and disease prognosis in patients with myelodysplastic syndrome (MDS) is unclear. This study aimed to clarify the relationship between HbF level and the prognosis of MDS. To this end, data from 217 patients diagnosed with MDS between April 2006 and August 2020 at Ebina General Hospital were analyzed retrospectively. The primary endpoint was leukemia-free survival (LFS) for 5 years after diagnosis. HbF levels were significantly higher in patients with MDS than in control patients without MDS (n = 155), with a cut-off value of 0.4%. Higher-risk patients had a similar prognosis regardless of HbF level, but lower-risk patients had longer LFS at intermediate HbF levels. Although prognosis based on pre-treatment HbF levels did not differ significantly among azacitidine-treated patients, prognosis tended to be better in lower-risk patients with intermediate HbF levels. Multivariate analysis showed that the intermediate HbF category correlated with LFS, independently of MDS lower-risk prognostic scoring system (LR-PSS)-related factors. This study is the first to assess the association between HbF levels and the new World Health Organization 2016 criteria for MDS, demonstrating the significance of HbF levels in the prognosis of MDS.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan.
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Toshihiko Kitahara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Hiroki Numata
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masako Toyosaki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Shigeki Watanabe
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Eri Kikkawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroshi Kawada
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
3
|
Lovatel VL, Rodrigues EF, da Silva BF, de Souza Fernandez C, da Costa ES, Abdelhay E, Lima SCS, de Souza Fernandez T. Global methylation status of LINE-1 in pediatric myelodysplastic syndrome: a predictive biomarker of prognosis? Leuk Lymphoma 2022; 63:3484-3487. [PMID: 36070601 DOI: 10.1080/10428194.2022.2115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Viviane Lamim Lovatel
- Cytogenetic Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Eliane Ferreira Rodrigues
- Cytogenetic Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Beatriz Ferreira da Silva
- Cytogenetic Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Elaine Sobral da Costa
- Pediatrics Department, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Cytogenetic Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Teresa de Souza Fernandez
- Cytogenetic Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
5
|
Zhao G, Li N, Li S, Wu W, Wang X, Gu J. High methylation of the 4-aminobutyrate aminotransferase gene predicts a poor prognosis in patients with myelodysplastic syndrome. Int J Oncol 2018; 54:491-504. [PMID: 30535457 PMCID: PMC6317695 DOI: 10.3892/ijo.2018.4652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
In our previous study, the 4‑aminobutyrate aminotransferase (ABAT) gene was screened and selected as a target gene that may affect the prognosis of myelodysplastic syndrome (MDS). The present study aimed to determine the prognostic value of ABAT in 152 patients with MDS, 29 patients with acute myeloid leukemia (AML) and 40 controls, by detecting the expression and methylation levels of the ABAT gene. In patients with MDS, the expression levels of ABAT were significantly reduced compared with in the controls (P<0.0001), and the degree of DNA methylation was increased in MDS subjects (P<0.0001). Age, hemoglobin level, marrow blasts, International Prognostic Scoring System karyotype, and the expression and methylation levels of ABAT were associated with overall survival (OS), as determined by univariate analysis. Multivariate analysis revealed that older age, higher marrow blasts and higher methylation percentage were independent risk factors for OS. In addition, a functional study demonstrated that ABAT gene silencing increased cell apoptosis and blocked the G1/S phase in SKM‑1 and THP‑1 human leukemia cells. A γ‑aminobutyrate aminotransferase inhibitor also blocked the G1/S phase; however, it had no effect on cell apoptosis. In conclusion, the present study demonstrated that ABAT methylation served an essential role in the progression of MDS and therefore may be considered an indicator of poor prognosis for hematological malignancies.
Collapse
Affiliation(s)
- Guangjie Zhao
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Nianyi Li
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Shuang Li
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Wanling Wu
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Xiaoqin Wang
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Jingwen Gu
- Worldwide Medical Center, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Zhang YY, Zhou JD, Yang DQ, He PF, Yao DM, Qian Z, Yang J, Xu WR, Lin J, Qian J. Intragenic hypomethylation of DNMT3A in patients with myelodysplastic syndrome. Clin Chem Lab Med 2018; 56:485-491. [PMID: 29031013 DOI: 10.1515/cclm-2016-0142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND DNMT3A is a DNA methyltransferase that acts in de novo methylation. Aberrant expression of DNMT3A has been reported in several human diseases, including myelodysplastic syndrome (MDS). However, the pattern of DNMT3A methylation remains unknown in MDS. METHODS The present study was aimed to investigate the methylation status of DNMT3A intragenic differentially methylated region 2 (DMR2) using real-time quantitative methylation-specific PCR and analyze its clinical significance in MDS. RESULTS Aberrant hypomethylation of DNMT3A was found in 57% (51/90) MDS cases. There were no significant differences in age, sex, white blood cell counts, platelet counts, hemoglobin counts and World Health Organization, International Prognostic Scoring System and karyotype classifications between DNMT3A hypomethylated and DNMT3A hypermethylated groups. However, the patients with DNMT3A hypomethylation had shorter overall survival time than those without DNMT3A hypomethylation (11 months vs. 36 months, p=0.033). Multivariate analysis confirmed the independent adverse impact of DNMT3A hypomethylation in MDS. CONCLUSIONS Our data suggest that DNMT3A DMR2 hypomethylation may be a negative prognostic hallmark in MDS.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology and Oncology, Yizheng People's Hospital, Yangzhou, Jiangsu, P.R. China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Dong-Qin Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Pin-Fang He
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Zhen Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Jing Yang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China
| | - Wen-Rong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Medical Key Talent Project of Zhenjiang, Zhenjiang, P.R. China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., 212002 Zhenjiang, P.R. China, Fax: +86.511.85234387
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,The Key Laboratory of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, P.R. China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., 212002 Zhenjiang, P.R. China, Fax: +86.511.85234387
| |
Collapse
|
7
|
Chandra D, Tyagi S, Singh J, Deka R, Manivannan P, Mishra P, Pati HP, Saxena R. Utility of 5-Methylcytosine Immunohistochemical Staining to Assess Global DNA Methylation and Its Prognostic Impact in MDS Patients. Asian Pac J Cancer Prev 2017; 18:3307-3313. [PMID: 29286224 PMCID: PMC5980888 DOI: 10.22034/apjcp.2017.18.12.3307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: DNA methylation plays a vital role in the pathogenesis of the myelodysplastic syndrome (MDS), a heterogeneous group of clonal hematopoietic stem cell (HSC) disorders. It is reported to be an independent prognostic factor affecting overall survival (OS). Our aim was to analyze the role of global DNA methylation using an anti-5-methylcytosine (5-MC) antibody by immunohistochemistry (IHC) of bone marrow biopsy (BM Bx) specimens in MDS patients, assessing correlations with various clinical and biological prognostic factors. Material and methods: A total of 59 MDS cases, classified as per the World Health Organization (WHO) 2008 guidelines, were evaluated over a period of 4 years. Clinical data were retrieved from departmental case records and anti-5-MC expression was analyzed with formalin fixed paraffin embedded sections of BM Bx specimens of MDS patients and controls. Results: The median age at diagnosis was 52 years (15-85years). Patients were categorized into low risk (59%) and high risk (41%) according to International Prognostic Scoring System (IPSS). The median follow-up time was 10 months (1 to 37 months). We generated a methylation score (M-score) using anti-5-MC and with the derived cut-off of 30.5 from the receiver operator curve (ROC), there was a significant difference between the two groups in the percentage of BM blasts (p=0.01), WHO sub-type (p=0.01), IPSS (p=0.004), progression to AML (p=0.04) on univariate analysis. Interestingly, patients showing a high M-score (M-score ≥ 30.5) demonstrated a significantly shorter OS and progression to AML. However, on multivariate analysis, only BM blasts (p=0.01) and IPSS (p=0.02) remained independent variables for progression to AML and OS respectively. Conclusion: Immunostaining with anti-5-MC antibody with BM Bx samples is a simple and cost effective technique to detect global methylation, a powerful tool to predict overall survival in patients with MDS.
Collapse
Affiliation(s)
- Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mutations in the DNA methylation pathway and number of driver mutations predict response to azacitidine in myelodysplastic syndromes. Oncotarget 2017; 8:106948-106961. [PMID: 29291002 PMCID: PMC5739787 DOI: 10.18632/oncotarget.22157] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
We evaluated the association of mutations in 34 candidate genes and response to azacitidine in 84 patients with myelodysplastic syndrome (MDS), with 217 somatic mutations identified by next-generation sequencing. Most patients (93%) had ≥1 mutation (mean=2.6/patient). The overall response rate to azacitidine was 42%. No clinical characteristic was associated with response to azacitidine. However, total number of mutations/patient was negatively associated with overall drug response (odds ratio [OR]: 0.56, 95% confidence interval [CI]: 0.33–0.94; p=0.028), and a positive association was found for having ≥1 mutation in a DNA methylation-related gene: TET2, DNMT3A, IDH1 and/or IDH2 (OR: 4.76, 95%CI: 1.31–17.27; p=0.017). Mutations in TP53 (hazard ratio [HR]: 3.88; 95%CI: 1.94–7.75) and EZH2 (HR: 2.50; 95%CI: 1.23–5.09) were associated with shorter overall survival. Meta-analysis of 6 studies plus present data (n=815 patients) allowed assessment of the association of drug response with mutations in 9 candidate genes: ASXL1, CBL, EZH2, SF3B1, SRSF2, TET2, DNMT3A, IDH1/2 and TP53. TET2 mutations predicted a more favorable drug response compared with ‘wild-type’ peers (pooled OR: 1.67, 95%CI: 1.14–2.44; p=0.01). In conclusion, mutations in the DNA methylation pathway, especially TET2 mutations, and low number of total mutations are associated with a better response to azacitidine.
Collapse
|
9
|
DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. DISEASE MARKERS 2017; 2017:5472893. [PMID: 29038614 PMCID: PMC5606093 DOI: 10.1155/2017/5472893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/18/2023]
Abstract
During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.
Collapse
|
10
|
Pechalrieu D, Etievant C, Arimondo PB. DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochem Pharmacol 2016; 129:1-13. [PMID: 27956110 DOI: 10.1016/j.bcp.2016.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a mammalian epigenetic mark that participates to define where and when genes are expressed, both in normal cells and in the context of diseases. Like other epigenetic marks, it is reversible and can be modulated by chemical agents. Because it plays an important role in cancer by silencing certain genes, such as tumour suppressor genes, it is a promising therapeutic target. Two compounds are already approved to treat haematological cancers, and many efforts have been carried out to discover new molecules that inhibit DNA methyltransferases, the enzymes responsible for DNA methylation. Here, we analyse the molecular mechanisms and cellular pharmacology of these inhibitors, pointing out the necessity for new pharmacological models and paradigms. The parameters of pharmacological responses need to be redefined: the aim is cellular reprogramming rather than general cytotoxicity. Thus, "epigenetic" rather than cytotoxic dosages are defined. Another issue is the delay of the response: cellular reprogramming can take several generations to produce observable phenotypes. Is this compatible with laboratory scale experiments? Finally, it is important to consider the specificity for cancer cells compared to normal cells and the appearance of resistance. We also discuss different techniques that are used and the selection of pharmacological models.
Collapse
Affiliation(s)
- Dany Pechalrieu
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Chantal Etievant
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Paola B Arimondo
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France.
| |
Collapse
|
11
|
Navarro A, Tejero R, Viñolas N, Cordeiro A, Marrades RM, Fuster D, Caritg O, Moises J, Muñoz C, Molins L, Ramirez J, Monzo M. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer. Oncotarget 2016; 6:31544-56. [PMID: 25742785 PMCID: PMC4741623 DOI: 10.18632/oncotarget.3003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.
Collapse
Affiliation(s)
- Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Rut Tejero
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Nuria Viñolas
- Department of Medical Oncology, Institut Clinic Malalties Hemato-Oncològiques (ICMHO), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Ramon M Marrades
- Department of Pneumology, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Dolors Fuster
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Oriol Caritg
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jorge Moises
- Department of Pneumology, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Laureano Molins
- Department of Thoracic Surgery, Institut Clínic del Tórax (ICT), Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Josep Ramirez
- Department of Pathology, Centro de Diagnóstico Biomédico (CDB), Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Mariano Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
12
|
Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase. Int J Hematol 2016; 104:491-501. [DOI: 10.1007/s12185-016-2054-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
|
13
|
Geng S, Yao H, Weng J, Tong J, Huang X, Wu P, Deng C, Li M, Lu Z, Du X. Effects of the combination of decitabine and homoharringtonine in SKM-1 and Kg-1a cells. Leuk Res 2016; 44:17-24. [DOI: 10.1016/j.leukres.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 02/13/2016] [Indexed: 01/16/2023]
|
14
|
Zhang R, Lin H. 5-hydroxymethylcytosine: A new marker for early detection of digestive system tumors? Shijie Huaren Xiaohua Zazhi 2016; 24:1213-1219. [DOI: 10.11569/wcjd.v24.i8.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
5-methylcytosine (5-mc) has been recognized as an important epigenetic modification in mammalian genomic DNA. Studies have revealed that TET (ten-eleven translocation) protein family could catalyze the conversion of 5-mc into 5-hydroxyme-thylcytosine (5-hmc), which is now widely recognized as the sixth base in the genome. Recent reports showed that the level of 5-hmc was decreased in digestive system tumors, indicating that 5-hmc may be a useful epigenetic biomarker for the early diagnosis of gastrointestinal tumors. To better understand the roles of TET and 5-hmc, this article will elucidate the function of TET protein and the connections between 5-hmc and digestive system tumors.
Collapse
|
15
|
Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. BIOLOGY 2016; 5:biology5010003. [PMID: 26751487 PMCID: PMC4810160 DOI: 10.3390/biology5010003] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
In the burgeoning field of epigenetics, there are several methods available to determine the methylation status of DNA samples. However, choosing the method that is best suited to answering a particular biological question still proves to be a difficult task. This review aims to provide biologists, particularly those new to the field of epigenetics, with a simple algorithm to help guide them in the selection of the most appropriate assay to meet their research needs. First of all, we have separated all methods into two categories: those that are used for: (1) the discovery of unknown epigenetic changes; and (2) the assessment of DNA methylation within particular regulatory regions/genes of interest. The techniques are then scrutinized and ranked according to their robustness, high throughput capabilities and cost. This review includes the majority of methods available to date, but with a particular focus on commercially available kits or other simple and straightforward solutions that have proven to be useful.
Collapse
Affiliation(s)
- Sergey Kurdyukov
- Genomics Core facility, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| |
Collapse
|
16
|
Tao YF, Xu LX, Lu J, Hu SY, Fang F, Cao L, Xiao PF, Du XJ, Sun LC, Li ZH, Wang NN, Su GH, Li YH, Li G, Zhao H, Li YP, Xu YY, Zhou HT, Wu Y, Jin MF, Liu L, Zhu XM, Ni J, Wang J, Xing F, Zhao WL, Pan J. Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia. J Exp Clin Cancer Res 2015; 34:4. [PMID: 25609158 PMCID: PMC4311429 DOI: 10.1186/s13046-014-0118-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pediatric acute myeloid leukemia (AML) comprises up to 20% of all childhood leukemia. Recent research shows that aberrant DNA methylation patterning may play a role in leukemogenesis. The epigenetic silencing of the EBF3 locus is very frequent in glioblastoma. However, the expression profiles and molecular function of EBF3 in pediatric AML is still unclear. METHODS Twelve human acute leukemia cell lines, 105 pediatric AML samples and 30 normal bone marrow/idiopathic thrombocytopenic purpura (NBM/ITP) control samples were analyzed. Transcriptional level of EBF3 was evaluated by semi-quantitative and real-time PCR. EBF3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BGS). The molecular mechanism of EBF3 was investigated by apoptosis assays and PCR array analysis. RESULTS EBF3 promoter was hypermethylated in 10/12 leukemia cell lines. Aberrant EBF3 methylation was observed in 42.9% (45/105) of the pediatric AML samples using MSP analysis, and the BGS results confirmed promoter methylation. EBF3 expression was decreased in the AML samples compared with control. Methylated samples revealed similar survival outcomes by Kaplan-Meier survival analysis. EBF3 overexpression significantly inhibited cell proliferation and increased apoptosis. Real-time PCR array analysis revealed 93 dysregulated genes possibly implicated in the apoptosis of EBF3-induced AML cells. CONCLUSION In this study, we firstly identified epigenetic inactivation of EBF3 in both AML cell lines and pediatric AML samples for the first time. Our findings also showed for the first time that transcriptional overexpression of EBF3 could inhibit proliferation and induce apoptosis in AML cells. We identified 93 dysregulated apoptosis-related genes in EBF3-overexpressing, including DCC, AIFM2 and DAPK1. Most of these genes have never been related with EBF3 over expression. These results may provide new insights into the molecular mechanism of EBF3-induced apoptosis; however, further research will be required to determine the underlying details. Our findings suggest that EBF3 may act as a putative tumor suppressor gene in pediatric AML.
Collapse
MESH Headings
- Adolescent
- Age Factors
- Apoptosis/genetics
- Cell Line, Tumor
- Child
- Child, Preschool
- Cluster Analysis
- DNA Methylation
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- HL-60 Cells
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Prognosis
- Promoter Regions, Genetic
- Signal Transduction
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Yan-Fang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Lan Cao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese PLA, Yin chuan, China.
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Guang-Hao Su
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Yan-Hong Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Gang Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Yi-Ping Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Yun-Yun Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Hui-Ting Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Yi Wu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Mei-Fang Jin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Lin Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Xue-Ming Zhu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing, China.
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Feng Xing
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Xu N, Zhou X, Wang S, Xu LL, Zhou HS, Liu XL. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci 2015; 12:524-9. [PMID: 26078714 PMCID: PMC4466518 DOI: 10.7150/ijms.11352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/13/2015] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Artesunate (ART), a wildly used agent to treat severe malarial around the world, also has the power to inhibit growth of different types of tumor. However, the exact molecular mechanisms keep unknown. METHOD In this study, we used myelodysplastic syndrome (MDS) cells (SKM-1 cells) with differential ART concentrations treatment at multiple time points to observe the subsequence cell function alteration and the possible involved pathway genes. RESULTS We found that ART demonstrated the ability to inhibit proliferation and induce apoptosis in SKM-1 in a dose and time-dependent manner. Demethylase recovered CDH1 gene expression may be involved in the apoptosis process. The β-catenin protein translocated from the nucleus and cytoplasm to the membrane result in inactivation of β-catenin signaling pathway. CONCLUSION Our findings provide a rational basis to develop ART as a useful therapeutic agent for the treatment of myelodysplastic syndromes.
Collapse
Affiliation(s)
- Na Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- 2. Department of Ultrasound, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Lu-lu Xu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Zhou
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-li Liu
- 1. Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|