1
|
Wu F, Yu H. The role of the NOTCH1 signaling pathway in the maintenance of mesenchymal stem cell stemness and chondrocyte differentiation and its potential in the treatment of osteoarthritis. J Orthop Surg Res 2025; 19:772. [PMID: 39754211 PMCID: PMC11697486 DOI: 10.1186/s13018-024-05236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation. METHODS Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence. Through the construction of lentiviruses overexpressing and knocking out NOTCH1, the effects of NOTCH1 on the stemness of MSCs and chondrocyte differentiation were investigated. Additionally, the effects of NOTCH1 on chondrocyte homeostasis and apoptosis were evaluated by adding the EZH2 inhibitor GSK126 and the endoplasmic reticulum stress inducer tunicamycin. RESULTS Experimental results demonstrated that NOTCH1 expression can influence the maintenance of MSC stemness and chondrocyte differentiation by regulating EZH2. Knockout of NOTCH1 decreased the expression of chondrocyte markers, while overexpression increased their expression. Under conditions of endoplasmic reticulum stress, NOTCH1 expression helped reduce the expression of stress-related proteins, maintain chondrocyte homeostasis, and inhibit apoptosis. CONCLUSION The NOTCH1 signaling pathway plays a crucial role in maintaining the stemness of MSCs, differentiating into chondrocytes, and in the treatment of osteoarthritis. NOTCH1 influences the differentiation fate of MSCs and the homeostasis of chondrocytes by regulating EZH2 and other related genes, offering new targets and strategies for the treatment of diseases like osteoarthritis.
Collapse
Affiliation(s)
- Fuming Wu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China
| | - Haiquan Yu
- Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
| |
Collapse
|
2
|
Zhang F, Attarilar S, Xie K, Han C, Qingyang Liang, Huang K, Lan C, Wang C, Yang C, Wang L, Mozafari M, Li K, Liu J, Tang Y. Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling. Mol Cell Endocrinol 2022; 540:111520. [PMID: 34838695 DOI: 10.1016/j.mce.2021.111520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density and impaired bone strength. Carfilzomib (CFZ) is a new-generation proteasome inhibitor and has been found to affect bone metabolism. However, the effect and mechanism of CFZ on OP has not been investigated systematically. In this study, we found that protein levels of proteasome activator subunit 1/2 (PSME1/2) increased in OP, and accumulated mostly in osteoblasts and osteoclasts. Treatment with PSME1/2 recombinant protein inhibited osteogenesis and promoted osteoclast formation in vitro. Also, PSME1/2 inhibited the expression of β-catenin protein, resulting in limitation of Wnt/β-catenin signaling. CFZ inhibited PSME1 and PSME2 proteasome activities and increased β-catenin protein level, resulting in the translocation of β-catenin to the nucleus and activation of canonical Wnt/β-catenin signaling, further promoting osteogenesis and inhibiting osteoclastic differentiation. In vivo, we conducted ovariectomy (OVX) to create a model of OVX-induced postmenopausal OP in mice. When analyzed by micro-CT scanning, enhancement of bone mineral density, bone volume, trabecular number, and thickness was seen in the CFZ-treated mice. Also, we noticed increased osteogenesis and decreased osteoclastogenesis, diminished expression of PSME1 and PSME2 and activated Wnt/β-catenin signaling in bone sections from OP mice treated with CFZ. Overall, our data indicated that PSME1/2 may serve as new targets for the treatment of OP, and targeting PSME1/2 with CFZ provides a candidate therapeutic molecule for postmenopausal OP.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chao Han
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qingyang Liang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Mukkamalla SKR, Malipeddi D. Myeloma Bone Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:6208. [PMID: 34201396 PMCID: PMC8227693 DOI: 10.3390/ijms22126208] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic clonal proliferation of plasma cells in the bone marrow microenvironment, characterized by overproduction of heavy- and light-chain monoclonal proteins (M-protein). These proteins are mainly found in the serum and/or urine. Reduction in normal gammaglobulins (immunoparesis) leads to an increased risk of infection. The primary site of origin is the bone marrow for nearly all patients affected by MM with disseminated marrow involvement in most cases. MM is known to involve bones and result in myeloma bone disease. Osteolytic lesions are seen in 80% of patients with MM which are complicated frequently by skeletal-related events (SRE) such as hypercalcemia, bone pain, pathological fractures, vertebral collapse, and spinal cord compression. These deteriorate the patient's quality of life and affect the overall survival of the patient. The underlying pathogenesis of myeloma bone disease involves uncoupling of the bone remodeling processes. Interaction of myeloma cells with the bone marrow microenvironment promotes the release of many biochemical markers including osteoclast activating factors and osteoblast inhibitory factors. Elevated levels of osteoclast activating factors such as RANK/RANKL/OPG, MIP-1-α., TNF-α, IL-3, IL-6, and IL-11 increase bone resorption by osteoclast stimulation, differentiation, and maturation, whereas osteoblast inhibitory factors such as the Wnt/DKK1 pathway, secreted frizzle related protein-2, and runt-related transcription factor 2 inhibit osteoblast differentiation and formation leading to decreased bone formation. These biochemical factors also help in development and utilization of appropriate anti-myeloma treatments in myeloma patients. This review article summarizes the pathophysiology and the recent developments of abnormal bone remodeling in MM, while reviewing various approved and potential treatments for myeloma bone disease.
Collapse
Affiliation(s)
| | - Dhatri Malipeddi
- Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH 44710, USA;
| |
Collapse
|
4
|
Terpos E, Ntanasis-Stathopoulos I, Katodritou E, Kyrtsonis MC, Douka V, Spanoudakis E, Papatheodorou A, Eleutherakis-Papaiakovou E, Kanellias N, Gavriatopoulou M, Makras P, Kastritis E, Dimopoulos MA. Carfilzomib Improves Bone Metabolism in Patients with Advanced Relapsed/Refractory Multiple Myeloma: Results of the CarMMa Study. Cancers (Basel) 2021; 13:cancers13061257. [PMID: 33809268 PMCID: PMC7998249 DOI: 10.3390/cancers13061257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Carfilzomib with dexamethasone is an important therapeutic option for patients with relapsed/refractory multiple myeloma. We sought to evaluate the effect of this regimen on the bone-related outcomes, which are associated with both quality of life and survival. Among 25 patients, less than one third experienced a new skeletal-related event during treatment, even in the absence of any bone-targeted agent. Interestingly, there was a significant decrease in serum biomarkers of bone resorption, which was at least partially due to the sRANKL/OPG ratio reduction. Furthermore, Kd produced an increase in markers of bone formation. Importantly, these changes were independent of myeloma response to treatment. Therefore, the combination of carfilzomib and dexamethasone improves bone metabolism and bone health in patients with advanced multiple myeloma. Abstract Carfilzomib with dexamethasone (Kd) is a well-established regimen for the treatment of relapsed/refractory multiple myeloma (RRMM). There is limited information for the effects of Kd on myeloma-related bone disease. This non-interventional study aimed to assess skeletal-related events (SREs) and bone metabolism in patients with RRMM receiving Kd, in the absence of any bone-targeted agent. Twenty-five patients were enrolled with a median of three prior lines of therapy; 72% of them had evidence of osteolytic bone disease at study entry. During Kd treatment, the rate of new SREs was 28%. Kd produced a clinically relevant (≥30%) decrease in C-telopeptide of collagen type-1 (p = 0.048) and of tartrate-resistant acid phosphatase-5b (p = 0.002) at 2 months. This reduction was at least partially due to the reduction in the osteoclast regulator RANKL/osteoprotegerin ratio, at 2 months (p = 0.026). Regarding bone formation, there was a clinically relevant increase in osteocalcin at 6 months (p = 0.03) and in procollagen type I N-propeptide at 8 months post-Kd initiation. Importantly, these bone metabolism changes were independent of myeloma response to treatment. In conclusion, Kd resulted in a low rate of SREs among RRMM patients, along with an early, sustained and clinically relevant decrease in bone resorption, which was accompanied by an increase in bone formation, independently of myeloma response and in the absence of any bone-targeted agent use.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
- Correspondence: ; Tel.: +30-2132162846
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, PS 54639 Thessaloniki, Greece;
| | - Marie-Christine Kyrtsonis
- First Department of Propedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece;
| | - Vassiliki Douka
- Department of Hematology and Bone Marrow Transplantation Unit, General Hospital “G.Papanikolaou”, PS 57010 Thessaloniki, Greece;
| | - Emmanouil Spanoudakis
- Department of Hematology, Faculty of Medicine, Democritus University of Thrace, PS 68131 Alexandroupolis, Greece;
| | - Athanasios Papatheodorou
- Department of Medical Research, 251 General Air-Force Hospital, PS 11525 Athens, Greece; (A.P.); (P.M.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Polyzois Makras
- Department of Medical Research, 251 General Air-Force Hospital, PS 11525 Athens, Greece; (A.P.); (P.M.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, PS 11528 Athens, Greece; (I.N.-S.); (E.E.-P.); (N.K.); (M.G.); (E.K.); (M.A.D.)
| |
Collapse
|
5
|
Accardi F, Toscani D, Costa F, Aversa F, Giuliani N. The Proteasome and Myeloma-Associated Bone Disease. Calcif Tissue Int 2018; 102:210-226. [PMID: 29080972 DOI: 10.1007/s00223-017-0349-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin-proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.
Collapse
Affiliation(s)
- Fabrizio Accardi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
6
|
Zangari M, Suva LJ. The effects of proteasome inhibitors on bone remodeling in multiple myeloma. Bone 2016; 86:131-8. [PMID: 26947893 PMCID: PMC5516941 DOI: 10.1016/j.bone.2016.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Bone disease is a characteristic feature of multiple myeloma, a malignant plasma cell dyscrasia. In patients with multiple myeloma, the normal process of bone remodeling is dysregulated by aberrant bone marrow plasma cells, resulting in increased bone resorption, prevention of new bone formation, and consequent bone destruction. The ubiquitin-proteasome system, which is hyperactive in patients with multiple myeloma, controls the catabolism of several proteins that regulate bone remodeling. Clinical studies have reported that treatment with the first-in-class proteasome inhibitor bortezomib reduces bone resorption and increases bone formation and bone mineral density in patients with multiple myeloma. Since the introduction of bortezomib in 2003, several next-generation proteasome inhibitors have also been used clinically, including carfilzomib, oprozomib, ixazomib, and delanzomib. This review summarizes the available preclinical and clinical evidence regarding the effect of proteasome inhibitors on bone remodeling in multiple myeloma.
Collapse
Affiliation(s)
- Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Larry J Suva
- Department of Orthopedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Amso Z, Cornish J, Brimble MA. Short Anabolic Peptides for Bone Growth. Med Res Rev 2016; 36:579-640. [DOI: 10.1002/med.21388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/24/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zaid Amso
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
| | - Jillian Cornish
- Department of Medicine; The University of Auckland; Auckland 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland, 23 Symonds St; Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences; The University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
8
|
Ongaro A, Pellati A, Bagheri L, Rizzo P, Caliceti C, Massari L, De Mattei M. Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63. J Cell Physiol 2016; 231:2652-63. [PMID: 26946465 DOI: 10.1002/jcp.25366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Abstract
Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Leila Bagheri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician," Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Leo Massari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:172458. [PMID: 26579531 PMCID: PMC4633537 DOI: 10.1155/2015/172458] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.
Collapse
|
10
|
Toscani D, Bolzoni M, Accardi F, Aversa F, Giuliani N. The osteoblastic niche in the context of multiple myeloma. Ann N Y Acad Sci 2014; 1335:45-62. [DOI: 10.1111/nyas.12578] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Denise Toscani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Marina Bolzoni
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Fabrizio Accardi
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Franco Aversa
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Nicola Giuliani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| |
Collapse
|