1
|
Wang T, Cui S, Lyu C, Wang Z, Li Z, Han C, Liu W, Wang Y, Xu R. Molecular precision medicine: Multi-omics-based stratification model for acute myeloid leukemia. Heliyon 2024; 10:e36155. [PMID: 39263156 PMCID: PMC11388765 DOI: 10.1016/j.heliyon.2024.e36155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Acute myeloid leukemia (AML), as the most common malignancy of the hematopoietic system, poses challenges in treatment efficacy, relapse, and drug resistance. In this study, we have utilized 151 RNA sequencing datasets, 194 DNA methylation datasets, and 200 somatic mutation datasets from the AML cohort in the TCGA database to develop a multi-omics stratification model. This model enables comparison of prognosis, clinical features, gene mutations, immune microenvironment and drug sensitivity across subgroups. External validation datasets have been sourced from the GEO database, which includes 562 mRNA datasets and 136 miRNA datasets from 984 adult AML patients. Through multi-omics-based stratification model, we classified 126 AML patients into 4 clusters (CS). CS4 had the best prognosis, with the youngest age, highest M3 subtype proportion, fewest copy number alterations, and common mutations in WT1, FLT3, and KIT genes. It showed sensitivity to HDAC inhibitors and BCL-2 inhibitors. Both the M3 subtype and CS4 were identified as independent protective factors for survival. Conversely, CS3 had the worst prognosis due to older age, high copy number alterations, and frequent mutations in RUNX1, DNMT3A, and TP53 genes. Additionally, it showed higher proportions of cytotoxic cells and Tregs, suggesting potential sensitivity to mTOR inhibitors. CS1 had a better prognosis than CS2, with more copy number alterations, while CS2 had higher monocyte proportions. CS1 showed good sensitivity to cytarabine, while CS2 was sensitive to RXR agonists. Both CS1 and CS2, which predominantly featured mutations in FLT3, NPM1, and DNMT3A genes, benefited from FLT3 inhibitors. Using the Kappa test, our stratification model underwent robust validation in the miRNA and mRNA external validation datasets. With advancements in sequencing technology and machine learning algorithms, AML is poised to transition towards multi-omics precision medicine in the future. We aspire for our study to offer new perspectives on multi-drug combination clinical trials and multi-targeted precision medicine for AML.
Collapse
Affiliation(s)
- Teng Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Cui
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Chunyi Lyu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenzhen Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Zonghong Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weilin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Shandong, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China
| |
Collapse
|
2
|
Kowalczyk A, Zarychta J, Lejman M, Latoch E, Zawitkowska J. Clinical Implications of Isocitrate Dehydrogenase Mutations and Targeted Treatment of Acute Myeloid Leukemia with Mutant Isocitrate Dehydrogenase Inhibitors-Recent Advances, Challenges and Future Prospects. Int J Mol Sci 2024; 25:7916. [PMID: 39063158 PMCID: PMC11276768 DOI: 10.3390/ijms25147916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite the better understanding of the molecular mechanisms contributing to the pathogenesis of acute myeloid leukemia (AML) and improved patient survival in recent years, AML therapy still remains a clinical challenge. For this reason, it is important to search for new therapies that will enable the achievement of remission. Recently, the Food and Drug Administration approved three mutant IDH (mIDH) inhibitors for the treatment of AML. However, the use of mIDH inhibitors in monotherapy usually leads to the development of resistance and the subsequent recurrence of the cancer, despite the initial effectiveness of the therapy. A complete understanding of the mechanisms by which IDH mutations influence the development of leukemia, as well as the processes that enable resistance to mIDH inhibitors, may significantly improve the efficacy of this therapy through the use of an appropriate synergistic approach. The aim of this literature review is to present the role of IDH1/IDH2 mutations in the pathogenesis of AML and the results of clinical trials using mIDH1/IDH2 inhibitors in AML and to discuss the challenges related to the use of mIDH1/IDH2 inhibitors in practice and future prospects related to the potential methods of overcoming resistance to these agents.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eryk Latoch
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-274 Bialystok, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Xu J, Zong S, Sheng T, Zheng J, Wu Q, Wang Q, Tang A, Song Y, Fei Y, Li Z. Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy. Int J Hematol 2024; 119:541-551. [PMID: 38530586 DOI: 10.1007/s12185-024-03732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tianle Sheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Aiping Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yan Fei
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
4
|
Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Sierpinski R, Majsterek I. PI3K/Akt/mTOR Signaling Pathway in Blood Malignancies-New Therapeutic Possibilities. Cancers (Basel) 2023; 15:5297. [PMID: 37958470 PMCID: PMC10648005 DOI: 10.3390/cancers15215297] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Blood malignancies remain a therapeutic challenge despite the development of numerous treatment strategies. The phosphatidylinositol-3 kinase (PI3K)/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway plays a central role in regulating many cellular functions, including cell cycle, proliferation, quiescence, and longevity. Therefore, dysregulation of this pathway is a characteristic feature of carcinogenesis. Increased activation of PI3K/Akt/mTOR signaling enhances proliferation, growth, and resistance to chemo- and immunotherapy in cancer cells. Overactivation of the pathway has been found in various types of cancer, including acute and chronic leukemia. Inhibitors of the PI3K/Akt/mTOR pathway have been used in leukemia treatment since 2014, and some of them have improved treatment outcomes in clinical trials. Recently, new inhibitors of PI3K/Akt/mTOR signaling have been developed and tested both in preclinical and clinical models. In this review, we outline the role of the PI3K/Akt/mTOR signaling pathway in blood malignancies' cells and gather information on the inhibitors of this pathway that might provide a novel therapeutic opportunity against leukemia.
Collapse
Affiliation(s)
- Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Olga Racinska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Wioletta Rozpedek-Kaminska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA;
| | - Radoslaw Sierpinski
- Faculty of Medicine, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| |
Collapse
|
5
|
Garciaz S, Miller T, Collette Y, Vey N. Targeting regulated cell death pathways in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:151-168. [PMID: 37065864 PMCID: PMC10099605 DOI: 10.20517/cdr.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The use of the BCL2 inhibitor venetoclax has transformed the management of patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. By triggering intrinsic apoptosis, the drug is an excellent illustration of how our greater understanding of molecular cell death pathways can be translated into the clinic. Nevertheless, most venetoclax-treated patients will relapse, suggesting the need to target additional regulated cell death pathways. To highlight advances in this strategy, we review the recognized regulated cell death pathways, including apoptosis, necroptosis, ferroptosis and autophagy. Next, we detail the therapeutic opportunities to trigger regulated cell death in AML. Finally, we describe the main drug discovery challenges for regulated cell death inducers and their translation into clinical trials. A better knowledge of the molecular pathways regulating cell death represents a promising strategy to develop new drugs to cure resistant or refractory AML patients, particularly those resistant to intrinsic apoptosis.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Hematology Department, Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Thomas Miller
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Yves Collette
- Integrative Structural and Chemical Biology, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| | - Norbert Vey
- Hematology Department, Aix-Marseille Université, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille 13009, France
| |
Collapse
|
6
|
Rašková M, Lacina L, Kejík Z, Venhauerová A, Skaličková M, Kolář M, Jakubek M, Rosel D, Smetana K, Brábek J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022; 11:3698. [PMID: 36429126 PMCID: PMC9688109 DOI: 10.3390/cells11223698] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin 6 (IL-6) belongs to a broad class of cytokines involved in the regulation of various homeostatic and pathological processes. These activities range from regulating embryonic development, wound healing and ageing, inflammation, and immunity, including COVID-19. In this review, we summarise the role of IL-6 signalling pathways in cancer biology, with particular emphasis on cancer cell invasiveness and metastasis formation. Targeting principal components of IL-6 signalling (e.g., IL-6Rs, gp130, STAT3, NF-κB) is an intensively studied approach in preclinical cancer research. It is of significant translational potential; numerous studies strongly imply the remarkable potential of IL-6 signalling inhibitors, especially in metastasis suppression.
Collapse
Affiliation(s)
- Magdalena Rašková
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Markéta Skaličková
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague, Czech Republic
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
7
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
8
|
Cuesta-Casanovas L, Delgado-Martínez J, Cornet-Masana JM, Carbó JM, Clément-Demange L, Risueño RM. Lysosome-mediated chemoresistance in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:233-244. [PMID: 35582535 PMCID: PMC8992599 DOI: 10.20517/cdr.2021.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease despite achieving a complete remission during the induction phase. As such, treatments for chemoresistant AML represent an unmet need in this disease. Although great efforts have been made to decipher the biological basis for leukemogenesis, the mechanism by which AML cells become resistant to chemotherapy is largely unknown. The identification of the signaling pathways involved in resistance may lead to new combinatory therapies or new therapeutic approaches suitable for this subset of patients. Several mechanisms of chemoresistance have been identified, including drug transporters, key secondary messengers, and metabolic regulators. However, no therapeutic approach targeting chemoresistance has succeeded in clinical trials, especially due to broad secondary effects in healthy cells. Recent research has highlighted the importance of lysosomes in this phenomenon. Lysosomes' key role in resistance to chemotherapy includes the potential to sequester drugs, central metabolic signaling role, and gene expression regulation. These results provide further evidence to support the development of new therapeutic approaches that target lysosomes in AML.
Collapse
Affiliation(s)
- Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
- Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | | | - José M. Carbó
- Leukos Biotech, Muntaner, 383, Barcelona 08036, Spain
| | | | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Spain
| |
Collapse
|