1
|
Zelko IN, Hussain A, Malovichko MV, Wickramasinghe N, Srivastava S. Benzene metabolites increase vascular permeability by activating heat shock proteins and Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626801. [PMID: 39677674 PMCID: PMC11643022 DOI: 10.1101/2024.12.04.626801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Benzene is a ubiquitous environmental and occupational pollutant abundant in household products, petrochemicals, and cigarette smoke. It is also a well-known carcinogen and hematopoietic toxin. Population-based studies indicate an increased risk of heart failure in subjects exposed to inhaled benzene, which coincides with the infiltration of immune cells into the myocardium. However, the mechanisms of benzene-induced cardiovascular disease remain unknown. Our data suggests that benzene metabolites trans,trans-muconaldehyde (MA), and hydroquinone (HQ) propagate endothelial activation and apoptosis analyzed by endothelial-specific microparticles in C57BL/6J mice plasma. Subcutaneous injections of MA and HQ increased vascular permeability by 1.54 fold and 1.27 fold correspondingly. In addition, the exposure of primary cardiac microvascular endothelial cells to MA increased vascular permeability detected by transendothelial monolayer resistance and by fluorescently labeled dextrans diffusion. The bulk RNA sequencing of endothelial cells exposed to MA for 2, 6, and 24 hours showed MA-dependent upregulation of heat shock-related pathways at 2 and 6 hours, dysregulation of GTPases at 6 hours, and altered cytoskeleton organization at 24 hours of exposure. We found that the HSP70 protein induced by MA in endothelial cells is colocalized with F-actin foci. HSP70 inhibitor 17AAG and HSP90 inhibitor JG98 attenuated MA-induced endothelial permeability, while HSP activator TRC enhanced endothelial leakage. Moreover, MA induced Rac1 GTPase activity, while Rho GTPase inhibitor Y-27632 attenuated MA-induced endothelial permeability. We showed that benzene metabolites compromised the endothelial barrier by altering HSP- and GTPase-related signaling pathways.
Collapse
Affiliation(s)
- Igor N. Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Ahtesham Hussain
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V. Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Nalinie Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
2
|
Xu M, Wang W, Cheng J, Qu H, Xu M, Wang L. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother 2024; 174:116587. [PMID: 38636397 DOI: 10.1016/j.biopha.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Atherosclerosis, an immunoinflammatory disease of medium and large arteries, is associated with life-threatening clinical events, such as acute coronary syndromes and stroke. Chronic inflammation and impaired lipoprotein metabolism are considered to be among the leading causes of atherosclerosis, while numerous risk factors, including arterial hypertension, diabetes mellitus, obesity, and aging, can contribute to the development of the disease. In recent years, emerging evidence has underlined the key role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Mitochondrial dysfunction is believed to result in an increase in reactive oxygen species, leading to oxidative stress, chronic inflammation, and intracellular lipid deposition, all of which can contribute to the pathogenesis of atherosclerosis. Critical cells, including endothelial cells, vascular smooth muscle cells, and macrophages, play an important role in atherosclerosis. Mitochondrial function is also involved in maintaining the normal function of these cells. To better understand the relationship between mitochondrial dysfunction and atherosclerosis, this review summarizes the findings of recent studies and discusses the role of mitochondrial dysfunction in the risk factors and critical cells of atherosclerosis. FACTS: OPEN QUESTIONS.
Collapse
Affiliation(s)
- Minwen Xu
- Clinical Skills Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingpei Cheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China
| | - Hongen Qu
- Gannan Normal University, Ganzhou 341000, China.
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Wang T, Wang X, Fu T, Ma Y, Wang Q, Zhang S, Zhang X, Zhou H, Chang X, Tong Y. Roles of mitochondrial dynamics and mitophagy in diabetic myocardial microvascular injury. Cell Stress Chaperones 2023; 28:675-688. [PMID: 37755621 PMCID: PMC10746668 DOI: 10.1007/s12192-023-01384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Myocardial microvessels are composed of a monolayer of endothelial cells, which play a crucial role in maintaining vascular barrier function, luminal latency, vascular tone, and myocardial perfusion. Endothelial dysfunction is a key factor in the development of cardiac microvascular injury and diabetic cardiomyopathy. In addition to their role in glucose oxidation and energy metabolism, mitochondria also participate in non-metabolic processes such as apoptosis, intracellular ion handling, and redox balancing. Mitochondrial dynamics and mitophagy are responsible for regulating the quality and quantity of mitochondria in response to hyperglycemia. However, these endogenous homeostatic mechanisms can both preserve and/or disrupt non-metabolic mitochondrial functions during diabetic endothelial damage and cardiac microvascular injury. This review provides an overview of the molecular features and regulatory mechanisms of mitochondrial dynamics and mitophagy. Furthermore, we summarize findings from various investigations that suggest abnormal mitochondrial dynamics and defective mitophagy contribute to the development of diabetic endothelial dysfunction and myocardial microvascular injury. Finally, we discuss different therapeutic strategies aimed at improving endothelial homeostasis and cardiac microvascular function through the enhancement of mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Tong Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Tong Fu
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuxiang Zhang
- Heilongjiang Academy of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
5
|
Xie J, Xu Y, Chen H, Chi M, He J, Li M, Liu H, Xia J, Guan Q, Guo Z, Yan H. Identification of population-level differentially expressed genes in one-phenotype data. Bioinformatics 2020; 36:4283-4290. [PMID: 32428201 PMCID: PMC7520039 DOI: 10.1093/bioinformatics/btaa523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Motivation For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, studies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods, such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly developed to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs. Results Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp, PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated and real one-phenotype data. Moreover, using the DEGs detected by common methods as the ‘gold standard’, the results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those identified by common methods using case-control samples, independent of the measurement platform. PhenoComp also exhibited good performance for weakly differential expression signal data. Availability and implementation The PhenoComp algorithm is available on the web at https://github.com/XJJ-student/PhenoComp. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiajing Xie
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Yang Xu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Haifeng Chen
- Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Meirong Chi
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Jun He
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Meifeng Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Hui Liu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Jie Xia
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Qingzhou Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| | - Haidan Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Medical Bioinformatics, Fujian Province, Fuzhou 350122, China
| |
Collapse
|
6
|
Pineau F, Caimmi D, Magalhães M, Fremy E, Mohamed A, Mely L, Leroy S, Murris M, Claustres M, Chiron R, De Sario A. Blood co-expression modules identify potential modifier genes of diabetes and lung function in cystic fibrosis. PLoS One 2020; 15:e0231285. [PMID: 32302349 PMCID: PMC7164665 DOI: 10.1371/journal.pone.0231285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023] Open
Abstract
Cystic fibrosis (CF) is a rare genetic disease that affects the respiratory and digestive systems. Lung disease is variable among CF patients and associated with the development of comorbidities and chronic infections. The rate of lung function deterioration depends not only on the type of mutations in CFTR, the disease-causing gene, but also on modifier genes. In the present study, we aimed to identify genes and pathways that (i) contribute to the pathogenesis of cystic fibrosis and (ii) modulate the associated comorbidities. We profiled blood samples in CF patients and healthy controls and analyzed RNA-seq data with Weighted Gene Correlation Network Analysis (WGCNA). Interestingly, lung function, body mass index, the presence of diabetes, and chronic P. aeruginosa infections correlated with four modules of co-expressed genes. Detailed inspection of networks and hub genes pointed to cell adhesion, leukocyte trafficking and production of reactive oxygen species as central mechanisms in lung function decline and cystic fibrosis-related diabetes. Of note, we showed that blood is an informative surrogate tissue to study the contribution of inflammation to lung disease and diabetes in CF patients. Finally, we provided evidence that WGCNA is useful to analyze–omic datasets in rare genetic diseases as patient cohorts are inevitably small.
Collapse
Affiliation(s)
- Fanny Pineau
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Davide Caimmi
- CRCM, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Milena Magalhães
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Enora Fremy
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | - Abdillah Mohamed
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
| | | | | | | | - Mireille Claustres
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
- CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Raphael Chiron
- CRCM, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Albertina De Sario
- EA7402, Laboratoire de Génétique de Maladies Rares (LGMR), University of Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
7
|
Natarelli L, Ranaldi G, Leoni G, Roselli M, Guantario B, Comitato R, Ambra R, Cimino F, Speciale A, Virgili F, Canali R. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells. PLoS One 2015; 10:e0142421. [PMID: 26544184 PMCID: PMC4636304 DOI: 10.1371/journal.pone.0142421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG). In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9) and effector caspases (caspase 7 and 3) and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Lucia Natarelli
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Giulia Ranaldi
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Guido Leoni
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Marianna Roselli
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Barbara Guantario
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Raffaella Comitato
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Roberto Ambra
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Francesco Cimino
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
| | - Raffaella Canali
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Rome, Italy
- * E-mail:
| |
Collapse
|
8
|
Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 2015; 35:1926-42. [PMID: 26119934 PMCID: PMC4486081 DOI: 10.1038/onc.2015.256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.
Collapse
|
9
|
Caramori ML, Kim Y, Moore JH, Rich SS, Mychaleckyj JC, Kikyo N, Mauer M. Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 2012; 61:739-44. [PMID: 22315306 PMCID: PMC3282806 DOI: 10.2337/db11-0617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical studies suggest metabolic memory to hyperglycemia. We tested whether diabetes leads to persistent systematic in vitro gene expression alterations in patients with type 1 diabetes (T1D) compared with their monozygotic, nondiabetic twins. Microarray gene expression was determined in skin fibroblasts (SFs) of five twin pairs cultured in high glucose (HG) for ∼6 weeks. The Exploratory Visual Analysis System tested group differences in gene expression levels within KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. An overabundance of differentially expressed genes was found in eight pathways: arachidonic acid metabolism (P = 0.003849), transforming growth factor-β signaling (P = 0.009167), glutathione metabolism (P = 0.01281), glycosylphosphatidylinositol anchor (P = 0.01949), adherens junction (P = 0.03134), dorsal-ventral axis formation (P = 0.03695), proteasome (P = 0.04327), and complement and coagulation cascade (P = 0.04666). Several genes involved in epigenetic mechanisms were also differentially expressed. All differentially expressed pathways and all the epigenetically relevant differentially expressed genes have previously been related to HG in vitro or to diabetes and its complications in animal and human studies. However, this is the first in vitro study demonstrating diabetes-relevant gene expression differences between T1D-discordant identical twins. These SF gene expression differences, persistent despite the HG in vitro conditions, likely reflect "metabolic memory", and discordant identical twins thus represent an excellent model for studying diabetic epigenetic processes in humans.
Collapse
Affiliation(s)
- M Luiza Caramori
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Nobe K, Yamazaki T, Kumai T, Okazaki M, Iwai S, Hashimoto T, Kobayashi S, Oguchi K, Honda K. Alterations of glucose-dependent and -independent bladder smooth muscle contraction in spontaneously hypertensive and hyperlipidemic rat. J Pharmacol Exp Ther 2008; 324:631-42. [PMID: 17975012 DOI: 10.1124/jpet.107.131334] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Alteration of bladder contractility was examined in the spontaneously hypertensive and hyperlipidemic rat (SHHR; age, 9 months; systolic blood pressure, >150 mm Hg; plasma cholesterol, >150 mg/dl). Carbachol (CCh) induced time- and dose-dependent contractions in Sprague-Dawley (age-matched control) rats and SHHR; however, maximal levels differed significantly (13.3 +/- 2.2 and 5.4 +/- 1.9 microN/mm(2) following 10 microM CCh treatment, respectively; n = 5). This difference, which was maintained in calcium-replaced physiological salt solution (PSS), was suppressed by pretreatment with rho kinase inhibitor, 1 microM Y27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide]; moreover, total activity of rho kinase was also reduced in SHHR bladder. Pretreatment of bladders under high-glucose (HG) conditions (22.2 mM glucose-contained PSS for 30 min) led to enhancement of CCh-induced contraction solely in control animals. Under HG conditions, both protein kinase C (PKC) activity and production of diacylglycerol (DG) derived from incorporated glucose declined in SHHR bladder; however, sustained elevation of plasma glucose level was not detected in SHHR. These results suggested that bladder contractility dysfunction in SHHR is attributable to alteration of rho kinase activity and the DG-PKC pathway. This dysfunction may occur prior to chronic hyperglycemia onset in progressive hypertension and hyperlipidemia.
Collapse
Affiliation(s)
- Koji Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alvarado-Vásquez N, Páez A, Zapata E, Alcázar-Leyva S, Zenteno E, Massó F, Montaño LF. HUVECs from newborns with a strong family history of diabetes show diminished ROS synthesis in the presence of high glucose concentrations. Diabetes Metab Res Rev 2007; 23:71-80. [PMID: 16810702 DOI: 10.1002/dmrr.665] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND A family history of type 2 diabetes mellitus (DM) increases the probability to develop DM and endothelial dysfunction. The probable mechanism involves augmented reactive oxygen species (ROS) synthesis. The aim of this study was to evaluate the synthesis of ROS in human umbilical vein endothelial cells (HUVECs) obtained from healthy newborns with (experimental) and without (control) a strong family history of type 2 DM, exposed to different glucose concentrations. METHODS HUVECs were exposed to various glucose concentrations for 24 and 48 h periods, before cell proliferation, mitochondrial activity, and mitochondrial membrane potential were determined. Intracellular ROS synthesis in the presence or absence of the mitochondrial uncoupler CCCP, cytochalasin B, or diphenyleneiodonium (DPI) was also evaluated. RESULTS As opposed to control HUVECs, we found that experimental HUVECs exposed to 30 mmol/L glucose showed a 50% decrease in cell proliferation, a 90% reduction in mitochondrial activity, and a statistically significant inhibition of ROS synthesis in the presence of CCCP or cytochalasin B; DPI had no effect. CONCLUSIONS Our results suggest that mitochondria and NAD(P)H-oxidase from HUVECs obtained from healthy newborns with a family history of DM have an innate deficient response to high glucose concentrations.
Collapse
Affiliation(s)
- Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias, México
| | | | | | | | | | | | | |
Collapse
|
12
|
Nobe K, Miyatake M, Sone T, Honda K. High-glucose-altered endothelial cell function involves both disruption of cell-to-cell connection and enhancement of force development. J Pharmacol Exp Ther 2006; 318:530-9. [PMID: 16699065 DOI: 10.1124/jpet.106.105015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial cells (ECs), which regulate vascular tonus, serve as a barrier at the interface of vascular tissue. It is generally believed that alteration of this barrier is correlated with diabetic complications; however, a detailed mechanism has not been elucidated. This study examined alteration of bovine arterial EC functions stimulated by a thromboxane A2 analog (9,11-dideoxy-11 alpha,9 alpha-epoxymethano prostaglandin F(2 alpha); U46619) under normal and high-glucose (HG) conditions. U46619 treatment increased EC layer permeability in a time- and dose-dependent fashion. This response initially disrupted calcium-dependent EC-to-EC connections, namely, vascular endothelial cadherin (VE-CaD). Thereafter, EC force development in association with morphological changes was detected employing a reconstituted EC fiber technique, resulting in paracellular hole formation in the EC layer. Thus, we confirmed that U46619-induced enhancement of EC layer permeability involves these sequential steps. Similar trials were performed using a concentration twice that of normal glucose (22.2 mM glucose for 48 h). This treatment significantly enhanced U46619-induced EC layer permeability; furthermore, increases in both rate of VE-CaD disruption and EC fiber contraction were evident. Inhibition of calcium-independent protein kinase C and diacylglycerol kinase indicated that the glucose-dependent increase in VE-CaD disruption was mediated by a calcium-independent mechanism. Moreover, EC contraction was regulated by a typical calcium-independent pathway associated with rho kinase and actin stress fiber. Contraction was also enhanced under HG conditions. This investigation revealed that glucose-dependent enhancement of EC layer permeability is related to increases in VE-CaD disruption and EC contraction. Increases in both parameters were mediated by alteration of a calcium-independent pathway.
Collapse
Affiliation(s)
- Koji Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-0555, Japan.
| | | | | | | |
Collapse
|