1
|
KUZAY D, SİRAV B, ÖZER Ç. Effects of RF and ELF Radiation on Oxidative Stress of Brain Tissue and Plasma of Diabetic Rats. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2023. [DOI: 10.30934/kusbed.784547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: Exposure to Radio Frequency (RF) and Extremely Low Frequency (ELF) radiation is increasing steadily with the progress of technology and industrialization. The aim of this study was to investigate whether RF and ELF radiation are oxidative stress effects in the plasma and brain tissue of diabetic and non-diabetic rats.
Methods: Experiment groups were designed as follows; C (control), S (sham), ELF (ELF radiation exposure), RF (RF radiation exposure), ELF+RF (ELF and RF radiation exposure), D-C (Diabetic Control), D-S (Diabetic Sham), D-ELF (Diabetic ELF), D-RF (Diabetic RF), D-ELF+RF (Diabetic ELF+RF). The experimental diabetes model was induced with a single dose of 65mg/kg streptozotocin (STZ). 2100 MHz RF and 50 Hz ELF radiation groups exposed for 1 month. Total nitric oxide (NOx), malondialdehyde (MDA) and total sulfhydryl groups (RSH) / glutathione (GSH) levels were measured in plasma and brain tissue.
Results: RF + ELF radiation exposure caused an increase in NOx and MDA levels in plasma and brain tissue of diabetic and non-diabetic rats (p<0.05). Exposure to RF and RF + ELF radiation caused a decrease in plasma RSH / tissue GSH levels in non-diabetic rats (p<0.05).
Conclusion: The most prominent effect was seen in the diabetic group with RF + ELF radiation exposure.
Collapse
Affiliation(s)
- Dilek KUZAY
- AHI EVRAN UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF PHYSIOLOGY
| | - Bahriye SİRAV
- GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF BIOPHYSICS
| | - Çiğdem ÖZER
- GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF BASIC MEDICAL SCIENCES, DEPARTMENT OF PHYSIOLOGY
| |
Collapse
|
2
|
Han S, Aydin MM, Akansel S, Usanmaz SE, Akçali C, Uludağ MO, Demirel Yilmaz E. Age- and sex-dependent alteration of functions and epigenetic modifications of vessel and endothelium related biomarkers. Turk J Biol 2018; 42:286-296. [PMID: 30814892 DOI: 10.3906/biy-1803-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aging is a main risk factor for development of cardiovascular diseases associated with the impairment of endothelial function in both sexes. In the present study, age-related changes in vascular responsiveness, epigenetic modifications of vessel wall, and blood biomarkers related to endothelial functions were examined in an age- and sex-dependent manner. Acetylcholine (ACh)-induced relaxations of the aorta were decreased in 3-, 6-, and 12-month-old rats compared to those in 1-month-old female rats. In males, maximum relaxations related to ACh were higher in 1- and 6-month-old rats than in 3- and 12-month-old rats. Plasma levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA) decreased with age in female rats, and total antioxidant capacity (TAC) and hydrogen sulfide (H 2S) levels displayed biphasic alterations. In male rats, plasma levels of NO, TAC, and ADMA decreased with age, and H2S levels increased. Aging also caused a sex-dependent alteration in epigenetic modification of vessels. Expressions of H3K27me2, H3K27me3, H3K36me2, and H3K36me3 were much higher in vessels of 12-month-old female rats compared to those in younger age groups. These results indicate that vascular functions, epigenetic modifications of vessels, and plasma levels of endothelium-related biomarkers are affected by age and sex. These findings could be important for the assessment of vascular status over the course of the life span.
Collapse
Affiliation(s)
- Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Muammer Merve Aydin
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Serdar Akansel
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Suzan Emel Usanmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Can Akçali
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Mecit Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Emine Demirel Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| |
Collapse
|
3
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of resveratrol and exercise on age and gender-dependent alterations of vascular functions and biomarkers. Exp Gerontol 2018; 110:191-201. [PMID: 29908346 DOI: 10.1016/j.exger.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to determine the effects of resveratrol and regular aerobic exercise on vascular functions and biomarkers related to vessel responsiveness in an age and gender-dependent manner. The study used young (3 months) and old (12 months) male and female Wistar albino rats. Resveratrol was given in the drinking water (0.05 mg/ml; approximately 7.5 mg/kg) for 6 weeks. In the exercise group, all rats performed treadmill running at 20 m/min on a 0° incline, 40 min/day, 3 times a week, for 6 weeks. Acetylcholine-induced, endothelium-dependent and sodium nitroprusside-mediated, endothelium-independent relaxations of rat thoracic aorta and blood levels of biomarkers were separately changed by resveratrol intake and exercise-training in an age and gender-dependent manner. Antioxidant enzymes and eNOS expressions in vessels were elevated by resveratrol and exercise. Resveratrol and exercise enhanced gene expressions of non-selective PDE1, 2, 3 and cAMP selective PDE4 but not cGMP selective PDE5 in the aorta. In addition, the aortic mRNA expression of inflammation markers were altered by resveratrol and exercise-training. The results of the study demonstrated that vessel responsiveness and biomarkers related to vascular functions were altered by resveratrol consumption and exercise-training in an age and gender-dependent manner.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmed Bey University, Faculty of Arts and Sciences, Department of Biological Sciences, Turkey
| | - Suzan E Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - M Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
5
|
Gautam N, Das S, Kar Mahapatra S, Chakraborty SP, Kundu PK, Roy S. Age associated oxidative damage in lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:275-82. [PMID: 20972374 PMCID: PMC2952088 DOI: 10.4161/oxim.3.4.12860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocytes are an important immunological cell and have been played a significant role in acquired immune system; hence, may play in pivotal role in immunosenescence. Oxidative stress has been reported to increase in elderly subjects, possibly arising from an uncontrolled production of free radicals with aging and decreased antioxidant defenses. This study was aimed to evaluate the level of lipid-protein damage and antioxidant status in lymphocytes of healthy individuals to correlate between oxidative damage with the aging process. Twenty healthy individuals of each age group (11-20; 21-30; 31-40; 41-50; and 51-60 years) were selected randomly. Blood samples were drawn by medical practitioner and lymphocytes were isolated from blood samples. Malondialdehyde (MDA), protein carbonyls (PC) level were evaluated to determine the lipid and protein damage in lymphocytes. Superoxide dismutase (SOD), catalase (CAT), glutathione and glutathione dependent enzymes were estimated to evaluate the antioxidant status in the lymphocytes. Increased MDA and PC levels strongly support the increased oxidative damage in elderly subject than young subjects. The results indicated that, balance of oxidant and antioxidant systems in lymphocytes shifts in favor of accelerated oxidative damage during aging. Thus oxidative stress in lymphocytes may particular interest in aging and may play important role in immunosenescence.
Collapse
Affiliation(s)
- Nandeslu Gautam
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Subhasis Das
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Santanu Kar Mahapatra
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Subhankari Prasad Chakraborty
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| | - Pratip Kumar Kundu
- Department of Microbiology; Vidyasagar University; Midnapore, West Bengal India
| | - Somenath Roy
- Immunology and Microbiology Laboratory; Department of Human Physiology with Community Health; Vidyasagar University; Midnapore, West Bengal India
| |
Collapse
|
6
|
Esmekaya MA, Tuysuz MZ, Tomruk A, Canseven AG, Yücel E, Aktuna Z, Keskil S, Seyhan N. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure. J Chem Neuroanat 2016; 75:111-5. [PMID: 26836107 DOI: 10.1016/j.jchemneu.2016.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022]
Abstract
The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain.
Collapse
Affiliation(s)
| | | | - Arın Tomruk
- Department of Biophysics, Gazi University, Ankara, Turkey
| | | | - Engin Yücel
- Department of Neurosurgery, Baskent University, Alanya Training and Research Hospital, Antalya, TURKEY
| | - Zuhal Aktuna
- Department of Medical Pharmacology, Kırıkkale University, Kırıkkale, TURKEY
| | - Semih Keskil
- Department of Neurosurgery, Kırıkkale University, Kırıkkale, TURKEY
| | - Nesrin Seyhan
- Department of Biophysics, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Cebe T, Atukeren P, Yanar K, Kuruç AI, Ozan T, Kunbaz A, Sitar ME, Mirmaroufizibandeh R, Aydın S, Çakatay U. Oxidation scrutiny in persuaded aging and chronological aging at systemic redox homeostasis level. Exp Gerontol 2014; 57:132-40. [PMID: 24879971 DOI: 10.1016/j.exger.2014.05.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The effect of the natural aging process on systemic redox homeostasis is previously documented. However, none of the studies specify the effect of experimental aging on systemic redox homeostasis. The purpose of this study is to clarify the ambiguity raised in preliminary reports as to mimetic aging dependency of the type and magnitude of oxidative damage on constituents of plasma. METHODS In the current study, we investigated the interrelationship among various groups of the systemic oxidative damage markers such as protein oxidation products (protein carbonyl groups, protein hydroperoxides, advanced oxidation protein products, protein thiol groups), lipid peroxidation products (malondialdehyde, lipid hydroperoxides, conjugated dienes), glycoxidation adducts (advanced glycation end products), and antioxidant capacity (ferric reducing/antioxidant power, Cu,Zn-superoxide dismutase, total thiol, non-protein thiol). All these markers were measured in plasma of mimetically aged (MA) rats (5-month-old rats subjected to d-galactose-induced experimental aging), naturally aged (NA) rats (24-month-old), and their corresponding young controls (YC) (5months old). RESULTS AND CONCLUSIONS Our current results show that systemic oxidation markers of the MA group share significant similarities in terms of impaired redox homeostasis with the NA rats and may be considered as a reliable experimental aging model for intravascular aging. Additional methodological studies including d-galactose dosage and application time are warranted to clarify the potential involvement of all these systemic redox variations as mechanistic factors in the development of mimetic aging related intravascular deterioration. Reversing or preventing systemic oxidative damage in experimental and natural aging should therefore be considered the primary target for the development of effective therapeutic strategies to prevent or treat age-related vascular disorders.
Collapse
Affiliation(s)
- Tamer Cebe
- Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Pınar Atukeren
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | | | - Tuna Ozan
- Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Ahmad Kunbaz
- Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Mustafa Erinç Sitar
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | | | - Seval Aydın
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpaşa Faculty of Medicine, Istanbul University, Turkey.
| |
Collapse
|
8
|
Picard E, Houssier M, Bujold K, Sapieha P, Lubell W, Dorfman A, Racine J, Hardy P, Febbraio M, Lachapelle P, Ong H, Sennlaub F, Chemtob S. CD36 plays an important role in the clearance of oxLDL and associated age-dependent sub-retinal deposits. Aging (Albany NY) 2010; 2:981-9. [PMID: 21098885 PMCID: PMC3034186 DOI: 10.18632/aging.100218] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/07/2010] [Indexed: 12/02/2022]
Abstract
Age-related macular degeneration (AMD) represents the major cause of vision loss in industrialized nations. Laminar deposits in Bruch's membrane (BM) are among the first prominent histopathologic features, along with drusen formation, and have been found to contain oxidized lipids. Increases in concentrations of oxidized LDL (oxLDL) in plasma are observed with age and high fat high (HFHC) cholesterol diet. CD36 is the principal receptor implicated in uptake of oxLDL, and is expressed in the retinal pigment epithelium (RPE). We determined if CD36 participates in oxLDL uptake in RPE and correspondingly in clearance of sub-retinal deposits. Uptake of oxLDL by RPEin vitro and in vivo was CD36-dependent. CD36 deficiency in mice resulted in age-associated accumulation of oxLDL and sub-retinal BM thickening, despite fed a regular diet. Conversely, treatment of HFHC-fed ApoE null mice with a CD36 agonist, EP80317 (300 μg/kg/day), markedly diminished thickening of BM, and partially preserved (in part) photoreceptor function. In conclusion, our data uncover a new role for CD36 in the clearance of oxidized lipids from BM and in the prevention of age-dependent sub-retinal laminar deposits.
Collapse
Affiliation(s)
- Emilie Picard
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Marianne Houssier
- Inserm, U872, Paris, F-75006 France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
| | - Kim Bujold
- Faculty of Pharmacy, University de Montreal, Montreal, Quebec, Canada
| | - Przemyslaw Sapieha
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - William Lubell
- Departments of Chemistry, University de Montreal, Montreal, Quebec, Canada
| | - Allison Dorfman
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Julie Racine
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Maria Febbraio
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 4412, USA
| | - Pierre Lachapelle
- Departments of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | - Huy Ong
- Faculty of Pharmacy, University de Montreal, Montreal, Quebec, Canada
| | - Florian Sennlaub
- Inserm, U872, Paris, F-75006 France
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, UMR S 872, Paris, F-75006 France
- Université Paris Descartes, UMR S 872, Paris, F-75006 France
- APHP, Département d'Ophthalmologie Hôtel Dieu, Paris, France
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Research Center, Hospitals Ste. Justine and Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Nakamura YK, Omaye ST. Lipophilic compound-mediated gene expression and implication for intervention in reactive oxygen species (ROS)-related diseases: mini-review. Nutrients 2010; 2:725-36. [PMID: 22254050 PMCID: PMC3257678 DOI: 10.3390/nu2070725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 12/31/2022] Open
Abstract
In addition to exhibiting antioxidant properties, conjugated linoleic acid (CLA) and vitamin E may modulate gene expression of endogenous antioxidant enzymes. Depending on cellular microenvironments, such modulation reflects either antioxidant or prooxidant outcomes. Although epidemiological/experimental studies have indicated that CLA and vitamin E have health promoting properties, recent findings from clinical trials have been inconclusive. Discrepancies between the results found from prospective studies and recent clinical trials might be attributed to concentration-dependent cellular microenvironment alterations. We give a perspective of possible molecular mechanisms of actions of these lipophilic compounds and their implications for interventions of reactive oxygen species (ROS)-related diseases.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Department of Nutrition, University of Nevada, Reno, Nevada 89557-0208, USA.
| | | |
Collapse
|
10
|
Effect of carnosine treatment on oxidative stress in serum, apoB-containing lipoproteins fraction and erythrocytes of aged rats. Pharmacol Rep 2010; 62:733-9. [DOI: 10.1016/s1734-1140(10)70331-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/19/2009] [Indexed: 12/31/2022]
|
11
|
Effect of Regular Exercise on Serum Paraoxonase and Arylesterase Related to Age Increment in the Male Rat. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a36481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Nakamura YK, Omaye ST. Vitamin E-modulated gene expression associated with ROS generation. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
Nakamura YK, Omaye ST. Alpha-tocopherol modulates human umbilical vein endothelial cell expression of Cu/Zn superoxide dismutase and catalase and lipid peroxidation. Nutr Res 2009; 28:671-80. [PMID: 19083475 DOI: 10.1016/j.nutres.2008.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/05/2008] [Accepted: 07/23/2008] [Indexed: 11/16/2022]
Abstract
Recent studies suggest the potential of alpha-tocopherol as a gene regulator, possibly through peroxisome proliferator-activated receptor gamma (PPARgamma) activation due to the structural similarity of alpha-tocopherol to a PPARgamma ligand, troglitazone. Other investigators have suggested that a link exists between induction of the antioxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase and PPARgamma activation. This study was designed to examine whether alpha-tocopherol modulates expression of Cu/Zn SOD and catalase in human umbilical vein endothelial cells through redox-sensitive transcription factors, PPARgamma, and nuclear factor-kappaB (NF-kappaB). Alpha-tocopherol treatments showed significant increases in both PPARgamma (1.4- to 2.2-fold, P < .01) and NF-kappaB p50 (1.3- to 1.5-fold, P < .005) DNA binding activities compared with vehicle control. Significant increases in Cu/Zn SOD mRNA levels (6.0-fold, P < .005) and catalase mRNA (8.0-fold, P < .005) and its protein levels (2.3-fold, P < .005) and lipid peroxidation levels (5.3-fold, P < .005) were observed at the lowest concentration (10 mumol/L) of alpha-tocopherol treatments. Both mRNA and protein levels of these 2 antioxidant enzymes were positively associated with lipid peroxidation (P < .05). Alpha-tocopherol may play a role not only in preventing against oxidative damage as an exogenous antioxidant by scavenging free radicals and superoxide but also in modulating the expression of the endogenous antioxidant enzymes as a gene regulator through PPARgamma and NF-kappaB in the vascular cells. The alpha-tocopherol-mediated gene expression is either stimulatory or inhibitory, depending on its oxidative status or its concentrations.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Department of Nutrition and Environmental Sciences and Health Graduate Program, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
14
|
Nakamura YK, Flintoff-Dye N, Omaye ST. Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr Metab (Lond) 2008. [PMID: 18718021 DOI: 10.1186/1743-7075.5-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated linoleic acid (CLA) has been the subject of extensive investigation regarding its possible benefits on a variety of human diseases. In some animal studies, CLA has been shown to have a beneficial effect on sclerotic lesions associated with atherosclerosis, be a possible anti-carcinogen, increase feed efficiency, and act as a lean body mass supplement. However, the results have been inconsistent, and the effects of CLA on atherogenesis appear to be dose-, isomer-, tissue-, and species-specific. Similarly, CLA trials in humans have resulted in conflicting findings. Both the human and animal study results may be attributed to contrasting doses of CLA, isomers, the coexistence of other dietary fatty acids, length of study, and inter-and/or intra-species diversities. Recent research advances have suggested the importance of CLA isomers in modulating gene expression involved in oxidative damage, fatty acid metabolism, immune/inflammatory responses, and ultimately atherosclerosis. Although the possible mechanisms of action of CLA have been suggested, they have yet to be determined.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Environmental Sciences Graduate Program, University of Nevada, Reno 89557, USA.
| | | | | |
Collapse
|
15
|
Nakamura YK, Flintoff-Dye N, Omaye ST. Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr Metab (Lond) 2008; 5:22. [PMID: 18718021 PMCID: PMC2546407 DOI: 10.1186/1743-7075-5-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 08/21/2008] [Indexed: 01/17/2023] Open
Abstract
Conjugated linoleic acid (CLA) has been the subject of extensive investigation regarding its possible benefits on a variety of human diseases. In some animal studies, CLA has been shown to have a beneficial effect on sclerotic lesions associated with atherosclerosis, be a possible anti-carcinogen, increase feed efficiency, and act as a lean body mass supplement. However, the results have been inconsistent, and the effects of CLA on atherogenesis appear to be dose-, isomer-, tissue-, and species-specific. Similarly, CLA trials in humans have resulted in conflicting findings. Both the human and animal study results may be attributed to contrasting doses of CLA, isomers, the coexistence of other dietary fatty acids, length of study, and inter-and/or intra-species diversities. Recent research advances have suggested the importance of CLA isomers in modulating gene expression involved in oxidative damage, fatty acid metabolism, immune/inflammatory responses, and ultimately atherosclerosis. Although the possible mechanisms of action of CLA have been suggested, they have yet to be determined.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Environmental Sciences Graduate Program, University of Nevada, Reno 89557, USA.
| | | | | |
Collapse
|
16
|
Increased susceptibility of serum and apo-B-containing lipoproteins to peroxidation in aged rats. Clin Exp Med 2008; 7:158-63. [DOI: 10.1007/s10238-007-0141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 06/25/2007] [Indexed: 10/22/2022]
|
17
|
Thomàs-Moyà E, Gianotti M, Proenza AM, Lladó I. The age-related paraoxonase 1 response is altered by long-term caloric restriction in male and female rats. J Lipid Res 2006; 47:2042-8. [PMID: 16816326 DOI: 10.1194/jlr.m600215-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Caloric restriction (CR) has been shown to attenuate age-related oxidative damage and to improve major atherosclerotic risk factors. Paraoxonase 1 (PON1), an enzyme specifically associated with HDL containing apolipoproteins A-I and J, has been reported to prevent the proatherosclerotic effects of oxidized LDL. The aim of this study was to evaluate whether modulation of PON1 activity is part of the underlying CR mechanisms that attenuate the age-associated negative effects. Experimental groups were 1 year old rats of both genders subjected to 40% CR for 1 year and two ad libitum-fed groups, also including rats of both genders, euthanized at 6 months or 2 years. Aging impaired the serum lipid profile and increased lipid peroxidation, PON1 activities, and the content of both PON1 and apolipoprotein J in HDL, which suggests an HDL subfraction redistribution to protect LDL more effectively from oxidation. The CR-associated improved lipid profile and the decreased lipid peroxide levels would lead to the decreased arylesterase activity seen in old CR animals, suggesting that PON1 modulation is not an integral part of the main antioxidant mechanisms of CR but rather that CR would determine a more youthful and less oxidative situation in which the protection of LDL would be less necessary.
Collapse
Affiliation(s)
- Elena Thomàs-Moyà
- Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|