1
|
Wang S, Chen S, Sun J, Han P, Xu B, Li X, Zhong Y, Xu Z, Zhang P, Mi P, Zhang C, Li L, Zhang H, Xia Y, Li S, Heikenwalder M, Yuan D. m 6A modification-tuned sphingolipid metabolism regulates postnatal liver development in male mice. Nat Metab 2023; 5:842-860. [PMID: 37188818 DOI: 10.1038/s42255-023-00808-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Different organs undergo distinct transcriptional, epigenetic and physiological alterations that guarantee their functional maturation after birth. However, the roles of epitranscriptomic machineries in these processes have remained elusive. Here we demonstrate that expression of RNA methyltransferase enzymes Mettl3 and Mettl14 gradually declines during postnatal liver development in male mice. Liver-specific Mettl3 deficiency causes hepatocyte hypertrophy, liver injury and growth retardation. Transcriptomic and N6-methyl-adenosine (m6A) profiling identify the neutral sphingomyelinase, Smpd3, as a target of Mettl3. Decreased decay of Smpd3 transcripts due to Mettl3 deficiency results in sphingolipid metabolism rewiring, characterized by toxic ceramide accumulation and leading to mitochondrial damage and elevated endoplasmic reticulum stress. Pharmacological Smpd3 inhibition, Smpd3 knockdown or Sgms1 overexpression that counteracts Smpd3 can ameliorate the abnormality of Mettl3-deficent liver. Our findings demonstrate that Mettl3-N6-methyl-adenosine fine-tunes sphingolipid metabolism, highlighting the pivotal role of an epitranscriptomic machinery in coordination of organ growth and the timing of functional maturation during postnatal liver development.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianfeng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Youquan Zhong
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Hubei Jiangxia Laboratory, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, China.
| |
Collapse
|
2
|
Harper AR, Wang X, Moiseyev G, Ma JX, Summers JA. Postnatal Chick Choroids Exhibit Increased Retinaldehyde Dehydrogenase Activity During Recovery From Form Deprivation Induced Myopia. Invest Ophthalmol Vis Sci 2016; 57:4886-4897. [PMID: 27654415 PMCID: PMC5032914 DOI: 10.1167/iovs.16-19395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Increases in retinaldehyde dehydrogenase 2 (RALDH2) transcript in the chick choroid suggest that RALDH2 may be responsible for increases observed in all-trans-retinoic acid (atRA) synthesis during recovery from myopic defocus. The purpose of the present study was to examine RALDH2 protein expression, RALDH activity, and distribution of RALDH2 cells in control and recovering chick ocular tissues. Methods Myopia was induced in White Leghorn chicks for 10 days, followed by up to 15 days of unrestricted vision (recovery). Expression of RALDH isoforms in chick ocular tissues was evaluated by Western blot. Catalytic activity of RALDH was measured in choroidal cytosol fractions using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Distribution of RALDH2 cells throughout the choroid was evaluated by immunohistochemistry. Results RALDH2 was expressed predominately in the chick choroid (P < 0.001) and increased after 24 hours and 4 days of recovery (76%, 74%, and 165%, respectively; P < 0.05). Activity of RALDH was detected solely in the choroid and was elevated at 3 and 7 days of recovery compared to controls (70% and 48%, respectively; P < 0.05). The number of RALDH2 immunopositive cells in recovering choroids was increased at 24 hours and 4 to 15 days of recovery (P < 0.05) and were concentrated toward the RPE side compared to controls. Conclusions The results of this study suggest that RALDH2 is the major RALDH isoform in the chick choroid and is responsible for the increased RALDH activity seen during recovery.
Collapse
Affiliation(s)
- Angelica R Harper
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiang Wang
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jody A Summers
- Department of Cell Biology University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
3
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:152-67. [PMID: 21621639 PMCID: PMC3179567 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
4
|
Marino D, Dabouras V, Brändli AW, Detmar M. A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development. J Vasc Res 2010; 48:236-51. [PMID: 21099229 PMCID: PMC2997449 DOI: 10.1159/000320620] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/13/2010] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that regulate the earliest steps of lymphatic vascular system development are unknown. To identify regulators of lymphatic competence and commitment, we used an in vitro vascular assay with mouse embryonic stem cell-derived embryoid bodies (EBs). We found that incubation with retinoic acid (RA) and, more potently, with RA in combination with cAMP, induced the expression of the lymphatic competence marker LYVE-1 in the vascular structures of the EBs. This effect was dependent on RA receptor (RAR)-α and protein kinase A signaling. RA-cAMP incubation also promoted the development of CD31+/LYVE-1+/Prox1+ cell clusters. In situ studies revealed that RAR-α is expressed by endothelial cells of the cardinal vein in ED 9.5-11.5 mouse embryos. Timed exposure of mouse and Xenopus embryos to excess of RA upregulated LYVE-1 and VEGFR-3 on embryonic veins and increased formation of Prox1-positive lymphatic progenitors. These findings indicate that RA signaling mediates the earliest steps of lymphatic vasculature development.
Collapse
Affiliation(s)
- Daniela Marino
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Vasilios Dabouras
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - André W. Brändli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
5
|
Brizard JP, Ramos J, Robert A, Lafitte D, Bigi N, Sarda P, Laoudj-Chenivesse D, Navarro F, Blanc P, Assenat E, Maurel P, Pascussi JM, Vilarem MJ. Identification of proteomic changes during human liver development by 2D-DIGE and mass spectrometry. J Hepatol 2009; 51:114-26. [PMID: 19443070 DOI: 10.1016/j.jhep.2009.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/06/2009] [Accepted: 02/18/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The aim of this study was to identify human liver proteins that are associated with different stages of liver development. METHODS We collected liver samples from 14 fetuses between 14 and 41 weeks of development, one child and four adults. Proteins which exhibited consistent and significant variations during development by two-dimensional differential in gel electrophoresis (2D-DIGE) were subjected to peptide mass fingerprint analysis by MALDI-TOF mass spectrometry. Real-time PCR analysis confirmed, at the transcriptional level, the data obtained by the proteomic approach. RESULTS Among a total of 80 protein spots showing differential expression, we identified 42 different proteins or polypeptide chains, of which 26 were upregulated and 16 downregulated in developing in comparison to adult liver. These proteins could be classified in specific groups according to their function. By comparing their temporal expression profiles, we identified protein groups that were associated with different developmental stages of human fetal liver and suggest that the changes in protein expression observed during the 20- to 36-week time window play a pivotal role in liver development. CONCLUSIONS The identification of these proteins may represent good markers of human liver and stem cells differentiation.
Collapse
Affiliation(s)
- Jean Paul Brizard
- Institut de Recherche pour le Développement, UMR 5096 (CNRS-IRD-Université Perpignan), Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ogura Y, Suruga K, Takase S, Goda T. Developmental changes of the expression of the genes regulated by retinoic acid in the small intestine of rats. Life Sci 2006; 77:2804-13. [PMID: 15964596 DOI: 10.1016/j.lfs.2005.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 05/03/2005] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) serves as a hormone-like nutrient and it plays pivotal roles in cellular differentiation and proliferation in various tissues including the small intestine. In this study, we aimed to explore a possible role of RA signaling in the developing rat small intestine of perinatal (embryonic and newborn) and suckling-weaning transition period, and we investigated the changes in the expression of several genes regulated by RA. Northern blot analysis showed that both retinal dehydrogenase 1 (RALDH1) and retinal dehydrogenase 2 (RALDH2) mRNA levels were higher in 19-day fetal (2 days before birth) small intestine and then declined after birth. Retinoid X receptor alpha (RXRalpha) mRNA and retinoic acid receptor alpha (RARalpha) mRNA levels in the small intestine showed high levels in perinatal period compared with suckling-weaning transition period. RA-target genes such as retinoic acid receptor beta (RARbeta) and cellular retinol-binding protein, type II (CRBPII) mRNA levels were significantly increased in the perinatal small intestine. Furthermore, mRNA levels of hepatocyte nuclear factor-4 (HNF-4), which is one of the possible RA-target gene and a transcription factor regulating CRBPII gene expression, was also increased in the perinatal small intestine. These results suggest that the possible perinatal RA production by RALDHs might regulate various RA-target genes including CRBPII and RARalpha through RXRalpha or HNF-4 in the small intestine.
Collapse
Affiliation(s)
- Yuko Ogura
- Laboratory of Nutritional Physiology and COE Program in the 21st Century, University of Shizuoka School of Food and Nutritional Sciences, 52-1 Yada, Shizuoka-shi 422-8526, Japan
| | | | | | | |
Collapse
|
7
|
Yoon M, Madden MC, Barton HA. Developmental Expression of Aldehyde Dehydrogenase in Rat: a Comparison of Liver and Lung Development. Toxicol Sci 2005; 89:386-98. [PMID: 16291827 DOI: 10.1093/toxsci/kfj045] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabolism is one of the major determinants for age-related changes in susceptibility to chemicals. Aldehydes are highly reactive molecules present in the environment that also can be produced during biotransformation of xenobiotics and endogenous metabolism. Although the lung is a major target for aldehyde toxicity, early development of aldehyde dehydrogenases (ALDHs) in lung has been poorly studied. The expression of ALDH in liver and lung across ages (postnatal day 1, 8, 22, and 60) was investigated in Wistar-Han rats. In adult, the majority of hepatic ALDH activity was found in mitochondria, while cytosolic ALDH activity was the highest contributor in lung. Total aldehyde oxidation capability in liver increases with age, but stays constant in lung. These overall developmental profiles of ALDH expression in a tissue appear to be determined by the different composition of ALDH isoforms within the tissue and their independent temporal and tissue-specific development. ALDH2 showed the most notable tissue-specific development. Hepatic ALDH2 was increased with age, while the pulmonary form did not. ALDH1 was at its maximum value at postnatal day 1 (PND1) and decreased thereafter both in liver and lung. ALDH3 increased with age in liver and lung, although ALDH3A1 was only detectible in lung. Collectively, the present study indicates that, in the case of aldehyde exposure, the in vivo responses would be tissue and age dependent.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill North Carolina 27599-7315, USA
| | | | | |
Collapse
|
8
|
Rühl R, Hamscher G, Garcia AL, Nau H, Schweigert FJ. Identification of 14-hydroxy-retro-retinol and 4-hydroxy-retinol as endogenous retinoids in rats throughout neonatal development. Life Sci 2005; 76:1613-22. [PMID: 15680170 DOI: 10.1016/j.lfs.2004.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
14-Hydroxy-retro-retinol was previously described as an in vivo and in vitro metabolite of retinol. Furthermore, the retinoid 4-hydroxy-retinol was identified as an endogenous occurring retinoid in the amphibian organism and an in vitro metabolite of retinol. We describe in the present study that 14-hydroxy-retro-retinol and 4-hydroxy-retinol are present in normal neonatal rat serum as endogenous occurring retinoids in normal non-vitamin A supplemented mammals (rats). Both retinoids were detected in serum and liver of neonatal rats at days 3 and 11 after birth. The respective concentrations at day 11 after birth were 41.8 +/- 2.8 ng/ml (serum)/ 104 +/- 6 ng/g (liver) for 4-hydroxy-retinol and 23 +/- 4.6 ng/ml (serum)/ 285 +/- 5 ng/g (liver) for 14-hydroxy-retro-retinol. Both retinoids could not be detected in adult rat serum and liver. From our experiments important physiological functions of these retinoids during postnatal development could be postulated.
Collapse
Affiliation(s)
- Ralph Rühl
- Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| | | | | | | | | |
Collapse
|