1
|
Li Q, Cheng Y, Yang C, Tian M, Wang X, Li D, Li X, Qu J, Zhou S, Zheng L, Tong Q. Targeting the Exonic Circular OGT RNA/O-GlcNAc Transferase/Forkhead Box C1 Axis Inhibits Asparagine- and Alanine-Mediated Ferroptosis Repression in Neuroblastoma Progression. RESEARCH (WASHINGTON, D.C.) 2025; 8:0703. [PMID: 40416363 PMCID: PMC12099056 DOI: 10.34133/research.0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
The disruption of ferroptosis, an emerging form of programmed cell death, is crucial in the development and aggressiveness of tumors. Meanwhile, the mechanisms and treatments that control ferroptosis in neuroblastoma (NB), a prevalent extracranial cancer in children, are still unknown. In this study, forkhead box C1 (FOXC1) and O-GlcNAc transferase (OGT) are identified as regulators of asparagine- and alanine-mediated ferroptosis repression in NB. Mechanistically, OGT facilitates FOXC1 stabilization via inducing O-GlcNAcylation in liquid condensates to increase the expression of asparagine synthetase (ASNS) and glutamate pyruvate transaminase 2 (GPT2), resulting in asparagine and alanine biogenesis, and subsequent synthesis of cystathionine β-synthase (CBS) or ferritin heavy chain 1 (FTH1). Meanwhile, exonic circular OGT RNA (ecircOGT) is able to encode a novel protein (OGT-570aa) containing domain essential for binding of OGT to FOXC1, which competitively decreases the OGT-FOXC1 interaction. Preclinically, miconazole nitrate facilitates the interaction of OGT-570aa with FOXC1, suppresses ferroptosis resistance of NB cells, and inhibits their growth, invasion, and metastasis. In clinical NB cases, higher OGT, FOXC1, ASNS, GPT2, CBS, or FTH1 levels are correlated with worse survival, while lower ecircOGT or OGT-570aa expression is associated with tumor progression. These results indicate that targeting the ecircOGT/OGT/FOXC1 axis inhibits asparagine- and alanine-mediated ferroptosis repression in NB progression.
Collapse
Affiliation(s)
- Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
- Department of Geriatrics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xinyue Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
2
|
Okabe S, Takahashi K, Hashimoto M, Ohta T. Nociceptive TRP channels function as molecular target for several antifungal drugs. Fundam Clin Pharmacol 2024; 38:1178-1189. [PMID: 39419628 DOI: 10.1111/fcp.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND/OBJECTIVES Topically applied antifungal agents can induce adverse effects, such as pain and irritation. The transient receptor potential (TRP) channels-TRPA1 and TRPV1-mainly expressed in sensory neurons, act as sensors for detecting irritants. This study aims to evaluate the involvement of nociceptive channels in topical antifungal-induced pain and irritation. We tested nine topical antifungals belonging five classes: isoconazole, econazole, miconazole, clotrimazole, and ketoconazole as imidazoles; liranaftate as a thiocarbamate; terbinafine as an allylamine; amorolfine as a morpholine; and butenafine as a benzylamine. METHODS Intracellular calcium concentrations ([Ca2+]i) and membrane currents in response to antifungals were measured to estimate channel activity using heterologously expressing cells and isolated mouse sensory neurons. RESULTS In mouse TRPA1-expressing cells, all the tested drugs induced an increase in [Ca2+]i, which was abrogated or reduced by a TRPA1 blocker. Although many drugs evoked the TRPA1-nonspecific [Ca2+]i response at high concentrations, responses to clotrimazole, ketoconazole, and liranaftate were TRPA1 specific and elicited current responses in TRPA1-expressing cells. In mouse TRPV1-expressing cells, clotrimazole and ketoconazole elicited [Ca2+]i and current responses. In mouse sensory neurons, liranaftate-induced increase in [Ca2+]i was abrogated by a TRPA1 blocker and Trpa1 deletion. Responses to ketoconazole were inhibited by TRPA1 and TRPV1 blockers and by the genetic deletion of either channel. CONCLUSION These results suggest that topical antifungal-induced pain and irritation are attributable to the activation of nociceptive TRPA1 and/or TRPV1 channel/s. Consequently, caution should be exercised in the use of topical antifungals with symptoms of pain.
Collapse
Affiliation(s)
- Shota Okabe
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Basic Sciences, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Miho Hashimoto
- Department of Basic Sciences, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
- Department of Basic Sciences, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
| |
Collapse
|
3
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
4
|
Diniz-Lima I, da Fonseca LM, Dos Reis JS, Decote-Ricardo D, Morrot A, Previato JO, Previato LM, Freire-de-Lima CG, Freire-de-Lima L. Non-self glycan structures as possible modulators of cancer progression: would polysaccharides from Cryptococcus spp. impact this phenomenon? Braz J Microbiol 2023; 54:907-919. [PMID: 36840821 PMCID: PMC10235250 DOI: 10.1007/s42770-023-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Invasive fungal infections (IFI) are responsible for a large number of annual deaths. Most cases are closely related to patients in a state of immunosuppression, as is the case of patients undergoing chemotherapy. Cancer patients are severely affected by the worrisome proportions that an IFI can take during cancer progression, especially in an already immunologically and metabolically impaired patient. There is scarce knowledge about strategies to mitigate cancer progression in these cases, beyond conventional treatment with antifungal drugs with a narrow therapeutic range. However, in recent years, ample evidence has surfaced describing the possible interferences that IFI may have both on the progression of pre-existing cancers and in the induction of newly transformed cells. The leading gambit for modulation of tumor progression comes from the ability of fungal virulence factors to modulate the host's immune system, since they are found in considerable concentrations in the tumor microenvironment during infection. In this context, cryptococcosis is of particular concern, since the main virulence factor of the pathogenic yeast is its polysaccharide capsule, which carries constituents with high immunomodulatory properties and cytotoxic potential. Therefore, we open a discussion on what has already been described regarding the progression of cryptococcosis in the context of cancer progression, and the possible implications that fungal glycan structures may take in both cancer development and progression.
Collapse
Affiliation(s)
- Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Decote-Ricardo
- Departamento de Microbiologia E Imunologia Veterinária, Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Rio de Janeiro, 23890-000, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-360, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Lucia Mendonça Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
5
|
Autophagy Modulators in Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115804. [PMID: 34071600 PMCID: PMC8199315 DOI: 10.3390/ijms22115804] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.
Collapse
|
6
|
Jung HJ, Seo I, Jha BK, Suh SI, Baek WK. Miconazole induces autophagic death in glioblastoma cells via reactive oxygen species-mediated endoplasmic reticulum stress. Oncol Lett 2021; 21:335. [PMID: 33692867 PMCID: PMC7933777 DOI: 10.3892/ol.2021.12596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Miconazole is an antifungal agent that is used for the treatment of superficial mycosis. However, recent studies have indicated that miconazole also exhibits potent anticancer effects in various types of cancer via the activation of apoptosis. The main aim of the present study was to observe the effect of miconazole on autophagic cell death of cancer cells. Cytotoxicity was measured by viable cell counting after miconazole treatment in glioblastoma cell lines (U343MG, U87MG and U251MG). Induction of autophagy was analyzed by examining microtubule-associated protein light chain 3 (LC3)-II expression levels using western blotting and by detecting GFP-LC3 translocation using a fluorescence microscope. Intracellular ROS production was measured using a fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate. It was found that miconazole induced autophagic cell death in the U251MG glioblastoma cell line via the generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress response. An association between miconazole-induced ROS production and autophagy was also identified; in particular, pretreatment of the cells with a ROS scavenger resulted in a reduction in the levels of LC3-II. Miconazole-induced ER stress was associated with increases in binding immunoglobulin protein (BiP), inositol-requiring enzyme 1α (IRE1α) and CHOP expression, and phospho-eIF2α levels. The inhibition of ER stress via treatment with 4-phenylbutyric acid or BiP knockdown reduced miconazole-induced autophagy and cell death. These findings suggest that miconazole induces autophagic cell death by inducing an ROS-dependent ER stress response in U251MG glioma cancer cells and provide new insights into the potential antiproliferative effects of miconazole.
Collapse
Affiliation(s)
- Hui-Jung Jung
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea
| | - Incheol Seo
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Seong-Il Suh
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea.,Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseogu, Daegu 42601, Republic of Korea
| |
Collapse
|
7
|
Yoon SH, Kim BK, Kang MJ, Im JY, Won M. Miconazole inhibits signal transducer and activator of transcription 3 signaling by preventing its interaction with DNA damage-induced apoptosis suppressor. Cancer Sci 2020; 111:2499-2507. [PMID: 32476221 PMCID: PMC7385363 DOI: 10.1111/cas.14432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) facilitates the survival of lung cancer by suppressing apoptosis. Moreover, DDIAS promotes tyrosine phosphorylation of signal transducer and activator of transcription 3 (STAT3) via their interaction. Here, we identified miconazole as an inhibitor of DDIAS/STAT3 interaction by screening a chemical library using a yeast two-hybrid assay. Miconazole inhibited growth, migration and invasion of lung cancer cells. Furthermore, miconazole suppressed STAT3 tyrosine Y705 phosphorylation and the expression of its target genes, such as cyclin D1, survivin and snail but had no suppressive effect on the activation of ERK1/2 or AKT, which is involved in the survival of lung cancer. As expected, no interaction between DDIAS and STAT3 occurred in the presence of miconazole, as confirmed by immunoprecipitation assays. Mouse xenograft experiments showed that miconazole significantly suppressed both tumor size and weight in an NCI-H1703 mouse model. Tyrosine phosphorylation of STAT3 at Y705 and expression of its targets, such as cyclin D1, survivin and snail, were decreased in miconazole-treated tumor tissues, as compared with those in vehicle-treated tumor tissues. These data suggest that miconazole exerts an anti-cancer effect by suppressing STAT3 activation through inhibiting DDIAS/STAT3 binding.
Collapse
Affiliation(s)
- Sung-Hoon Yoon
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Korea.,Department of Human and Environmental Toxicology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Mi-Jung Kang
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
8
|
D'Arcangelo D, Scatozza F, Giampietri C, Marchetti P, Facchiano F, Facchiano A. Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. Cancers (Basel) 2019; 11:cancers11040446. [PMID: 30934896 PMCID: PMC6520727 DOI: 10.3390/cancers11040446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022] Open
Abstract
Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p < 0.05) differential expression in melanoma- vs. nevi-biopsies, taken from the GEO database. ROC (receiver operating characteristic) analysis selected 20 genes as potential markers showing the highest discrimination ability of melanoma vs. nevi (AUC > 0.90 and p < 0.0001). These 20 genes underwent a first in silico-validation round in an independent patients-dataset from GEO. A second-in silico-validation step was then carried out on a third human dataset in Oncomine. Finally, five genes were validated, showing extremely high sensitivity and specificity in melanoma detection (>90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The “druggable genome” analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro.
Collapse
Affiliation(s)
| | | | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Paolo Marchetti
- Medical Oncology, Sapienza, University of Rome, 00161 Rome, Italy.
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00167 Rome, Italy.
| |
Collapse
|
9
|
Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci 2018; 114:255-266. [DOI: 10.1016/j.ejps.2017.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
|
10
|
Yuan SY, Shiau MY, Ou YC, Huang YC, Chen CC, Cheng CL, Chiu KY, Wang SS, Tsai KJ. Miconazole induces apoptosis via the death receptor 5-dependent and mitochondrial-mediated pathways in human bladder cancer cells. Oncol Rep 2017; 37:3606-3616. [PMID: 28498480 DOI: 10.3892/or.2017.5608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Miconazole (MIC), an antifungal agent, diplays anti‑tumorigenic activity in various types of human cancers, including bladder cancer, yet its mechanism of antitumor action is not well understood. In the present study, we demonstrated that, in a cell viability assay, MIC had a cytotoxic effect on human T24, J82 and TSGH-8301 bladder cancer cells in a dose- and time‑dependent manner, but did not exhibit significant toxicity toward human peripheral blood mononuclear cells. Cell cycle analysis revealed that MIC at concentrations of 25 and 50 µM significantly caused G0/G1 arrest in the TSGH-8301 and T24 cells, respectively. DNA fragmentation, mitochondrial membrane potential and western blot analyses showed that MIC inhibited the growth of these cells by both mitochondrial‑mediated and death receptor (DR5)‑mediated apoptosis pathways. Specifically, MIC increased the protein levels of p21 and p27, but decreased the expression of cyclin E1, CDK2 and CDK4. MIC augmented the expression of DR5, cleaved forms of caspase-3 -8 and -9, poly(ADP‑ribose) polymerase and Bax, decreased the expression of Bcl-2 but increased cytosol levels of cytochrome c. Our results suggest that MIC inhibits the growth of bladder cancer cells through induction of G0/G1 arrest and apoptosis via activation of both the extrinsic and intrinsic apoptotic pathways. MIC is a potential chemotherapeutic agent for treating bladder cancer in humans.
Collapse
Affiliation(s)
- Sheau-Yun Yuan
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Ming-Yuh Shiau
- Department of Nursing, Hung Kung University, Taichung 43302, Taiwan, R.O.C
| | - Yen-Chuan Ou
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Yu-Chia Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Cheng-Che Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Chen-Li Cheng
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Kan-Jen Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
11
|
Park JY, Jung HJ, Seo I, Jha BK, Suh SI, Suh MH, Baek WK. Translational suppression of HIF-1α by miconazole through the mTOR signaling pathway. Cell Oncol (Dordr) 2014; 37:269-79. [PMID: 25070654 DOI: 10.1007/s13402-014-0182-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Miconazole is an imidazole antifungal agent that has amply been used in the treatment of superficial mycosis. Preliminary data indicate that miconazole may also induce anticancer effects. As yet, however, little is known about the therapeutic efficacy of miconazole on cancer and the putative mechanism(s) involved. Here, we show that miconazole suppresses hypoxia inducible factor-1α (HIF-1α) protein translation in different cancer-derived cells. METHODS The effect of miconazole on HIF-1α expression was examined by Western blotting and reverse transcriptase polymerase chain reaction assays in human U87MG and MCF-7 glioma and breast cancer-derived cell lines, respectively. The transcriptional activity of the HIF-1 complex was confirmed using a luciferase assay. To assess whether angiogenic factors are increased under hypoxic conditions in these cells, vascular endothelial growth factor (VEGF) levels were measured by ELISA. Metabolic labeling was performed to examine HIF-1α protein translation and global protein synthesis. The role of the mammalian target of rapamycin (mTOR) signaling pathway was examined to determine translation regulation of HIF-1α after miconazole treatment. RESULTS Miconazole was found to suppress HIF-1α protein expression through post-transcriptional regulation in U87MG and MCF-7 cells. The suppressive effect of HIF-1α protein synthesis was found to be due to inhibition of mTOR. Miconazole significantly inhibited the transcriptional activity of the HIF-1 complex and the expression of its target VEGF. Moreover, miconazole was found to suppress global protein synthesis by inducing phosphorylation of the translation initiation factor 2α (eIF2α). CONCLUSION Our data indicate that miconazole plays a role in translational suppression of HIF-1α. We suggest that miconazole may represent a novel therapeutic option for the treatment of cancer.
Collapse
Affiliation(s)
- Jee-Young Park
- Department of Microbiology, Keimyung University School of Medicine, 1095 Dalgubeol-daero, Dalseo-gu, Daegu, 704-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen M, Lu J, Deng W, Singh A, Mohammed NN, Repka MA, Wu C. Influence of processing parameters and formulation factors on the bioadhesive, temperature stability and drug release properties of hot-melt extruded films containing miconazole. AAPS PharmSciTech 2014; 15:522-9. [PMID: 24550099 DOI: 10.1208/s12249-013-0029-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022] Open
Abstract
This study investigated the processing parameters and formulation factors on the bioadhesive properties, temperature stability properties, and drug release properties of miconazole in PolyOx® and Klucel® matrix systems produced by Hot-melt Extrusion (HME) technology. Miconazole incorporated into these matrix systems were found to be stable for 8 months by X-ray diffraction (XRD). The addition of miconazole increased area under the curve (AUC) at contact time intervals of 30 and 60 sec, while the bioadhesion decreased with an increase in processing temperatures. The release profiles suggest that a sustained release of miconazole was observed from all of the tested HME film formulations for approximately 10 h. The release from the optimal HME film extruded at 205°C was found to be significantly different than that extruded at 190°C. Therefore, this matrix system may address the present shortcomings of currently available therapy for oral and pharyngeal candidiasis.
Collapse
|
13
|
Abstract
For patients with osteosarcoma, the development of metastases, often to the lungs, is the most common cause of death. Long-term outcomes for patients who present with localized or disseminated disease have largely remained unchanged over the past 20 years. Further improvements in outcome are not likely to come from intensification of cytotoxic chemotherapy; as such, new targets for treatment are needed. A view toward such targets in osteosarcoma may be constructed based on three common clinical features of the disease. These include the origin of osteosarcoma in the bone or primitive mesenchymal cells, the predictable process of metastatic progression characterized by this disease, and the development of metastatic lesions almost exclusively in the lung. It is likely and potentially favorable for some targets to be relevant for more than one process. This review summarizes novel targets under evaluation for the treatment of osteosarcoma based on these three features of the disease.
Collapse
Affiliation(s)
- Chand Khanna
- National Institutes of Health, National Cancer Institute, Pediatric Oncology Branch, Tumor Metastasis Biology Section, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, Rhim H, Choo DJ, Kim J, Lee JY. T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett 2008; 18:3899-901. [PMID: 18585035 DOI: 10.1016/j.bmcl.2008.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
In order to further clarify the role of T-type Ca(2+) channels in cell proliferation, we have measured the growth inhibition of human cancer cells by using our potent T-type Ca(2+) channel blockers. As a result, KYS05090, a most potent T-type Ca(2+) channel blocker, was found to be as potent as doxorubicin against some human cancer cells without acute toxicity. Therefore, this letter provides the biological results that T-type calcium channel is important in regulating the important cellular phenotype transition leading to cell proliferation, and thus novel T-type Ca(2+) channel blocker presents new prospects for cancer treatment.
Collapse
Affiliation(s)
- Jae Ho Heo
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bone biology and physiology: implications for novel osteoblastic osteosarcoma treatments? Med Hypotheses 2007; 70:281-6. [PMID: 17683874 DOI: 10.1016/j.mehy.2007.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Healthy bone undergoes a continuous cycle of bone resorption by osteoclasts and formation by osteoblasts. These processes are in turn regulated by developmental sequences involved in differentiation of bone marrow puripotent mesenchymal cells into osteoblasts and mononuclear hemaotpoitic stem cells into osteoclasts. A variety of growth factors and receptors are involved in these maturation sequences. Osteoblast proliferation and inhibition, for example, are highly dependent not only on such factors as bone morphogenic protein and core binding factor a1 (CBFa1), but on intracellular levels of calcium and cAMP. Therefore, agents that affect concentrations of these two compounds may hypothetically play a role in osteoblastic osteosarcoma treatment. Osteoblast proliferation is also under neural control; in particular, the activity of the N-methyl-d-aspartate (NMDA) and alpha adrenergic 1 receptors. Antagonists to these receptors may also hypothetically play a role in osteoblastic osteosarcoma therapy. This article reviews the basic science supporting the putative roles of common, relatively safe but disparate agents-ranging from caffeine and theophylline to dextromethorphan and econazole-in the potential treatment of osteoblastic osteosarcoma.
Collapse
|
16
|
Lee JY, Park SJ, Park SJ, Lee MJ, Rhim H, Seo SH, Kim KS. Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers. Bioorg Med Chem Lett 2006; 16:5014-7. [PMID: 16876410 DOI: 10.1016/j.bmcl.2006.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/03/2006] [Accepted: 07/17/2006] [Indexed: 11/24/2022]
Abstract
This paper describes the preliminary biological results that novel T-type calcium channel blockers inhibit the growth of human cancer cells by blocking calcium influx into the cell, based on unknown mechanism on the cell cycle responsible for cellular proliferation. Among the selected compounds from compound library, compound 9c (KYS05041) was identified to be nearly equipotent with Cisplatin against some human cancers in the micromolar range.
Collapse
Affiliation(s)
- Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 1 Hoegi-Dong, Seoul 130-701, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
17
|
Daly JW, Camerini-Otero CS. Imidazole-induced elevations of intracellular calcium in HL-60 cells: effect of inhibition of phospholipase C by the steroidal maleimide U73122. Drug Dev Res 2006. [DOI: 10.1002/ddr.20111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|