1
|
Irmak F, Sizmaz M, Sirvan SS, Karsidag S, Ozagari A. The Effects of Vasonatrin Peptide on Fat Graft Viability: An Experimental Study. Facial Plast Surg 2021; 38:81-87. [PMID: 34100270 DOI: 10.1055/s-0041-1730387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vasonatrin peptide (VNP) is a synthetic peptide that possesses vasodilatory, natriuretic, and anti-inflammatory properties. The authors aimed to analyze the effects of VNP on fat graft survival. Twenty Sprague-Dawley rats are randomly divided into two groups of 10. Fat grafts are harvested from the right inguinal region. After preparation, fat grafts are placed to the interscapular region. The first group of rats were administered VNP after their fat injection, while the second group received tail-vein injections of an equal volume of sterile saline following their fat injection. Experiment and control groups are evaluated according to their level of degeneration of adipocytes, fat necrosis, vacuolization, cyst formation in adipocytes, fibrosis of the fat tissue, capillary density, and CD31 immunohistochemical staining. Degeneration, vacuolization, and cyst formation in adipocytes were lower in the experiment group. Increased capillary density in the experiment group was demonstrated by CD31 antibody staining and by counting capillary density under a microscope. The average percentage of change in weight of the fat grafts in the experiment group was lower than that in the control group. The results indicate that VNP has some beneficial effects on fat graft survival by multiple independent mechanisms that influence both local and systemic homeostasis.
Collapse
Affiliation(s)
| | - Mert Sizmaz
- Department of Plastic, Reconstructive and Aesthetic Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Selami Serhat Sirvan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Semra Karsidag
- Department of Plastic, Reconstructive and Aesthetic Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Aysim Ozagari
- Department of Pathology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Chang P, Zhang X, Chen W, Zhang J, Wang J, Wang X, Yu J, Zhu X. Vasonatrin peptide, a synthetic natriuretic peptide, attenuates myocardial injury and oxidative stress in isoprenaline-induced cardiomyocyte hypertrophy. Peptides 2021; 137:170474. [PMID: 33359394 DOI: 10.1016/j.peptides.2020.170474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Isoprenaline-induced cardiac hypertrophy can deteriorate to heart failure, which is a leading cause of mortality. Endogenous vasonatrin peptide (VNP) has been reported to be cardioprotective against myocardial ischemia/reperfusion injury in diabetic rats. However, little is known about the effect of exogenous VNP on cardiac hypertrophy. We further explored whether VNP attenuated isoprenaline-induced cardiomyocyte hypertrophy by examining the levels and activities of cGMP and PKG. In this study, we found that VNP significantly attenuated isoprenaline-induced myocardial hypertrophy and cardiac fibroblast activation in vivo. Moreover, VNP effectively halted the activation of apoptosis and oxidative stress in the isoprenaline-treated myocardium. VNP promoted superoxide dismutase (SOD) activity. Further study revealed that the protective effects of VNP might be mediated by the activity of the cGMP-PKG signaling pathway in vivo or in vitro, while the use of agonists and antagonists confirmed these results. Therefore, we demonstrated that the antiapoptosis and antioxidative stress effects of VNP depends on elevated cGMP-PKG signaling activity both in vivo and in vitro. These results suggest that VNP may be used in the treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Pan Chang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Xiaomeng Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiguo Chen
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jianbang Wang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Xihui Wang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jun Yu
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China; Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China.
| | - Xiaoling Zhu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
3
|
Luo HH, Wu C, Hu P, Wu YF, Zhang DD, Liu SY, Jiang GM, Xu Y, Wu Y, Wang JJ, Liu FF, Wei W, Hu B. Receptor signaling and neutral endopeptidase are involved in the resistance of C-type natriuretic peptide to human mesangial proliferation and collagen-IV expression. J Investig Med 2018; 66:1-9. [PMID: 29367254 DOI: 10.1136/jim-2017-000533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/31/2022]
Abstract
C-type natriuretic peptide (CNP) is regarded as a local, paracrine hormone to regulate vascular tone and cell proliferation. Although several in vivo studies have documented that CNP exerts the inhibitory effects on mesangial cells (MCs) proliferation and collagen production, a limited number of studies exist about the resistance of CNP to MCs proliferation in vitro. Besides, whether its receptor signaling and neutral endopeptidase (NEP) are involved remains unclear. In the present study, human MCs were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100 pM) for 24, 48 and 72 hours, respectively. CNP administration significantly suppresses MCs proliferation and collagen-IV (Col-IV) expression in a time-dependent and dose-dependent manner. As a down-stream signal molecule of CNP activation, the expressions of natriuretic peptide receptor (NPR)-B, cyclic guanosine monophosphate-dependent protein kinases II and NPR-C were obviously augmented, whereas NEP expression was significantly decreased after CNP treatment. In conclusion, receptor signaling and NEP are involved in the resistance of CNP to human mesangial proliferation and Col-IV expression.
Collapse
Affiliation(s)
- Huang Huang Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Wu
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Anhui Medical University, Hefei, China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Fang Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guang Mei Jiang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Fei Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:109-131. [PMID: 29411335 DOI: 10.1007/5584_2018_143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.
Collapse
|
5
|
Xia XW, Zhou YQ, Luo H, Zeng C. Inhibitory effect of D3 dopamine receptors on neuropeptide Y‑induced migration in vascular smooth muscle cells. Mol Med Rep 2017; 16:5606-5610. [PMID: 28849020 DOI: 10.3892/mmr.2017.7271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
Abnormal migration of vascular smooth muscle cells (VSMCs) serves an important role in hypertension, atherosclerosis and restenosis following angioplasty, which is regulated numerous hormonal and humoral factors, including neuropeptide Y (NPY) and dopamine. Dopamine and NPY are both sympathetic neurotransmitters, and a previous study reported that NPY increased VSMC proliferation, while dopamine receptor inhibited it. Therefore, the authors wondered whether or not there is an inhibitory effect of dopamine receptor on NPY‑mediated VSMC migration. The present study demonstrated that stimulation with NPY dose‑dependence (10‑10‑10‑7M, 24 h) increased VSMC migration, the stimulatory effect of NPY was via the Y1 receptor. This is because, in the presence of the Y1 receptor antagonist, BIBP3226 (10‑7 M), the stimulatory effect of NPY on VSMC migration was blocked. Activation of the D3 receptor by PD128907 dose‑dependence (10‑11‑10‑8 M) reduced the stimulatory effect of NPY on VSMC migration. The effect of PD128907 was via the D3 receptor, because the inhibitory effect of PD128907 on NPY‑mediated migration was blocked by the D3 receptor antagonist, U99194. The authors' further study suggested that the inhibitory effect of the D3 receptor was via the PKA signaling pathway, in the presence of the PKA inhibitor, 14‑22 (10‑6 M), the inhibitory effect of PD128907 on VSMC migration was blocked. Moreover, the inhibitory effect of PD128907 was imitated by PKA activator, Sp‑cAMP [S], in the presence of Sp‑cAMP [S], the NPY‑mediated stimulatory effect on VSMC migration was abolished. The present study indicated that activation of the D3 receptor inhibits NPY Y1‑mediated migration on VSMCs, PKA is involved in the signaling pathway.
Collapse
Affiliation(s)
- Xue-Wei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Chongqing 400042, P.R. China
| | - Yong-Qiao Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Chongqing 400042, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Chongqing 400042, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Chongqing 400042, P.R. China
| |
Collapse
|
6
|
Zhou Y, Shi W, Luo H, Yue R, Wang Z, Wang W, Liu L, Wang WE, Wang H, Zeng C. Inhibitory effect of D1-like dopamine receptors on neuropeptide Y-induced proliferation in vascular smooth muscle cells. Hypertens Res 2015; 38:807-12. [PMID: 26178154 DOI: 10.1038/hr.2015.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/17/2015] [Accepted: 05/17/2015] [Indexed: 02/05/2023]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) is thought to have a key role in the development of atherosclerotic lesions. Neuropeptide Y (NPY), norepinephrine and dopamine are sympathetic neurotransmitters. NPY has been particularly shown to stimulate proliferation of VSMCs. NPY, norepinephrine and dopamine are all sympathetic transmitters. In our previous study, we found that in the presence of the dopamine receptor, the α1-adrenergic receptor-mediated VSMC proliferation is reduced. We hypothesize that the activation of the D1-like receptor might inhibit the NPY-mediated VSMC proliferation. In our present study, we found that NPY, mainly via the Y1 receptor, increased VSMC proliferation. This was determined by [(3)H]-thymidine incorporation, in a concentration (10(-11) to 10(-8) M)-dependent manner. In the presence of the D1-like receptor agonist, fenoldopam (10(-12) to 10(-5) M), the stimulatory effect of NPY on VSMC proliferation was reduced. The involvement of the D1-like receptor was confirmed when the inhibitory effect of fenoldopam was reversed in the presence of the D1-like receptor antagonist SCH-23390 (10(-8) M). Moreover, the inhibitory effect of fenoldopam on NPY-mediated VSMC proliferation was also blocked in the presence of the PKA inhibitor 14-22 (10(-6) M). Protein kinase A activator 8-(4-chlorophenylthio) adenosine-3,5-cyclic monophosphorothioate, Sp-isomer sodium salt (10(-6) M) could simulate the stimulatory effect of fenoldopam. It indicated that the inhibitory effect of D1-like receptors on NPY-mediated VSMC proliferation may have an important role in the regulation of blood pressure or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Yongqiao Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Rongchuan Yue
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Li Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
7
|
Shi Z, Fu F, Yu L, Xing W, Su F, Liang X, Tie R, Ji L, Zhu M, Yu J, Zhang H. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 308:H281-90. [PMID: 25485902 DOI: 10.1152/ajpheart.00666.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus increases morbidity/mortality of ischemic heart disease. Although atrial natriuretic peptide and C-type natriuretic peptide reduce the myocardial ischemia-reperfusion damage in nondiabetic rats, whether vasonatrin peptide (VNP), the artificial synthetic chimera of atrial natriuretic peptide and C-type natriuretic peptide, confers cardioprotective effects against ischemia-reperfusion injury, especially in diabetic patients, is still unclear. This study was designed to investigate the effects of VNP on ischemia-reperfusion injury in diabetic rats and to further elucidate its mechanisms. The high-fat diet-fed streptozotocin-induced diabetic Sprague-Dawley rats were subjected to ischemia-reperfusion operation. VNP treatment (100 μg/kg iv, 10 min before reperfusion) significantly improved the instantaneous first derivation of left ventricle pressure (±LV dP/dtmax) and LV systolic pressure and reduced LV end-diastolic pressure, apoptosis index, caspase-3 activity, plasma creatine kinase (CK), and lactate dehydrogenase (LDH) activities. Moreover, VNP inhibited endoplasmic reticulum (ER) stress by suppressing glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). These effects were mimicked by 8-bromine-cyclic guanosinemonophosphate (8-Br-cGMP), a cGMP analog, whereas they were inhibited by KT-5823, the selective inhibitor of PKG. In addition, pretreatment with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress, could not further promote the VNP's cardioprotective effect in diabetic rats. In vitro H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation and incubated with or without VNP (10(-8) mol/l). Gene knockdown of PKG1α with siRNA blunted VNP inhibition of ER stress and apoptosis, while overexpression of PKG1α resulted in significant decreased ER stress and apoptosis. VNP protects the diabetic heart against ischemia-reperfusion injury by inhibiting ER stress via the cGMP-PKG signaling pathway. These results suggest that VNP may have potential therapeutic value for the diabetic patients with ischemic heart disease.
Collapse
Affiliation(s)
- Zhenwei Shi
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Liming Yu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Ru Tie
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jun Yu
- Experimental Center, The Second Affiliated Hospital, School of Medicine, Xi'an Medical University, Xi'an, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
8
|
Vasonatrin peptide stimulates both of the natriuretic peptide receptors, NPRA and NPRB. Biochem Biophys Res Commun 2014; 446:1276-80. [DOI: 10.1016/j.bbrc.2014.03.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 02/06/2023]
|
9
|
Zhao HK, Chen BY, Chang R, Wang JB, Ni F, Yang L, Dong XC, Sun SH, Zhao G, Fang W, Ma QR, Wang XL, Yu J. Vasonatrin peptide, a novel protector of dopaminergic neurons against the injuries induced by n-methyl-4-phenylpyridiniums. Peptides 2013; 49:117-22. [PMID: 24055805 DOI: 10.1016/j.peptides.2013.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Vasonatrin peptide (VNP), a novel manmade natriuretic peptide, is known as a cardiovascular active substance. However, its neuroeffects are largely unknown. Here, cultured dopaminergic neurons from ventral mesencephalon of mouse were exposed to N-methyl-4-phenylpyridinium (MPP(+)), and the effects of VNP on the neurotoxicity of MPP(+) were investigated. As a result, MPP(+) caused injuries in the dopaminergic neurons. VNP significantly reduced the cytotoxicity of MPP(+) by increasing axon number and length of dopaminergic neurons, and by enhancing the cell viability. Also, the MPP(+)-induced depolymerization of β-Tubulin III was attenuated by the treatment of VNP. In addition, VNP significantly increased the intracellular levels of cGMP. These effects of VNP were mimicked by 8-br-cGMP (a cell-permeable analog of cGMP), whereas inhibited by HS-142-1 (the antagonist of the particulate guanylyl cyclase-coupled natriuretic peptide receptors), or KT-5823 (a cGMP-dependent protein kinase inhibitor). Taken together, VNP attenuates the neurotoxicity of MPP(+) via guanylyl cyclase-coupled NPR/cGMP/PKG pathway, indicating that VNP might be a new effective reagent in the treatment of neuron degeneration of dopaminergic neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Zuo X, Zong F, Wang H, Wang Q, Xie W, Wang H. Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α. J Biomed Res 2013; 25:392-401. [PMID: 23554716 PMCID: PMC3596718 DOI: 10.1016/s1674-8301(11)60052-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/25/2011] [Accepted: 05/20/2011] [Indexed: 12/17/2022] Open
Abstract
Iptakalim is a new ATP-sensitive potassium (KATP) channel opener, and it inhibits the proliferation of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary vascular remodeling. However, the underlying mechanism remains unclear. In the present study, we found that iptakalim significantly decreased pulmonary artery pressure, inhibited pulmonary ariery remodeling and PKC-α overexpression in chronic hypoxia in a rat pulmonary hypertension model. Iptakalim reduced hypoxia-induced expression of PKC-α, and abolished the effect of hypoxia on PASMC proliferation significantly in a dose-dependent manner in vitro. Moreover, these effects were abolished by glibenclamide, a selective KATP channel antagonist. These results indicate that iptakalim inhibits PASMC proliferation and pulmonary vascular remodeling induced by hypoxia through downregulating the expression of PKC-α. Iptakalim can serve as a novel promising treatment for hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Xiangrong Zuo
- Department of Respiratory Medicine; ; Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | |
Collapse
|
12
|
Chen C, Chen C, Wang Z, Wang L, Yang L, Ding M, Ding C, Sun Y, Lin Q, Huang X, Du X, Zhao X, Wang C. Puerarin induces mitochondria-dependent apoptosis in hypoxic human pulmonary arterial smooth muscle cells. PLoS One 2012; 7:e34181. [PMID: 22457823 PMCID: PMC3311615 DOI: 10.1371/journal.pone.0034181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/28/2012] [Indexed: 02/03/2023] Open
Abstract
Background Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms. Methodology/Principal Findings HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. Conclusions/Significance Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Chun Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhiyi Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
- * E-mail:
| | - Lehe Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Minjiao Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Cheng Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Yu Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Quan Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaohong Du
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Xiaowei Zhao
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Chuangyi Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Devadasu VR, Wadsworth RM, Ravi Kumar MNV. Tissue localization of nanoparticles is altered due to hypoxia resulting in poor efficacy of curcumin nanoparticles in pulmonary hypertension. Eur J Pharm Biopharm 2011; 80:578-84. [PMID: 22227367 DOI: 10.1016/j.ejpb.2011.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
The present study is an attempt to leverage therapeutic benefits of curcumin in pulmonary hypertension by encapsulating it in biodegradable poly(lactide-co-glycolic) acid nanoparticles. Pulmonary hypertension is induced in experimental animals by subjecting them to chronic hypoxic conditions. The ability of curcumin encapsulated nanoparticles to manage pulmonary hypertension is measured by right ventricular hypertrophy, haematocrit, vascular remodelling and target tissue levels of curcumin. Further, single oral dose tissue distribution of the nanoparticulate curcumin was also assessed under normoxic and hypoxic conditions. Orally administered nanoparticulate curcumin failed to offer any protection against hypoxia induced pulmonary hypertension as indicated by insignificant changes in right ventricular hypertrophy and vascular remodelling that are similar to untreated groups. A significant difference in the target tissue levels was observed between normoxic vs. hypoxic rats. The study suggests that hypoxia has a major role in the particle localization in lungs probably due to the altered blood flow, increased barrier properties of the lung vasculature and decreased endocytosis. The target tissue levels of curcumin under hypoxia are much lower to that achieved in normoxic rats probably due to difference in particle dynamics, resulting in the failure of treatment.
Collapse
Affiliation(s)
- Venkat Ratnam Devadasu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
14
|
Chen BY, Tie R, Qu P, Zhu MZ, Zhu XX, Jin J, Yu J. Vasonatrin peptide, a new regulator of adiponectin and interleukin-6 production in adipocytes. J Endocrinol Invest 2011; 34:742-6. [PMID: 21625198 DOI: 10.3275/7727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In addition to lipolytic function, ANP plays regulatory roles in the production of various adipokines including adiponectin, leptin, and interleukins. However, the adipose effects of vasonatrin peptide (VNP), a new manmade natriuretic peptide, are largely unknown. AIM The aim of the present study was to identify the roles of VNP on adipokines production, as well as signaling pathways involved. MATERIAL, SUBJECTS, AND METHODS: 3T3-L1 cells were differentiated into adipocytes and exposed to various concentrations of VNP. Quantitative PCR and immunoassays were performed to determine the mRNA and protein levels of adiponectin and interleukin-6 (IL-6), respectively. The involved signaling pathway was identified by radioimmunoassay to detect the levels of intracellular cyclic GMP (cGMP), mimicking experiments using 8-brcGMP (a membrane-permeable cGMP analog). Also, blocking experiments were performed using HS-142-1, an antagonist of particulate guanylyl cyclase-coupled natriuretic peptide receptor (NPR), or KT-5823, the cGMP-dependent protein kinase (PKG) inhibitor. RESULTS VNP markedly enhanced adiponectin mRNA expression, as well as protein secretion, however, suppressed IL-6 production in mature adipocytes. In addition, VNP significantly increased the intracellular levels of cGMP. The effects of VNP were mimicked by 8-br-cGMP, whereas inhibited by HS-142-1, or KT-5823. CONCLUSIONS Taken together, VNP regulates adiponectin and IL-6 production in adipocytes via guanylyl cyclase-coupled NPR/cGMP/PKG pathway.
Collapse
Affiliation(s)
- B-Y Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L753-61. [PMID: 21335523 DOI: 10.1152/ajplung.00286.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen BY, Qu P, Tie R, Zhu MZ, Zhu XX, Yu J. Protecting effects of vasonatrin peptide against carbon tetrachloride-induced liver fibrosis. ACTA ACUST UNITED AC 2010; 164:139-43. [PMID: 20619296 DOI: 10.1016/j.regpep.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/31/2010] [Accepted: 06/28/2010] [Indexed: 02/02/2023]
Abstract
In order to investigate the effects of vasonatrin peptide (VNP), a novel man-made natriuretic peptide, on liver fibrosis, mice received carbon tetrachloride (CCl(4)) injection for 12weeks and with or without VNP treatment during the last 6weeks. Hematoxylin-eosin (HE) staining and Sirius red staining were performed to evaluate the status of liver fibrosis. After treatment of VNP, DNA and collagen synthesis of cultured HSC-T6 hepatic stellate cells were assessed by [(3)H]-thymidine and [(3)H]-proline incorporation, respectively. Additionally, involved signaling pathway was identified by radioimmunoassay to detect the levels of intracellular cGMP and by mimicking experiments using 8-br-cGMP (a membrane-permeable cGMP analog). Also, blocking experiments were performed using HS-142-1, an antagonist of guanylyl cyclase-coupled natriuretic peptide receptor (NPR), or KT-5823, the cGMP-dependent protein kinase (PKG) inhibitor. As a result, VNP markedly alleviated CCl(4)-induced liver fibrosis in mice. In vitro, HSC-T6 cells demonstrated a dose-dependent reduction of DNA and collagen synthesis in the presence VNP. In addition, VNP significantly increased the intracellular levels of cGMP. These effects of VNP were mimicked by 8-br-cGMP, although inhibited by HS-142-1 or KT-5823. Taken together, VNP ameliorates liver fibrosis by inhibiting collagen production from hepatic stellate cells via guanylyl cyclase-coupled NPR/cGMP/PKG pathway, indicating that VNP might be a new effective reagent in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bao-Ying Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
17
|
Yu J, Feng HS, Chen BY, Qu P, Liu LB, Chen JK, Tie R, Huang XJ, Zhao YF, Zhu XX, Zhu MZ. Protective effects of vasonatrin peptide against hypobaric hypoxia-induced pulmonary hypertension in rats. Clin Exp Pharmacol Physiol 2009; 37:69-74. [PMID: 19566831 DOI: 10.1111/j.1440-1681.2009.05240.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The aim of the present study was to investigate the in vivo effects of vasonatrin peptide (VNP) on hypoxia-induced pulmonary hypertension (HPH). 2. The HPH model was developed by subjecting rats to hypobaric hypoxia. The HPH rats were then treated with either VNP (50 microg/kg per day, i.p.) or saline (0.5 mL, i.p.) every day for 7 days. Haemodynamic indices, right ventricular hypertrophy (RVH) and remodelling of the pulmonary arteries were evaluated. In addition, plasma levels of atrial natriuretic peptide (ANP), endothelin (ET)-1 and angiotensin II (AngII) were determined, as was natriuretic peptide receptor-C (NPR-C) mRNA expression in the right ventricle. 3. Hypobaric hypoxia induced severe HPH compared with the normoxic control group. Treatment of HPH rats with VNP for 1 week significantly reduced mean pulmonary arterial pressure, pulmonary vascular resistance, RVH and muscularization of the pulmonary arteries, although pulmonary blood flow was increased in this group. In addition, significantly lower levels of plasma ET-1 and AngII and cardiac NPR-C mRNA expression were observed in VNP-treated compared with saline-treated HPH rats, whereas higher plasma concentrations of ANP were found in the former group. Acute intravenous administration of 50 microg/kg VNP significantly ameliorated pulmonary haemodynamics in HPH rats. 4. Taken together, the date indicate that VNP has certain preventative and therapeutic effects against HPH.
Collapse
Affiliation(s)
- Jun Yu
- Center of Teaching Experiment, School of Basic Medical Science, Xi'an
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin Exp Metastasis 2008; 26:35-49. [PMID: 18814043 DOI: 10.1007/s10585-008-9209-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/01/2008] [Indexed: 02/04/2023]
Abstract
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.
Collapse
Affiliation(s)
- Janine T Erler
- Hypoxia and Metastasis Team, Section of Cell and Molecular Biology, The Institute of Cancer Research, London, UK.
| | | |
Collapse
|
19
|
Kadowaki M, Mizuno S, Demura Y, Ameshima S, Miyamori I, Ishizaki T. Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1. Respir Res 2007; 8:77. [PMID: 17974037 PMCID: PMC2164950 DOI: 10.1186/1465-9921-8-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 11/01/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood. METHODS We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1-21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection. RESULTS Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that BPS and 8-Br-cAMP suppressed HPASMC proliferation under both hypoxic and normoxic conditions by blocking p27kip1 mRNA degradation. Furthermore, p27kip1 gene silencing partially attenuated the effects of BPS and partially restored hypoxia-induced proliferation. CONCLUSION Our study suggests that moderate hypoxia induces HPASMC proliferation, which is partially dependent of p27kip1 down-regulation probably via the induction of growth factors such as PDGF, and BPS inhibits both the cell proliferation and p27kip1 mRNA degradation through cAMP pathway.
Collapse
Affiliation(s)
- Maiko Kadowaki
- Third Department of Internal Medicine, University of Fukui, 23-3 Eiheiji-cho, Matsuoka, Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Kovanecz I, Rambhatla A, Ferrini M, Vernet D, Sanchez S, Rajfer J, Gonzalez-Cadavid N. Long-term continuous sildenafil treatment ameliorates corporal veno-occlusive dysfunction (CVOD) induced by cavernosal nerve resection in rats. Int J Impot Res 2007; 20:202-12. [PMID: 17882231 DOI: 10.1038/sj.ijir.3901612] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It was recently reported in the rat that vardenafil given in a continuous long-term manner was successful in preventing smooth muscle fibrosis in the penile corpora cavernosa and corporal veno-occlusive dysfunction (CVOD) that occur following bilateral cavernosal nerve resection (BCNR), a model for human erectile dysfunction after radical prostatectomy. To expand on this finding and to determine whether this effect was common to other PDE5 inhibitors, and occurred in part by stimulation of the spontaneous induction of inducible nitric oxide synthase (iNOS, also known as NOS2), male Fischer 344 rats (N=10/group) were subjected to either BCNR or unilateral cavernosal nerve resection (UCNR) and treated with sildenafil (20 mg kg(-1) day(-1)) in the drinking water daily for 45 days. Additional BCNR groups received L-NIL (6.7 mg kg(-1) day(-1)) as inhibitor of iNOS activity, with or without concurrent sildenafil administration. It was determined that sildenafil, like vardenafil, (1) prevented the 30% decrease in the smooth muscle cell/collagen ratio, and the 3-4-fold increase in apoptosis and reduction in cell proliferation, and partially counteracted the increase in collagen, seen with both UCNR and BCNR; and (2) normalized the CVOD, measured by dynamic infusion cavernosometry, induced by both BCNR and UCNR. The long-term inhibition of iNOS activity exacerbated corporal fibrosis and CVOD in the BCNR rats, but sildenafil functional effects were not affected by L-NIL. These data suggest that the salutary effects of continuous long-term PDE5 inhibitors on erectile function post-cavernosal nerve resection involve their ability to prevent the alterations in corporal histology induced by cavernosal nerve damage, in a process apparently independent from endogenous iNOS induction.
Collapse
Affiliation(s)
- I Kovanecz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Urology Research Laboratory, Torrance, CA 90502-2064, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhou W, Dasgupta C, Negash S, Raj JU. Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1459-66. [PMID: 17322285 DOI: 10.1152/ajplung.00143.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia triggers pulmonary vascular remodeling, which is associated with a modulation of the vascular smooth muscle cell (SMC) phenotype from a contractile, differentiated to a synthetic, dedifferentiated state. We previously reported that acute hypoxia represses cGMP-dependent protein kinase (PKG) expression in ovine fetal pulmonary venous SMCs (FPVSMCs). Therefore, we tested if altered expression of PKG could explain SMC phenotype modulation after exposure to hypoxia. Hypoxia-induced reduction in PKG protein expression strongly correlated with the repressed expression of SMC phenotype markers, myosin heavy chain (MHC), calponin, vimentin, alpha-smooth muscle actin (alphaSMA), and thrombospondin (TSP), indicating that hypoxic exposure of SMC induced phenotype modulation to dedifferentiated state, and PKG may be involved in SMC phenotype modulation. PKG-specific small interfering RNA (siRNA) transfection in FPVSMCs significantly attenuated calponin, vimentin, and MHC expression, with no effect on alphaSMA and TSP. Treatment with 30 microM Drosophila Antennapedia (DT-3), a membrane-permeable peptide inhibitor of PKG, attenuated the expression of TSP, MHC, alphaSMA, vimentin, and calponin. The results from PKG siRNA and DT-3 studies indicate that hypoxia-induced reduction in protein expression was also similarly impacted by PKG inhibition. Overexpression of PKG in FPVSMCs by transfection with a full-length PKG construct tagged with green fluorescent fusion protein (PKG-GFP) reversed the effect of hypoxia on the expression of SMC phenotype marker proteins. These results suggest that PKG could be one of the determinants for the expression of SMC phenotype marker proteins and may be involved in the maintenance of the differentiated phenotype in pulmonary vascular SMCs in hypoxia.
Collapse
Affiliation(s)
- Weilin Zhou
- Division of Neonatology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, 1124 West Carson St., Torrance, CA 90502, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Natriuretic peptides (atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide) are cardiac and vascular peptides with vasodilatory, diuretic, natriuretic, anti-inflammatory, antifibrotic and antimitogenic actions. Natriuretic peptides are implicated in normal pressure and volume homeostasis and in the defence against excessive increases in overload-related factors, vasopressive and cardiotoxic factors and their impact on the heart, blood vessels and brain. Genetic manipulation studies confirmed the importance of natriuretic peptides in these functions. Natriuretic peptides are metabolised by NPR-C (clearance receptors) and by enzymatic degradation by neutral endopeptidase. Natriuretic peptide levels (mainly brain natriuretic peptide) correlate with left ventricular hypertrophy and with the severity of heart failure, and are reduced by effective treatment, thus used as diagnostic and prognostic tools. Based on the multiple protective effects of natriuretic peptides, pharmacological therapy has been approved and includes potentiating natriuretic peptide levels by intravenous infusion or by inhibition of endogenous natriuretic peptide degradation. Because each approach has its limitations, the field remains open for improvement.
Collapse
Affiliation(s)
- Suhayla Mukaddam-Daher
- Centre Hospitalier de L'Université de Montréal Research Center, Laboratory of Cardiovascular Biochemistry, 3840 St-Urbain Street (6-816), Montreal, Quebec, Canada.
| |
Collapse
|