1
|
Randjelovic P, Veljkovic S, Stojiljkovic N, Sokolovic D, Ilic I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI JOURNAL 2017; 16:388-399. [PMID: 28507482 PMCID: PMC5427480 DOI: 10.17179/excli2017-165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
Due to high relative blood flow the kidney is prone to drug-induced damage. Aminoglycoside type antibiotic gentamicin is one of the leading cause of drug-induced nephrotoxicity. In recent years gentamicin nephrotoxicity is significantly reduced by shifting to once daily dosage as well as by eliminating known risk factors. Application of gentamicin is still related to serious side effects which are reported more often compared to other antibiotics. Because gentamicin is still heavily used and is highly efficient in treating infections, it is important to find mechanisms to reduce its nephrotoxicity. This aim can only be achieved through better understanding of kidney metabolism of gentamicin. This problem has been extensively researched in the last 20 years. The experimental results have provided evidence for almost complete understanding of mechanisms responsible for gentamicin nephrotoxicity. We now have well described morphological, biochemical and functional changes in kidney due to gentamicin application. During the years, this model has become so popular that now it is used as an experimental model for nephrotoxicity per se. This situation can mislead an ordinary reader of scientific literature that we know everything about it and there is nothing new to discover here. But quite opposite is true. The precise and complete mechanism of gentamicin nephrotoxicity is still point of speculation and an unfinished story. With emerge of new and versatile technics in biomedicine we have an opportunity to reexamine old beliefs and discover new facts. This review focuses on current knowledge in this area and gives some future perspectives.
Collapse
Affiliation(s)
- Pavle Randjelovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Slavimir Veljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Nenad Stojiljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Dušan Sokolovic
- University of Niš, Faculty of Medicine, Department of Biochemistry, Niš, Serbia
| | - Ivan Ilic
- University of Niš, Faculty of Medicine, Institute of Pathology, Niš, Serbia
| |
Collapse
|
2
|
Shi S, Guo Y, Lou Y, Li Q, Cai X, Zhong X, Li H. Sulfiredoxin involved in the protection of peroxiredoxins against hyperoxidation in the early hyperglycaemia. Exp Cell Res 2017; 352:273-280. [PMID: 28202395 DOI: 10.1016/j.yexcr.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/22/2023]
Abstract
As a direct consequence of hyperglycaemia, the excessive generation of ROS is central to the pathogenesis of diabetic cardiomyopathy. We hypothesize that stimulation of high glucose (HG) results in an increased sulfiredoxin (Srx) expression, which regulates ROS signaling through reducing the hyperoxidized peroxiredoxins (Prxs). We show that hyperoxidized Prxs were initially reduced in the preliminary stage but then dramatically increased in advanced stage and these changes corresponded to a significant increase of Srx expression in the heart of diabetic rats. These time-dependent changes were also confirmed in neonatal cardiomyocytes and H9c2 cells treated with HG. Moreover, the reduction rate of hyperoxidized Prxs was greatly improved in the HG 24h group, which had an elevated expression of Srx. Our data also show that HG-induced AP1 activation and Srx expression were almost abolished by JNK inhibitor and N-acetylcysteine (NAC). In addition, siRNA-Srx suppressed HG-induced ANP and β-MHC gene expression. These observations suggest that activation of AP1 induced by HG is important for the expression of Srx and the reduction of hyperoxidized Prxs in cardiomyocytes. This Srx induction maybe is the pivotal compensatory protection mechanism against oxidative stress in diabetes or hyperglycaemia. Most interestingly, hyperoxidized Prxs/Srx pathway may be involved in the cardiac hypertrophy signaling of diabetes.
Collapse
Affiliation(s)
- Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Yunqiu Guo
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Yanping Lou
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Quanfeng Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Xiaona Cai
- Department of Blood transfusion, Jiamusi Central Hospital, Jiamusi 154000, China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Hong Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
3
|
Denamur S, Boland L, Beyaert M, Verstraeten SL, Fillet M, Tulkens PM, Bontemps F, Mingeot-Leclercq MP. Subcellular mechanisms involved in apoptosis induced by aminoglycoside antibiotics: Insights on p53, proteasome and endoplasmic reticulum. Toxicol Appl Pharmacol 2016; 309:24-36. [DOI: 10.1016/j.taap.2016.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
|
4
|
Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, Choi MR. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
Affiliation(s)
- N. L. Rukavina Mikusic
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. C. Kravetz
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - N. M. Kouyoumdzian
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - S. L. Della Penna
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. I. Rosón
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - B. E. Fernández
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. R. Choi
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| |
Collapse
|
5
|
Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 2010; 79:33-45. [PMID: 20861826 DOI: 10.1038/ki.2010.337] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nephrotoxicity is one of the most important side effects and therapeutical limitations of aminoglycoside antibiotics, especially gentamicin. Despite rigorous patient monitoring, nephrotoxicity appears in 10-25% of therapeutic courses. Traditionally, aminoglycoside nephrotoxicity has been considered to result mainly from tubular damage. Both lethal and sub-lethal alterations in tubular cells handicap reabsorption and, in severe cases, may lead to a significant tubular obstruction. However, a reduced glomerular filtration is necessary to explain the symptoms of the disease. Reduced filtration is not solely the result of tubular obstruction and tubular malfunction, resulting in tubuloglomerular feedback activation; renal vasoconstriction and mesangial contraction are also crucial to fully explain aminoglycoside nephrotoxicity. This review critically presents an integrative view on the interactions of tubular, glomerular, and vascular effects of gentamicin, in the context of the most recent information available. Moreover, it discusses therapeutic perspectives for prevention of aminoglycoside nephrotoxicity derived from the pathophysiological knowledge.
Collapse
Affiliation(s)
- Jose M Lopez-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
6
|
Martínez-Salgado C, López-Hernández FJ, López-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 2007; 223:86-98. [PMID: 17602717 DOI: 10.1016/j.taap.2007.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/17/2007] [Accepted: 05/10/2007] [Indexed: 11/23/2022]
Abstract
Aminoglycoside antibiotics are the most commonly used antibiotics worldwide in the treatment of Gram-negative bacterial infections. However, aminoglycosides induce nephrotoxicity in 10-20% of therapeutic courses. Aminoglycoside-induced nephrotoxicity is characterized by slow rises in serum creatinine, tubular necrosis and marked decreases in glomerular filtration rate and in the ultrafiltration coefficient. Regulation of the ultrafiltration coefficient depends on the activity of intraglomerular mesangial cells. The mechanisms responsible for tubular nephrotoxicity of aminoglycosides have been intensively reviewed previously, but glomerular toxicity has received less attention. The purpose of this review is to critically assess the published literature regarding the toxic mechanisms of action of aminoglycosides on renal glomeruli and mesangial cells. The main goal of this review is to provide an actualized and mechanistic vision of pathways involved in glomerular toxic effects of aminoglycosides.
Collapse
Affiliation(s)
- Carlos Martínez-Salgado
- Unidad de Investigación, Hospital Universitario de Salamanca, Paseo San Vicente 58-182, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
7
|
Morales AI, Vicente-Sánchez C, Jerkic M, Santiago JM, Sánchez-González PD, Pérez-Barriocanal F, López-Novoa JM. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 2006; 210:128-35. [PMID: 16226777 DOI: 10.1016/j.taap.2005.09.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/19/2022]
Abstract
Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd+quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ana I Morales
- Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Morales AI, Rodríguez-Barbero A, Vicente-Sánchez C, Mayoral P, López-Novoa JM, Pérez-Barriocanal F. Resveratrol inhibits gentamicin-induced mesangial cell contraction. Life Sci 2005; 78:2373-7. [PMID: 16310224 DOI: 10.1016/j.lfs.2005.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 09/24/2005] [Indexed: 11/16/2022]
Abstract
Gentamicin is an aminoglycoside antibiotic that is very effective in treating different gram negative infections, however, one of its main side effects is nephrotoxicity. Gentamicin-induced decreases in glomerular filtration rate could be mediated by mesangial cell contraction. Resveratrol, a natural hydroxystilbene, has been identified to be a potent antioxidant with many biological activities including protection against kidney diseases. As we have previously demonstrated that gentamicin induced a reduction of planar surface area of cultured rat mesangial cells, and that resveratrol has a protective effect on gentamicin-induced nephrotoxicity in vivo, the aim of this study was to investigate the effect of resveratrol on gentamicin-induced mesangial cell contraction. This study demonstrates that the contractile effect of gentamicin on mesangial cells can be prevented by incubation with resveratrol at an optimal dose of 10 microM, as it blunted the gentamicin-induced reduction in planar cell surface area and the number of contracted cells. Besides, the preincubation with 10(-5)M diphenylene iodinium (DPI), an inhibitor of the NADP(H) oxidase, also blunted gentamicin-induced cell contraction. This preventive effect was higher when cells were incubated with both substances together. These results strongly suggest that the protective effect resveratrol against gentamicin-induced reduction in renal function in vivo could be mediated by inhibiting gentamicin-induced mesangial cells contraction.
Collapse
Affiliation(s)
- Ana I Morales
- Instituto "Reina Sofía" de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|