1
|
Cone AL, Wu KK, Kravitz AV, Norris AJ. Kappa opioid receptor activation increases thermogenic energy expenditure which drives increased feeding. iScience 2023; 26:107241. [PMID: 37485355 PMCID: PMC10362357 DOI: 10.1016/j.isci.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Opioid receptors, including the kappa opioid receptor (KOR), exert control over thermoregulation and feeding behavior. Notably, activation of KOR stimulates food intake, leading to postulation that KOR signaling plays a central role in managing energy intake. KOR has also been proposed as a target for treating obesity. Herein, we report studies examining how roles for KOR signaling in regulating thermogenesis, feeding, and energy balance may be interrelated using pharmacological interventions, genetic tools, quantitative thermal imaging, and metabolic profiling. Our findings demonstrate that activation of KOR in the central nervous system causes increased energy expenditure via brown adipose tissue activation. Importantly, pharmacologic, or genetic inhibition of brown adipose tissue thermogenesis prevented the elevated food intake triggered by KOR activation. Furthermore, our data reveal that KOR-mediated thermogenesis elevation is reversibly disrupted by chronic high-fat diet, implicating KOR signaling as a potential mediator in high-fat diet-induced weight gain.
Collapse
Affiliation(s)
- Aaron L. Cone
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenny K. Wu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexxai V. Kravitz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron J. Norris
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Ferrulli A, Gandini S, Cammarata G, Redaelli V, Massarini S, Macrì C, Terruzzi I, Cannavaro D, Luzi F, Luzi L. Deep transcranial magnetic stimulation in combination with skin thermography in obesity: a window on sympathetic nervous system. Acta Diabetol 2022; 59:729-742. [PMID: 35174415 PMCID: PMC8995296 DOI: 10.1007/s00592-022-01859-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
AIMS Obesity is known to be associated with an altered thermoregulation as well as a dysregulation of sympathetic nervous system (SNS). Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the SNS, we hypothesized a potential role of dTMS in affecting thermoregulation in obesity. Aims of the study were to monitor the effect of a single session of dTMS on body temperature in subjects with obesity, and to correlate the dTMS-induced changes in body temperature with activation of the SNS (epinephrine and norepinephrine release). METHODS Twenty-nine subjects with obesity [5 M, 24 F; age 50 (IQR: 58, 38) yrs; BMI 36.1 (IQR: 33.9, 38.7) kg/m2] were randomized into 2 groups receiving a single session of high frequency stimulation (HF) or sham stimulation. Under neutral thermal conditions, infrared thermography was utilized to assess bilateral fingernail-beds and abdominal temperature. RESULTS During a single session HF, the average temperature of both fingernail-beds decreased. Right-hand temperature difference was statistically greater in HF vs Sham: median = - 1.45 (IQR: - 2.0, - 1.0) °C for HF, p = 0.009. While temperature variation in the fingernail-bed of left hand was not statistically significant in HF compared to Sham: median = - 1.26 (IQR: - 1.6, -0.5) °C, p = 0.064. Concurrently, when estimating the effect of norepinephrine variation on temperature change of fingernail-bed of left hand, a borderline significant positive association was estimated (beta = 1.09, p = 0.067) in HF. CONCLUSIONS Deep TMS revealed to be effective in modulating temperature in subjects with obesity, partially reversing obesity-induced alterations in heat production and dissipation with a potential SNS-mediated mechanism.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulio Cammarata
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Veronica Redaelli
- Department of Biomedical, Surgical and Dental Sciences - One Health Unit, University of Milan, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
| | - Concetta Macrì
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Daniele Cannavaro
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Luzi
- Department of Biomedical, Surgical and Dental Sciences - One Health Unit, University of Milan, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese, N. 300, 20099, Sesto San Giovanni (MI), Italy.
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Norris AJ, Shaker JR, Cone AL, Ndiokho IB, Bruchas MR. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses. eLife 2021; 10:60779. [PMID: 33667158 PMCID: PMC7935488 DOI: 10.7554/elife.60779] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Maintaining stable body temperature through environmental thermal stressors requires detection of temperature changes, relay of information, and coordination of physiological and behavioral responses. Studies have implicated areas in the preoptic area of the hypothalamus (POA) and the parabrachial nucleus (PBN) as nodes in the thermosensory neural circuitry and indicate that the opioid system within the POA is vital in regulating body temperature. In the present study we identify neurons projecting to the POA from PBN expressing the opioid peptides dynorphin and enkephalin. Using mouse models, we determine that warm-activated PBN neuronal populations overlap with both prodynorphin (Pdyn) and proenkephalin (Penk) expressing PBN populations. Here we report that in the PBN Prodynorphin (Pdyn) and Proenkephalin (Penk) mRNA expressing neurons are partially overlapping subsets of a glutamatergic population expressing Solute carrier family 17 (Slc17a6) (VGLUT2). Using optogenetic approaches we selectively activate projections in the POA from PBN Pdyn, Penk, and VGLUT2 expressing neurons. Our findings demonstrate that Pdyn, Penk, and VGLUT2 expressing PBN neurons are critical for physiological and behavioral heat defense.
Collapse
Affiliation(s)
- Aaron J Norris
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Jordan R Shaker
- Medical Scientist Training Program, University of Washington, Seattle, United States
| | - Aaron L Cone
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Imeh B Ndiokho
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, United States
| |
Collapse
|
4
|
Bernstein K, Landau R. Neuraxial Morphine-Induced Hypothermia After Cesarean Delivery Managed With Nalbuphine: A Case Report. A A Pract 2021; 14:e01220. [PMID: 32539271 DOI: 10.1213/xaa.0000000000001220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuraxial morphine-induced hypothermia has been reported as a relatively rare complication, with the successful use of naloxone and lorazepam to reverse symptoms. We report a case of intrathecal morphine-induced hypothermia with profuse sweating, intractable nausea, and vomiting in a primigravid woman undergoing cesarean delivery in the setting of preeclampsia. All symptoms rapidly resolved after a single dose of intravenous nalbuphine. Because nalbuphine has a long track record of safe use on labor and delivery units, it is an attractive and novel choice for treatment of neuraxial morphine-induced hypothermia.
Collapse
Affiliation(s)
- Kyra Bernstein
- From the Department of Anesthesiology, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
5
|
Fantinati A, Ossato A, Bianco S, Canazza I, De Giorgio F, Trapella C, Marti M. 1-cyclohexyl-x-methoxybenzene derivatives, novel psychoactive substances seized on the internet market. Synthesis and in vivo pharmacological studies in mice. Hum Psychopharmacol 2017; 32. [PMID: 28657178 DOI: 10.1002/hup.2560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Among novel psychoactive substances notified to EMCDDA and Europol were 1-cyclohexyl-x-methoxybenzene stereoisomers (ortho, meta, and para). These substances share some structural characteristics with phencyclidine and tramadol. Nowadays, no information on the pharmacological and toxicological effects evoked by 1-cyclohexyl-x-methoxybenzene are reported. The aim of this study was to investigate the effect evoked by each one stereoisomer on visual stimulation, body temperature, acute thermal pain, and motor activity in mice. METHODS Mice were evaluated in behavioral tests carried out in a consecutive manner according to the following time scheme: observation of visual placing response, measures of core body temperature, determination of acute thermal pain, and stimulated motor activity. RESULTS All three stereoisomers dose-dependent inhibit visual placing response (rank order: meta > ortho > para), induce hyperthermia at lower and hypothermia at higher doses (meta > ortho > para) and cause analgesia to thermal stimuli (para > meta = ortho), while they do not alter motor activity. CONCLUSIONS For the first time, this study demonstrates that systemic administration of 1-cyclohexyl-x-methoxybenzene compounds markedly inhibit visual response, promote analgesia, and induce core temperature alterations in mice. This data, although obtained in animal model, suggest their possible hazard for human health (i.e., hyperthermia and sensorimotor alterations). In particular, these novel psychoactive substances may have a negative impact in many daily activities, greatly increasing the risk factors for workplace accidents and traffic injuries.
Collapse
Affiliation(s)
- Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Ossato
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Sara Bianco
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Fabio De Giorgio
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Center for Neuroscience and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| |
Collapse
|
6
|
Mu and kappa opioid receptors of the periaqueductal gray stimulate and inhibit thermogenesis, respectively, during psychological stress in rats. Pflugers Arch 2017; 469:1151-1161. [DOI: 10.1007/s00424-017-1966-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
|
7
|
Oakley AE, Steiner RA, Chavkin C, Clifton DK, Ferrara LK, Reed SD. κ Agonists as a novel therapy for menopausal hot flashes. Menopause 2015; 22:1328-34. [PMID: 25988798 PMCID: PMC4651855 DOI: 10.1097/gme.0000000000000476] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The etiology of postmenopausal hot flashes is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing kisspeptin, neurokinin B and dynorphin-called KNDy neurons-are located adjacent to the thermoregulatory center. KNDy neurons regulate pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). Dynorphin may inhibit this system by binding κ opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. METHODS A double-blind, cross-over, placebo-controlled pilot study evaluated the effects of a κ agonist. Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate to severe hot flashes (aged 48-60 y) were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all three interventions: placebo, standard-dose pentazocine/naloxone (50/0.5 mg), or low-dose pentazocine/naloxone (25/0.25 mg). In an inpatient research setting, each participant received the three interventions, in randomized order, on three separate days. On each day, an intravenous catheter was inserted for LH blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. RESULTS The mean (SEM) hot flash frequency 2 to 7 hours after therapy initiation was lower than that for placebo (standard-dose κ agonist, 4.75 [0.67] hot flashes per 5 h; low-dose κ agonist, 4.50 [0.57] hot flashes per 5 h; placebo, 5.94 [0.78] hot flashes per 5 h; P = 0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some--but not all--women. CONCLUSIONS This pilot study suggests that κ agonists may affect menopausal vasomotor symptoms.
Collapse
Affiliation(s)
- Amy E Oakley
- 1Department of Physiology and Biophysics, University of Washington, Seattle, WA 2Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 3Department of Pharmacology, University of Washington, Seattle, WA
| | | | | | | | | | | |
Collapse
|
8
|
A comparison of the antinociceptive and temperature responses to morphine and fentanyl derivatives in rats. Arch Pharm Res 2013; 36:501-8. [PMID: 23440583 DOI: 10.1007/s12272-013-0072-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 12/22/2022]
Abstract
In addition to producing antinociception, opioids exert profound effects on body temperature. This study aimed at comparing antinociceptive and hyperthermic responses between two groups of μ-opioid receptor agonists: fentanyl (4-anilinopiperidine-type) and morphine (phenanthrene-type) derivatives in rats. Analgesic activity was assessed by tail immersion test and the body temperature by insertion of a thermometer probe into the colon. Fentanyl (F), (±)-cis-3-methyl fentanyl (CM), (±)-cis-3-carbomethoxy fentanyl (C), (±)trans-3-carbomethoxy fentanyl (T) and (±)-cis-3 butyl fentanyl (B) produced dose-dependent increase in antinociception and hyperthermia. The relative order of analgesic potency was: CM(11.27)>F(1)>C(0.35)≥T(0.11)≥B(0.056). Similar to this, the relative order of hyperthermic potency was: CM(8.43)>F(1)>C(0.46)≥T(0.11)≥B(0.076). Morphine (M), oxycodone (O), thebacon (T) and 6,14-ethenomorphinan-7-methanol, 4,5-epoxy-6-fluoro-3-hydroxy-α,α,17-trimethyl-, (5α,7α) (E) also produced dose-dependent increase in antinociception and hyperthermia. Among morphine derivatives the relative order of analgesic potency was: E(56)>O(5)≥T(2.6)>M(1), and similar to this, the relative order of hyperthermic potency was: E(37)>O(3)≥T(2.3)>M(1). Morphine (phenanthrene-type) and fentanyl (4-anilinopiperidine-type) derivatives produced hyperthermia in rats at doses about 2 times lower, and 6-11 times higher, than their median antinociceptive doses, respectively. This study is first to identify difference between these two classes of opioid drugs in their potencies in producing hyperthermia. Further studies are needed to clarify the significance of these findings.
Collapse
|
9
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011; 3:822-45. [PMID: 21622235 DOI: 10.2741/190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
10
|
Rawls SM, Benamar K. Effects of opioids, cannabinoids, and vanilloids on body temperature. Front Biosci (Schol Ed) 2011. [PMID: 21622235 DOI: 10.2741/s190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University Health Sciences Center, Temple University, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
11
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
12
|
Retraction. Shed blood transfusion and its effect on postoperative fever: a comparative study. Arch Orthop Trauma Surg 2010; 130:717. [PMID: 17004078 DOI: 10.1007/s00402-006-0215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Indexed: 11/25/2022]
|
13
|
Winterhalter M, Münte S, Gerhard M, Danzeisen O, Jüttner T, Monaca E, Hoy L, Rahe-Meyer N, Kienbaum P. Prospective study comparing skin impedance with EEG parameters during the induction of anaesthesia with fentanyl and etomidate. Eur J Med Res 2010; 15:47-53. [PMID: 20452883 PMCID: PMC3352044 DOI: 10.1186/2047-783x-15-2-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Sympathetic stimulation leads to a change in electrical skin impedance. So far it is unclear whether this effect can be used to measure the effects of anaesthetics during general anaesthesia. The aim of this prospective study is to determine the electrical skin impedance during induction of anaesthesia for coronary artery bypass surgery with fentanyl and etomidate. Methods The electrical skin impedance was measured with the help of an electro-sympathicograph (ESG). In 47 patients scheduled for elective cardiac surgery, anaesthesia was induced with intravenous fentanyl 10 μg/kg and etomidate 0.3 mg/kg. During induction, the ESG (Electrosympathicograph), BIS (Bispectral IndeX), BP (arterial blood pressure) and HR (heart rate) values of each patient were recorded every 20 seconds. The observation period from administration of fentanyl to intubation for surgery lasted 4 min. Results The ESG recorded significant changes in the electrical skin impedance after administration of fentanyl and etomidate(p < 0.05). During induction of anaesthesia, significant changes of BIS, HR and blood pressure were observed as well (p < 0.05). Conclusions The electrical skin impedance measurement may be used to monitor the effects of anesthetics during general anaesthesia.
Collapse
Affiliation(s)
- Michael Winterhalter
- University of Düsseldorf, Department of Anaesthesiology, Moorenstr.5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Res 2009; 1286:66-74. [DOI: 10.1016/j.brainres.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/10/2009] [Accepted: 06/13/2009] [Indexed: 11/16/2022]
|
15
|
Pang GSY, Wang J, Wang Z, Goh C, Lee CGL. The G allele of SNP E1/A118G at the µ-opioid receptor gene locus shows genomic evidence of recent positive selection. Pharmacogenomics 2009; 10:1101-9. [DOI: 10.2217/pgs.09.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioid drug response and pain perception differs greatly amongst different individuals. The µ-opioid receptor (MOR) is the main receptor target for important opioid analgesics. As SNPs may contribute to interindividual differences in drug response, in silico signatures of recent positive selection (RPS) were utilized to seek out potentially functional SNPs in the MOR gene in order to facilitate the prioritization of SNPs for evaluation in genetic association studies. Out of over 1000 SNPs at the MOR locus, 184 high-frequency SNPs were interrogated for signatures of RPS. A total of five SNPs (four noncoding and one nonsynonymous coding) demonstrated in silico evidence of RPS. Significantly, the nonsynonymous E1/A118G SNP, which was previously reported to be functionally important, showed in silico evidence of RPS. This reaffirms the feasibility of utilizing in silico signatures of RPS to identify potentially functionally significant SNPs for association studies. Interestingly, the positively selected G allele of this RPS SNP was also predicted to create a novel exon splice enhancer as well as p53 binding sites.
Collapse
Affiliation(s)
- Grace SY Pang
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- Lien Centre for Palliative Care, Singapore
| | - Jingbo Wang
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Zihua Wang
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Cynthia Goh
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- Lien Centre for Palliative Care, Singapore
| | - Caroline GL Lee
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- DUKE-NUS Graduate Medical School, Singapore
| |
Collapse
|
16
|
Fraga D, Machado RR, Fernandes LC, Souza GEP, Zampronio AR. Endogenous opioids: role in prostaglandin-dependent and -independent fever. Am J Physiol Regul Integr Comp Physiol 2008; 294:R411-20. [DOI: 10.1152/ajpregu.00465.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the participation of μ-opioid-receptor activation in body temperature (Tb) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid μ-receptor-antagonist cyclic d-Phe-Cys-Try-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 0.1–1.0 μg) reduced fever induced by LPS (5.0 μg/kg) but did not change Tb at ambient temperatures of either 20°C or 28°C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0–10.0 mg/kg, 3.0–30.0 μg, and 1–100 ng, respectively) produced a dose-dependent increase in Tb. Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 μg icv) reduced the fever induced by intracerebroventricular administration of TNF-α (250 ng), IL-6 (300 ng), CRF (2.5 μg), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF2α (500.0 ng) but not the fever induced by IL-1β (3.12 ng) or PGE2 (125.0 ng) or the second phase of the fever induced by PGF2α. Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE2 levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1β and prostaglandins) recruit the opioid system to cause a μ-receptor-mediated fever.
Collapse
|
17
|
Zhang H, Shi YG, Woods JH, Watson SJ, Ko MC. Central kappa-opioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: behavioral and BDNF mRNA expression studies. Eur J Pharmacol 2007; 570:89-96. [PMID: 17601558 PMCID: PMC2031926 DOI: 10.1016/j.ejphar.2007.05.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 12/29/2022]
Abstract
kappa-opioid receptor antagonists such as nor-Binaltorphimine (nor-BNI) have been shown to produce antidepressant-like behavioral effects in animal models of depression. The aim of this study was to investigate further the duration of centrally administered nor-BNI-induced antidepressant-like actions measured by both behavior and brain-derived neurotrophic factor (BDNF) gene expression. In addition, antagonist studies were conducted to determine the role of opioid receptor subtypes and the time course of nor-BNI's pharmacological actions. Antidepressant-like behavioral effects were measured by decreased immobility in the rat forced swim test and BDNF mRNA expression was determined by in situ hybridization. Centrally administered nor-BNI (20 microg, i.c.v.) decreased immobility and increased BDNF mRNA expression in the hippocampus on day 1, not on days 3-14, post-administration. Systemic administration of selective mu-, delta- and kappa-opioid receptor antagonists did not block nor-BNI-induced antidepressant-like effects. In contrast, i.c.v. administration of nor-BNI 7 or 14 days earlier significantly blocked subsequent nor-BNI-induced decreased immobility and upregulation of BDNF mRNA expression. Although the duration of nor-BNI's antidepressant-like effects did not synchronize with that of its kappa-opioid receptor antagonist effects, this study is the first to show that centrally administered nor-BNI, like most clinically used antidepressants, can upregulate BDNF mRNA expression in the rat hippocampus. These findings further demonstrate that central kappa-opioid receptor mediates antidepressant-like effects of nor-BNI measured by both behavior and BDNF gene expression.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yong-Gong Shi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H. Woods
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stanley J. Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mei-Chuan Ko
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychology, National Cheng Chi University, Taipei, Taiwan
- * Corresponding author. Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA. Tel: +1-734-647-3119; fax: +1-734-764-7118. E-mail address: (M.C. Ko)
| |
Collapse
|
18
|
Abstract
Brain damage as a result of hyperthermia or heat-stress has been the focus of attention in many areas of neuroscience in recent years. Heat-induced alterations in structural components of the central nervous system (CNS) will obviously also influence the relevant transmitter systems, which may be involved in a variety of different behaviors. Indeed, many studies have indicated that excitatory amino acids, and monoaminergic and peptidergic systems are affected during hyperthermia. This chapter will address past and current research on various neuropeptides that have been implicated in the consequences of hyperthermia and various other heat disorders. However, considering the large and even increasing number of identified neuroactive peptides, it is necessary to limit this chapter to a few peptides or peptide systems, which have received particular attention in relation to hyperthermia. Among these are the opioid peptides, the tachykinins, calcitonin gene-related peptide (CGRP), and peptides belonging to the angiotensin system. Most of these neuropeptides are not only affected by hyperthermia and abnormal alterations in the body temperature but also are involved in the endogenous mechanisms of regulating body temperature. This review does not endeavor to fully cover the field but it does aim to give the reader an idea of how various neuropeptides may be involved in the control of body heat and how peptidergic systems are affected during various thermal changes, including both immediate and long-term consequences.
Collapse
Affiliation(s)
- Fred Nyberg
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
19
|
Dimicco JA, Zaretsky DV. The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol 2007; 292:R47-63. [PMID: 16959861 DOI: 10.1152/ajpregu.00498.2006] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons in the dorsomedial hypothalamus (DMH) play key roles in physiological responses to exteroceptive (“emotional”) stress in rats, including tachycardia. Tachycardia evoked from the DMH or seen in experimental stress in rats is blocked by microinjection of the GABAA receptor agonist muscimol into the rostral raphe pallidus (rRP), an important thermoregulatory site in the brain stem, where disinhibition elicits sympathetically mediated activation of brown adipose tissue (BAT) and cutaneous vasoconstriction in the tail. Disinhibition of neurons in the DMH also elevates core temperature in conscious rats and sympathetic activity to least significant difference interscapular BAT (IBAT) and IBAT temperature in anesthetized preparations. The latter effects are blocked by microinjection of muscimol into the rRP, while microinjection of muscimol into either the rRP or DMH suppresses increases in sympathetic nerve activity to IBAT, IBAT temperature, and core body temperature elicited either by microinjection of PGE2 into the preoptic area (an experimental model for fever), or central administration of fentanyl. Neurons concentrated in the dorsal region of the DMH project directly to the rRP, a location corresponding to that of neurons transsynaptically labeled from IBAT. Thus these neurons control nonshivering thermogenesis in rats, and their activation signals its recruitment in diverse experimental paradigms. Evidence also points to a role for neurons in the DMH in thermoregulatory cutaneous vasoconstriction, shivering, and endocrine adjustments. These directions provide intriguing avenues for future exploration that may expand our understanding of the DMH as an important hypothalamic site for the integration of autonomic, endocrine, and behavioral responses to diverse challenges.
Collapse
Affiliation(s)
- Joseph A Dimicco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
20
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
21
|
Ansonoff MA, Zhang J, Czyzyk T, Rothman RB, Stewart J, Xu H, Zjwiony J, Siebert DJ, Yang F, Roth BL, Pintar JE. Antinociceptive and hypothermic effects of Salvinorin A are abolished in a novel strain of kappa-opioid receptor-1 knockout mice. J Pharmacol Exp Ther 2006; 318:641-8. [PMID: 16672569 DOI: 10.1124/jpet.106.101998] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Salvia divinorum is a natural occurring hallucinogen that is traditionally used by the Mazatec Indians of central Mexico. The diterpene salvinorin A was identified as an active component of S. divinorum over 20 years ago, but only recently has biochemical screening indicated that a molecular target of salvinorin A in vitro is the kappa-opioid receptor. We have examined whether salvinorin A, the C2-substituted derivative salvinorinyl-2-propionate, and salvinorin B can act as kappa-opioid receptor agonists in vivo. We found that following intracerebroventricular injection over a dose range of 1 to 30 microg of both salvinorin A and salvinorinyl-2-propionate produces antinociception in wild-type mice but not in a novel strain of kappa-opioid receptor knockout mice. Moreover, both salvinorin A and salvinorinyl-2-propionate reduce rectal body temperature, similar to conventional kappa-opioid receptor agonists, in a genotype-dependent manner. In addition, we determined that salvinorin A has high affinity for kappa 1- but not kappa 2-opioid receptors, demonstrating selectivity for this receptor subclass. Finally, treatment over the same dose range with salvinorin B, which is inactive in vitro, produced neither antinociceptive nor hypothermic effects in wild-type mice. These data demonstrate that salvinorin A is the active component of S. divinorum, selective for kappa(1)-opioid receptors, and that salvinorin A and specific structurally related analogs produce behavioral effects that require the kappa-opioid receptor.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Body Temperature/drug effects
- Brain/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Diterpenes/isolation & purification
- Diterpenes/pharmacology
- Diterpenes, Clerodane
- Dose-Response Relationship, Drug
- In Vitro Techniques
- Injections, Intravenous
- Mice
- Mice, Knockout
- Mutation/physiology
- Pain Measurement/drug effects
- Plant Leaves/chemistry
- Radioligand Assay
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/physiology
- Salvia/chemistry
Collapse
Affiliation(s)
- Michael A Ansonoff
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School (UMDNJ-RWJMS), 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|