1
|
Pantoja-Ruiz C, Restrepo-Jimenez P, Castañeda-Cardona C, Ferreirós A, Rosselli D. Cannabis and pain: a scoping review. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2022; 72:142-151. [PMID: 34280454 PMCID: PMC9373074 DOI: 10.1016/j.bjane.2021.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2021] [Accepted: 06/26/2021] [Indexed: 11/05/2022]
Abstract
For centuries, cannabis has been used with many different purposes, including medicinal use, usually bypassing any formal approval process. However, during the last decade, interest in cannabis in medicine has been increasing, and several countries, including the United States and Canada, have produced their own legislation about marihuana and cannabis-based medicines. Because of this, interest in research has been increasing and evidence about its medical effects is becoming necessary. We conducted a review examining the evidence of cannabis in pain. Cannabis had been shown to be useful in acute and chronic pain, however recently, these results have been controverted. Within the different types of chronic pain, it has a weak evidence for neuropathic, rheumatic pain, and headache, modest evidence for multiple sclerosis related pain, and as adjuvant therapy in cancer pain. There is no strong evidence to recommend cannabis in order to decrease opioids in patients with chronic use. Even though cannabis-based medications appear to be mostly safe, mild adverse effects are common; somnolence, sedation, amnesia, euphoric mood, hyperhidrosis, paranoia, and confusion may limit the use of cannabis in clinical practice. Risks have not been systematically analyzed. Special concern arises on how adverse effect might affect vulnerable population such as elderly patients. More research is needed in order to evaluate benefits and risks, as well as the ideal administration route and dosages. As cannabis use increases in several countries, answers to these questions might be coming soon.
Collapse
Affiliation(s)
- Camila Pantoja-Ruiz
- Pontificia Universidad Javeriana, Medical School, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula Restrepo-Jimenez
- Pontificia Universidad Javeriana, Medical School, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | | | - Diego Rosselli
- Pontificia Universidad Javeriana, Medical School, Bogotá, Colombia.
| |
Collapse
|
2
|
|
3
|
Fitzcharles M, Eisenberg E. Medical cannabis: A forward vision for the clinician. Eur J Pain 2018; 22:485-491. [DOI: 10.1002/ejp.1185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M.A. Fitzcharles
- Alan Edwards Pain Management Unit; McGill University Health Centre; Montreal QC Canada
- Division of Rheumatology; McGill University Health Centre; Montreal QC Canada
| | - E. Eisenberg
- Pain Research Unit; Institute of Pain Medicine; Rambam Health Care Campus; Haifa Israel
- Technion-Institute of Technology; Haifa Israel
| |
Collapse
|
4
|
Eldeeb K, Leone-Kabler S, Howlett AC. Mouse Neuroblastoma CB 1 Cannabinoid Receptor-Stimulated [ 35S]GTPɣS Binding: Total and Antibody-Targeted Gα Protein-Specific Scintillation Proximity Assays. Methods Enzymol 2017; 593:1-21. [PMID: 28750799 PMCID: PMC6535336 DOI: 10.1016/bs.mie.2017.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are important regulators of cellular signaling functions and therefore are a major target for drug discovery. The CB1 cannabinoid receptor is among the most highly expressed GPCRs in neurons, where it regulates many differentiated neuronal functions. One model system for studying the biochemistry of neuronal responses is the use of neuroblastoma cells originating from the C1300 tumor in the A/J mouse, including cloned cell lines NS20, N2A, N18TG2, N4TG1, and N1E-115, and various immortalized hybrids of neurons with N18TG2 cells. GPCR signal transduction is mediated through interaction with multiple types and subtypes of G proteins that transduce the receptor stimulus to effectors. The [35S]GTPɣS assay provides a valuable pharmacological method to evaluate efficacy and potency in the first step in GPCR signaling. Here, we present detailed protocols for the [35S]GTPɣS-binding assay to measure the total G protein binding and the antibody-targeted scintillation proximity assay to measure specific Gα proteins in neuroblastoma cell membrane preparations. This chapter presents step-by-step methods from cell culture, membrane preparation, assay procedures, and data analysis.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Wake Forest School of Medicine, Winston-Salem, NC, United States; Campbell University School of Osteopathic Medicine, Lillington, NC, United States; AL-Azhar Faculty of Medicine, New Damietta, Egypt.
| | | | - Allyn C Howlett
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
5
|
Enerson BE, Lin A, Lu B, Zhao H, Lawton MP, Floyd E. Acute Drug-Induced Vascular Injury in Beagle Dogs: Pathology and Correlating Genomic Expression. Toxicol Pathol 2016; 34:27-32. [PMID: 16507541 DOI: 10.1080/01926230500512068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Acute vascular injury that leads to vascular inflammation is a common finding in the preclinical toxicity testing of drugs in rats and dogs. However, the relevance of this finding for risk to humans is unclear. Concern about the safety of these drugs is heightened by the current lack of noninvasive clinical methods to predict the onset of vascular damage in animals or humans. Determining the relevance of this poorly understood preclinical outcome for humans requires a better understanding of the molecular mechanisms of injury in addition to the development of sensitive and specific leading biomarkers for the clinical diagnosis of acute vascular damage. Most molecular research on this toxicity has been performed in rats, but recent development of canine gene expression microarrays makes transcriptomic studies now possible in the dog. In this study, we investigated the molecular mechanisms of drug-induced vascular injury in dogs using gene arrays. After treating Beagles with toxic doses of CI-947, an adenosine receptor agonist, we profiled gene expression in the coronary arteries and correlated those changes with histopathology at 16 and 24 hours after dosing. The results demonstrated that pathobiological processes such as stimulation of the innate immune response, increased extracellular matrix turnover and oxidative stress were active at times of very early injury.
Collapse
Affiliation(s)
- Bradley E Enerson
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Sanak M. Eicosanoid Mediators in the Airway Inflammation of Asthmatic Patients: What is New? ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:481-90. [PMID: 27582398 PMCID: PMC5011047 DOI: 10.4168/aair.2016.8.6.481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Lipid mediators contribute to inflammation providing both pro-inflammatory signals and terminating the inflammatory process by activation of macrophages. Among the most significant biologically lipid mediators, these are produced by free-radical or enzymatic oxygenation of arachidonic acid named "eicosanoids". There were some novel eicosanoids identified within the last decade, and many of them are measurable in clinical samples by affordable chromatography-mass spectrometry equipment or sensitive immunoassays. In this review, we present some recent advances in understanding of the signaling by eicosanoid mediators during asthmatic airway inflammation. Eicosanoid profiling in the exhaled breath condensate, induced sputum, or their metabolites measurements in urine is complementary to the cellular phenotyping of asthmatic inflammation. Special attention is paid to aspirin-exacerbated respiratory disease, a phenotype of asthma manifested by the most profound changes in the profile of eicosanoids produced. A hallmark of this type of asthma with hypersensitivity to non-steroid anti-inflammatory drugs (NSAIDs) is to increase biosynthesis of cysteinyl leukotrienes on the systemic level. It depends on transcellular biosynthesis of leukotriene C4 by platelets that adhere to granulocytes releasing leukotriene A4. However, other abnormalities are also reported in this type of asthma as a resistance to anti-inflammatory activity of prostaglandin E2 or a robust eosinophil interferon-γ response resulting in cysteinyl leukotrienes production. A novel mechanism is also discussed in which an isoprostane structurally related to prostaglandin E2 is released into exhaled breath condensate during a provoked asthmatic attack. However, it is concluded that any single eicosanoid or even their complex profile can hardly provide a thorough explanation for the mechanism of asthmatic inflammation.
Collapse
Affiliation(s)
- Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
8
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
9
|
Fitzcharles MA, McDougall J, Ste-Marie PA, Padjen I. Clinical implications for cannabinoid use in the rheumatic diseases: Potential for help or harm? ACTA ACUST UNITED AC 2012; 64:2417-25. [DOI: 10.1002/art.34522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Oddi S, Dainese E, Sandiford S, Fezza F, Lanuti M, Chiurchiù V, Totaro A, Catanzaro G, Barcaroli D, De Laurenzi V, Centonze D, Mukhopadhyay S, Selent J, Howlett AC, Maccarrone M. Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling. Br J Pharmacol 2012; 165:2635-51. [PMID: 21895628 PMCID: PMC3423250 DOI: 10.1111/j.1476-5381.2011.01658.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/15/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The CB(1) cannabinoid receptor is regulated by its association with membrane microdomains such as lipid rafts. Here, we investigated the role of palmitoylation of the CB(1) receptor by analysing the functional consequences of site-specific mutation of Cys(415) , the likely site of palmitoylation at the end of helix 8, in terms of membrane association, raft targeting and signalling. EXPERIMENTAL APPROACH The palmitoylation state of CB(1) receptors in rat forebrain was assessed by depalmitoylation/repalmitoylation experiments. Cys(415) was replaced with alanine by site-directed mutagenesis. Green fluorescence protein chimeras of both wild-type and mutant receptors were transiently expressed and functionally characterized in SH-SY5Y cells and HEK-293 cells by means of confocal microscopy, cytofluorimetry and competitive binding assays. Confocal fluorescence recovery after photobleaching was used to assess receptor membrane dynamics, whereas signalling activity was assessed by [(35) S]GTPγS, cAMP and co-immunoprecipitation assays. KEY RESULTS Endogenous CB(1) receptors in rat brain were palmitoylated. Mutation of Cys(415) prevented the palmitoylation of the receptor in transfected cells and reduced its recruitment to plasma membrane and lipid rafts; it also increased protein diffusional mobility. The same mutation markedly reduced the functional coupling of CB(1) receptors with G-proteins and adenylyl cyclase, whereas depalmitoylation abolished receptor association with a specific subset of G-proteins. CONCLUSIONS AND IMPLICATIONS CB(1) receptors were post-translationally modified by palmitoylation. Mutation of Cys(415) provides a receptor that is functionally impaired in terms of membrane targeting and signalling. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Enrico Dainese
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Simone Sandiford
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Filomena Fezza
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Mirko Lanuti
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Valerio Chiurchiù
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Antonio Totaro
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Giuseppina Catanzaro
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| | - Daniela Barcaroli
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Biomedical Sciences, University of Chieti-Pescara ‘G. d'Annunzio’Chieti, Italy
| | - Diego Centonze
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
- Department of Neurosciences, University of Rome ‘Tor Vergata’Rome, Italy
| | - Somnath Mukhopadhyay
- Neuroscience/Drug Abuse Research Program, Biomedical Biotechnology Research Institute, North Carolina Central UniversityDurham, NC, USA
| | - Jana Selent
- Research Group of biomedical Informatics (GRIB-IMIM), University of Pompeu Fabra, Barcelona Biomedical Research Park (PRBB)Barcelona, Spain
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health SciencesWinston-Salem, NC, USA
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of TeramoTeramo, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation I.R.C.C.S.Rome, Italy
| |
Collapse
|
11
|
Im DS. New intercellular lipid mediators and their GPCRs: An update. Prostaglandins Other Lipid Mediat 2009; 89:53-6. [DOI: 10.1016/j.prostaglandins.2009.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/24/2009] [Accepted: 01/25/2009] [Indexed: 01/08/2023]
|
12
|
Pasquariello N, Oddi S, Malaponti M, Maccarrone M. Regulation of gene transcription and keratinocyte differentiation by anandamide. VITAMINS AND HORMONES 2009; 81:441-67. [PMID: 19647122 DOI: 10.1016/s0083-6729(09)81017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anandamide (AEA) is a member of an endogenous class of lipid mediators, known as endocannabinoids, which are involved in various biological processes. In particular, AEA regulates cell growth, differentiation, and death. Accumulating evidence demonstrates that AEA controls also epidermal differentiation, one of the best characterized mechanisms of cell specialization. Indeed, the epidermis is a keratinized multistratified epithelium that functions as a barrier to protect the organism from dehydration, mechanical trauma, and microbial insults. Its function is established during embryogenesis and is maintained during the whole life span of the organism, through a complex and tightly controlled program, termed epidermal terminal differentiation (or cornification). Whereas the morphological changes that occur during cornification have been extensively studied, the molecular mechanisms that underlie this process remain poorly understood. In this chapter, we summarize current knowledge about the molecular regulation of proliferation and terminal differentiation in mammalian epidermis. In this context, we show that endocannabinoids are finely regulated by, and can interfere with, the differentiation program. In addition, we review the role of AEA in the control of cornification, and show that it occurs by maintaining a transcriptional repression of gene expression through increased DNA methylation.
Collapse
|
13
|
Hyman P, Kelner P. Pharmacotherapeutic Uses of Hormones. Nurs Clin North Am 2007; 42:1-18, v. [PMID: 17270586 DOI: 10.1016/j.cnur.2006.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article reviews the use of hormones and related molecules in pharmacology. Examples of hormones in the treatment of specific diseases is presented, including those where normal physiologic levels of hormones are restored, and others where supraphysiologic levels are used to achieve a therapeutic effect. Examples of the abuse of hormones are also described.
Collapse
Affiliation(s)
- Paul Hyman
- MedCentral College of Nursing, 335 Glessner Avenue, Mansfield, OH 44903, USA.
| | | |
Collapse
|
14
|
Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:923-40. [PMID: 17078925 DOI: 10.1016/j.bbamem.2006.09.026] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 09/28/2006] [Indexed: 12/17/2022]
Abstract
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P(1-5)) or LPA (LPA(1-3)); two more distantly related receptors are activated by LPA (LPA(4/5)); the GPR(3/6/12) receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca(2+) homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.
Collapse
|