1
|
Yadegari F, Gabler Pizarro LA, Marquez-Curtis LA, Elliott JAW. Temperature Dependence of Membrane Permeability Parameters for Five Cell Types Using Nonideal Thermodynamic Assumptions to Mathematically Model Cryopreservation Protocols. J Phys Chem B 2024; 128:1139-1160. [PMID: 38291962 PMCID: PMC10860702 DOI: 10.1021/acs.jpcb.3c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024]
Abstract
Cryopreservation is the process of preserving biological matter at subzero temperatures for long-term storage. During cryopreservation, cells are susceptible to various injuries that can be mitigated by controlling the cooling and warming profiles and cryoprotective agent (CPA) addition and removal procedures. Mathematical modeling of the changing cell volume at different temperatures can greatly reduce the experiments needed to optimize cryopreservation protocols. Such mathematical modeling requires as inputs the cell membrane permeabilities to water and CPA and the osmotically inactive fraction of the cell. Since the intra- and extracellular solutions are generally thermodynamically nonideal, our group has been incorporating the osmotic virial equation to model the solution thermodynamics that underlie the cell volume change equations, adding the second and third osmotic virial coefficients of the grouped intracellular solute to the cell osmotic parameters that must be measured. In our previous work, we reported methods to obtain cell osmotic parameters at room temperature by fitting experimental cell volume kinetic data with equations that incorporated nonideal solution thermodynamics assumptions. Since the relevant cell volume excursions occur at different temperatures, the temperature dependence of the osmotic parameters plays an important role. In this work, we present a new two-part fitting method to obtain five cell-type-specific parameters (water permeability, dimethyl sulfoxide permeability, osmotically inactive fraction, and the second and third osmotic virial coefficients of the intracellular solution) from experimental measurements of equilibrium cell volume and cell volume as a function of time at room temperature and 0 °C for five cell types, namely, human umbilical vein endothelial cells (HUVECs), H9c2 rat myoblasts, porcine corneal endothelial cells (PCECs), the Jurkat T-lymphocyte cell line, and human cerebral microvascular endothelial cells (hCMECs/D3 cell line). The fitting method in this work is based on both equilibrium and kinetic cell volume data, enabling us to solve some technical challenges and expand our previously reported measurement technique to 0 °C. Finally, we use the measured parameters to model the cell volume changes for a HUVEC cryopreservation protocol to demonstrate the impact of the nonideal thermodynamic assumptions on predicting the changing cell volume during freezing and thawing.
Collapse
Affiliation(s)
- Faranak Yadegari
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Laura A. Gabler Pizarro
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Leah A. Marquez-Curtis
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Janet A. W. Elliott
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, AB, T6G 1C9, Canada
| |
Collapse
|
2
|
Yuan H, Zhong Z, Liu Z, Ye Q. Factors influencing the success of cryopreserved parathyroid autotransplantation: A systematic review. Asian J Surg 2023; 46:3426-3431. [PMID: 37105818 DOI: 10.1016/j.asjsur.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Permanent hypoparathyroidism is a postoperative complication of thyroid and parathyroid surgery and can be cured by cryopreserved parathyroid autotransplantation (CPAT). However, due to the lack of unified and standardized guidelines, the limited ability of the parathyroid tissue itself to withstand cryopreservation, and some yet-to-be-defined processes or technologies, the success rate of cryopreserved parathyroid autotransplantation varies between institutions; it is low for some institutions and high for others. Due to the sparsity of data, views vary on which factors most influence the success rate of cryopreserved parathyroid autotransplantation. In this review, we analyzed the following probable influencing factors: ischemic period before cryopreservation; processes of cryopreservation and thawing, including freezing medium; freezing and thawing methods; duration of cryopreservation; examination of the graft before transplantation; graft site; mass of transplanted tissue fragments; blood calcium level; and the evaluation criteria for cryopreserved parathyroid autotransplantation success. Although the effects of these factors are debatable, we hypothesized that examining them in the above-given order to determine whether they affect the success rate of cryopreserved parathyroid autotransplantation could be beneficial to maximizing the success rate. Our findings led us to conclude that cryopreserved parathyroid autotransplantation operations should be standardized. Standardized guidelines for cryopreserved parathyroid autotransplantation that include such factors as ischemic period time, freezing and thawing methods, and recipient status should be established based on a comprehensive analysis of these factors.
Collapse
Affiliation(s)
- Haoran Yuan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China; National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China; National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China; National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China; National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan, China; The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| |
Collapse
|
3
|
Decellularized and solubilized pancreatic stroma promotes the in vitro proliferation, migration and differentiation of BMSCs into IPCs. Cell Tissue Bank 2019; 20:389-401. [PMID: 31270642 DOI: 10.1007/s10561-019-09777-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/13/2019] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the ability to differentiate into insulin-producing cells (IPCs). Bio-scaffolds derived from decellularized organs can act as a carrier for seed cells and may have broad applications in regenerative medicine. This study investigated the effect of native pancreatic stroma obtained from decellularized pancreas on the proliferation, migration and differentiation of BMSCs into IPCs, and explored the potential underlying molecular mechanism. The decellularized pancreas bio-scaffold was obtained by perfusion with Triton X-100/ammonium hydroxide, followed by digestion with a mixture of pepsin and hydrochloric acid to prepare the stroma solution. Islet-like cells were differentiated from BMSCs by a three-step induction method. The differences on the cytological behavior with or without stroma were evaluated by morphological observation, insulin release assay, qRT-PCR assay and western blot analysis. Our results showed that, stroma derived from decellularized pancreas could promote the proliferation and migration of BMSCs. Furthermore, the formation of IPCs could also be promoted, which possessed similar morphology to endogenous islets. During the induced differentiation process, the presence of stroma significantly increased the expression of insulin 1, insulin 2 and Pdx-1, as well as insulin release. This was accompanied by an increase in the phosphorylation of Akt and ERK in third stage cell clusters, which was prevented by the addition of the inhibitors PD98059 and LY294002, respectively. In summary, decellularized pancreatic stroma could promote the proliferation, migration and differentiation of BMSCs into IPCs, and this involved the activation of Akt and ERK signal pathways.
Collapse
|
4
|
Jimenez CR, Penitente-Filho JM, Torres CA, Medeiros AM, Silva LS. Vitrification of bovine preantral follicles with dimethylsulfoxide and sucrose plus α-tocopherol. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000300010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: The objective of this study was to evaluate the vitrification of bovine preantral follicles with dimethylsulfoxide (D) and sucrose (S) plus α-tocopherol 5mmol/L (T5) or 10mmol/L (T10) and, evaluate the thawed with minimal essential medium (m) with or without sucrose (s). Ovaries of cows were collected from slaughterhouse for the experiment I (n=66) and II (n=51). In the laboratory ovarian fragments were randomly assigned either to fresh control and 8 vitrification treatments (Controle and Dm; Dms, DSm; DSms; DST5m; DST5ms; DST10m; DST10ms). Ovarian fragments were placed in vitrification solution (5 min) and immersed in liquid nitrogen (-196°C), after a week, the fragments were thawed and analyzed. In the experiments I, preantral follicles were morphologically observed for histological evaluation, (normal; degenerated and developing of stage). In the experiment II, preantral follicles were mechanically isolated from ovarian tissue and examined with trypan blue, where dead and live corresponded to stained or non-stained. The treatments DSm, DSms and DST10m were effective in preserving the morphology in situ. However, the viability of isolated preantral follicles after vitrification remained high only in treatment DST10m. Thus, DST10m preserves survival rates and morphological integrity during vitrification of bovine preantral follicles.
Collapse
|
5
|
Preininger MK, Singh M, Xu C. Cryopreservation of Human Pluripotent Stem Cell-Derived Cardiomyocytes: Strategies, Challenges, and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:123-135. [PMID: 27837559 PMCID: PMC5328614 DOI: 10.1007/978-3-319-45457-3_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a vital cell source for in vitro modeling of genetic cardiovascular disorders, drug screening, and in vivo cardiac regeneration research. Looking forward, the ability to efficiently cryopreserve hPSC-CMs without compromising their normal biochemical and physiologic functions will dramatically facilitate their various biomedical applications. Although working protocols for freezing, storing, and thawing hPSC-CMs have been established, the question remains as to whether they are optimal. In this chapter, we discuss our current understanding of cryopreservation appertaining to hPSC-CMs, and proffer key questions regarding the mechanical, contractile, and regenerative properties of cryopreserved hPSC-CMs.
Collapse
Affiliation(s)
- Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Gurina TM, Pakhomov AV, Polyakova AL, Legach EI, Bozhok GA. The development of the cell cryopreservation protocol with controlled rate thawing. Cell Tissue Bank 2015; 17:303-16. [PMID: 26384675 DOI: 10.1007/s10561-015-9533-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
Thawing in the water bath is often considered as a standard procedure. The thermal history of samples thawed in this way is poorly controlled, but cryopreservation and banking of cell-based products require standardization, automation and safety of all the technological stages including thawing. The programmable freezers allow implementation of the controlled cooling as well as the controlled thawing. As the cell damage occurs during the phase transformation that takes place in the cryoprotectant medium in the process of freezing-thawing, the choice of warming rates within the temperature intervals of transformations is very important. The goal of the study was to investigate the influence of warming rates within the intervals of the phase transformations in the DMSO-based cryoprotectant medium on the cell recovery and to develop a cryopreservation protocol with controlled cooling and warming rates. The temperature intervals of phase transformations such as melting of the eutectic mixture of the cryoprotectant solution (MEMCS), melting of the eutectic salt solution (MESS), melting of the main ice mass (MMIM), recrystallization before MEMCS, recrystallization before MESS and recrystallization before MMIM were determined by thermo-mechanical analysis. The biological experiments were performed on the rat testicular interstitial cells (TIC). The highest levels of the cell recovery and metabolic activity after cryopreservation were obtained using the protocol with the high (20 °C/min) warming rate in the temperature intervals of crystallization of the eutectics as well as recrystallizations and the low (1 °C/min) warming rate in the temperature intervals of melting of the eutectics as well as MMIM. The total cell recovery was 65.3 ± 2.1 %, the recovery of the 3-beta-HSD-positive (Leydig) cells was 82.9 ± 1.8 %, the MTT staining was 32.5 ± 0.9 % versus 42.1 ± 1.7 %; 57.4 ± 2.1 % and 24.0 ± 1.1 % respectively, when compared to the thawing in the water bath.
Collapse
Affiliation(s)
- Tatyana M Gurina
- The Institute for Problems of Cryobiology and Cryomedicine, The National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Alexandr V Pakhomov
- The Institute for Problems of Cryobiology and Cryomedicine, The National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anna L Polyakova
- The Institute for Problems of Cryobiology and Cryomedicine, The National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Evgeniy I Legach
- The Institute for Problems of Cryobiology and Cryomedicine, The National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Galyna A Bozhok
- The Institute for Problems of Cryobiology and Cryomedicine, The National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
7
|
Biobanking: The Future of Cell Preservation Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 864:37-53. [PMID: 26420612 DOI: 10.1007/978-3-319-20579-3_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With established techniques cryopreservation is often viewed as an "old school" discipline yet modern cryopreservation is undergoing another scientific and technology development growth phase. In this regard, today's cryopreservation processes and cryopreserved products are found at the forefront of research in the areas of discovery science, stem cell research, diagnostic development and personalized medicine. As the utilization of cryopreserved cells continues to increase, the demands placed on the biobanking industry are increasing and evolving at an accelerated rate. No longer are samples providing for high immediate post-thaw viability adequate. Researchers are now requiring samples where not only is there high cell recovery but that the product recovered is physiologically and biochemically identical to its pre-freeze state at the genominic, proteomic, structural, functional and reproductive levels. Given this, biobanks are now facing the challenge of adapting strategies and protocols to address these needs moving forward. Recent studies have shown that the control and direction of the molecular response of cells to cryopreservation significantly impacts final outcome. This chapter provides an overview of the molecular stress responses of cells to cryopreservation, the impact of the apoptotic and necrotic cell death continuum and how studies focused on the targeted modulation of common and/or cell specific responses to freezing temperatures provide a path to improving sample quality and utility. This line of investigation has provided a new direction and molecular-based foundation guiding new research, technology development and procedures. As the use of and the knowledge base surrounding cryopreservation continues to expand, this path will continue to provide for improvements in overall efficacy and outcome.
Collapse
|