1
|
El Khamlichi C, Cobret L, Arrang JM, Morisset-Lopez S. BRET Analysis of GPCR Dimers in Neurons and Non-Neuronal Cells: Evidence for Inactive, Agonist, and Constitutive Conformations. Int J Mol Sci 2021; 22:ijms221910638. [PMID: 34638980 PMCID: PMC8508734 DOI: 10.3390/ijms221910638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are dimeric proteins, but the functional consequences of the process are still debated. Active GPCR conformations are promoted either by agonists or constitutive activity. Inverse agonists decrease constitutive activity by promoting inactive conformations. The histamine H3 receptor (H3R) is the target of choice for the study of GPCRs because it displays high constitutive activity. Here, we study the dimerization of recombinant and brain H3R and explore the effects of H3R ligands of different intrinsic efficacy on dimerization. Co-immunoprecipitations and Western blots showed that H3R dimers co-exist with monomers in transfected HEK 293 cells and in rodent brains. Bioluminescence energy transfer (BRET) analysis confirmed the existence of spontaneous H3R dimers, not only in living HEK 293 cells but also in transfected cortical neurons. In both cells, agonists and constitutive activity of the H3R decreased BRET signals, whereas inverse agonists and GTPγS, which promote inactive conformations, increased BRET signals. These findings show the existence of spontaneous H3R dimers not only in heterologous systems but also in native tissues, which are able to adopt a number of allosteric conformations, from more inactive to more active states.
Collapse
Affiliation(s)
- Chayma El Khamlichi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
| | - Laetitia Cobret
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
| | - Jean-Michel Arrang
- Centre de Psychiatrie et Neurosciences, 2 ter Rue d’Alésia, 75014 Paris, France;
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266 INSERM, Université Paris Descartes, 102 Rue de la Santé, 75014 Paris, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (C.E.K.); (L.C.)
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266 INSERM, Université Paris Descartes, 102 Rue de la Santé, 75014 Paris, France
- Correspondence: ; Tel.: +33-238257858
| |
Collapse
|
2
|
The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2015; 106:3-12. [PMID: 26164344 DOI: 10.1016/j.neuropharm.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The control of food intake and body weight is very complex. Key factors driving eating behavior are hunger and satiety that are controlled by an interplay of several central and peripheral neuroendocrine systems, environmental factors, the behavioral state and circadian rhythm, which all concur to alter homeostatic aspects of appetite and energy expenditure. Brain histamine plays a fundamental role in eating behavior as it induces loss of appetite and has long been considered a satiety signal that is released during food intake (Sakata et al., 1997). Animal studies have shown that brain histamine is released during the appetitive phase to provide a high level of arousal preparatory to feeding, but also mediates satiety. Furthermore, histamine regulates peripheral mechanisms such as glucose uptake and insulin function. Preclinical research indicates that activation of H1 and H3 receptors is crucial for the regulation of the diurnal rhythm of food consumption; furthermore, these receptors have been specifically recognized as mediators of energy intake and expenditure. Despite encouraging preclinical data, though, no brain penetrating H1 receptor agonists have been identified that would have anti-obesity effects. The potential role of the H3 receptor as a target of anti-obesity therapeutics was explored in clinical trials that did not meet up to the expectations or were interrupted (clinicaltrials.gov). Nonetheless, interesting results are emerging from clinical trials that evaluated the attenuating effect of betahistine (an H1 agonist/H3 antagonist) on metabolic side effects associated with chronic antipsychotics treatment. Aim of this review is to summarize recent results that suggest the clinical relevance of the histaminergic system for the treatment of feeding disorders and provide an up-to-date summary of preclinical research. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
3
|
Vanhanen J, Kinnunen M, Nuutinen S, Panula P. Histamine H3 receptor antagonist JNJ-39220675 modulates locomotor responses but not place conditioning by dopaminergic drugs. Psychopharmacology (Berl) 2015; 232:1143-53. [PMID: 25308376 DOI: 10.1007/s00213-014-3751-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/15/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE Brain histaminergic system is involved in the regulation of the dopaminergic circuitry. The role of histamine H3 receptor (H3R) in behaviors linked to amphetamine addiction and other behaviors induced by dopaminergic compounds has remained unclear. OBJECTIVE Our aim was to study whether H3R antagonist JNJ-39220675 inhibits amphetamine-induced stimulation and reward. The effects of JNJ-39220675 on dopamine D2-like receptor (D2R-like) agonist quinpirole-induced behaviors were also investigated in order to clarify whether the possible effects of H3R antagonists are D2R-like dependent. METHODS The effects of JNJ-39220675 on amphetamine and quinpirole-induced behavioral responses in mice were studied assessing the locomotor activation after both acute and repeated administrations of amphetamine and quinpirole. The place conditioning paradigm was also used as a measure of reward or aversion. RESULTS JNJ-39220675 inhibited amphetamine-induced stimulation acutely but not after repeated administrations. Amphetamine (2 mg/kg) induced conditioned place preference that was not affected by either of the tested doses of JNJ-39220675 (1 and 10 mg/kg). Quinpirole (0.5 mg/kg) induced conditioned place aversion to which the pretreatment by JNJ-39220675 (10 mg/kg) had no effect. In repeated administration, JNJ-39220675 did, however, inhibit quinpirole-induced tolerance to hypokinesia. CONCLUSIONS Our results show that although H3R antagonists inhibit ethanol reward, they may not possess the same ability on psychostimulants, such as amphetamine. However, if H3R antagonists will become clinically available, it is of importance that these compounds potentiate neither the rewarding nor aversive effects of other drugs.
Collapse
Affiliation(s)
- Jenni Vanhanen
- Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
4
|
Motawaj M, Arrang JM. Ciproxifan, a histamine H₃-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice. Eur J Neurosci 2011; 33:1197-204. [PMID: 21366724 DOI: 10.1111/j.1460-9568.2011.07618.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The role of histamine neurons in schizophrenia and psychostimulant abuse remains unclear. Behavioural sensitization to psychostimulants is a cardinal feature of these disorders. Here, we have explored the ability of imetit and ciproxifan (CPX), a reference H₃-receptor agonist and inverse agonist, respectively, to modulate locomotor sensitization induced in mice by methamphetamine (MET). Mice received saline, CPX (3 mg/kg) or imetit (3 mg/kg) 2 h before MET (2 mg/kg), once daily for 12 days, and were killed after a 2-day wash out. Imetit had no effect, but CPX induced a decrease of MET-induced locomotor activity, which became significant at Day 5, and even more at Day 10. Quantitative polymerase chain reaction was used in the sensitized mice to quantify brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA)-receptor subunit 1 (NR1) mRNAs, two factors that are altered in both schizophrenia and drug abuse. Imetit and CPX used alone had no effect on any marker. Sensitization by MET decreased BDNF mRNAs by 40% in the hippocampus. This decrease was reversed by CPX. Sensitization by MET also induced strong decreases of NR1 mRNAs in the cerebral cortex, hippocampus and striatum, but not hypothalamus. These decreases were also reversed by CPX. The strong modulator effect of CPX in mice sensitized to MET may result from its modulator effect on NR1 mRNAs in the cerebral cortex and striatum. The reversal by CPX of BDNF and NR1 mRNAs in the hippocampus of sensitized animals further strengthens the interest of H₃-receptor inverse agonists for the long-term treatment of cognitive deficits of patients with schizophrenia.
Collapse
Affiliation(s)
- Mouhammad Motawaj
- INSERM, Laboratoire de Neurobiologie et Pharmacologie Moléculaire, Centre de Psychiatrie et Neurosciences (CPN, U 894), Paris, France
| | | |
Collapse
|
5
|
Berlin M, Boyce CW, de Lera Ruiz M. Histamine H3 Receptor as a Drug Discovery Target. J Med Chem 2010; 54:26-53. [DOI: 10.1021/jm100064d] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Berlin
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Christopher W. Boyce
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Manuel de Lera Ruiz
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
6
|
Nuutinen S, Vanhanen J, Pigni MC, Panula P. Effects of histamine H3 receptor ligands on the rewarding, stimulant and motor-impairing effects of ethanol in DBA/2J mice. Neuropharmacology 2010; 60:1193-9. [PMID: 21044640 DOI: 10.1016/j.neuropharm.2010.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Histamine H3 receptor (H3R) antagonists are currently being investigated for the possible therapeutic use in various cognitive deficits such as those in schizophrenia, attention deficit hyperactivity disorder and Alzheimer's disease. Our previous studies suggest a role for H3Rs in ethanol-related behaviors in rat and mice. Here we have examined the role of different H3R ligands on the effects of ethanol in conditioned place preference (CPP) paradigm, stimulation of locomotor activity and motor impairment in rotarod and balance beam in male DBA/2J mice. We found that H3R antagonists ciproxifan and JNJ-10181457 inhibited the ethanol-evoked CPP whereas H3R agonist immepip did not alter ethanol-induced place preference. Acute stimulatory response by ethanol was also modulated by H3R ligands. Ciproxifan increased ethanol activation when ethanol was given 1g/kg but not at 1.5g/kg dose. Immepip pretreatment diminished ethanol stimulation and increased motor-impairing effects of ethanol on the balance beam. In conclusion, these findings give further evidence of the involvement of H3R in the regulation of the effects of ethanol. The inhibition of ethanol reward by H3R antagonism implies that H3R might be a possible target to suppress compulsory ethanol seeking. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
7
|
Guo RX, Anaclet C, Roberts JC, Parmentier R, Zhang M, Guidon G, Buda C, Sastre JP, Feng JQ, Franco P, Brown SH, Upton N, Medhurst AD, Lin JS. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox-/- mice. Br J Pharmacol 2009; 157:104-17. [PMID: 19413575 DOI: 10.1111/j.1476-5381.2009.00205.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Histamine H3 receptor antagonists are currently being evaluated in clinical trials for a number of central nervous system disorders including narcolepsy. These agents can increase wakefulness (W) in cats and rodents following acute administration, but their effects after repeat dosing have not been reported previously. EXPERIMENTAL APPROACH EEG and EMG recordings were used to investigate the effects of acute and repeat administration of the novel H3 antagonist GSK189254 on the sleep-wake cycle in wild-type (Ox+/+) and orexin knockout (Ox-/-) mice, the latter being genetically susceptible to narcoleptic episodes. In addition, we investigated H3 and H1 receptor expression in this model using radioligand binding and autoradiography. KEY RESULTS In Ox+/+ and Ox-/- mice, acute administration of GSK189254 (3 and 10 mg x kg(-1) p.o.) increased W and decreased slow wave and paradoxical sleep to a similar degree to modafinil (64 mg x kg(-1)), while it reduced narcoleptic episodes in Ox-/- mice. After twice daily dosing for 8 days, the effect of GSK189254 (10 mg x kg(-1)) on W in both Ox+/+ and Ox-/- mice was significantly reduced, while the effect on narcoleptic episodes in Ox-/- mice was significantly increased. Binding studies revealed no significant differences in H3 or H1 receptor expression between Ox+/+ and Ox-/- mice. CONCLUSIONS AND IMPLICATIONS These studies provide further evidence to support the potential use of H3 antagonists in the treatment of narcolepsy and excessive daytime sleepiness. Moreover, the differential effects observed on W and narcoleptic episodes following repeat dosing could have important implications in clinical studies.
Collapse
Affiliation(s)
- R X Guo
- INSERM/UCBL-U628, Integrated Physiology of Brain Arousal Systems, Department of Experimental Medicine, Faculty of Medicine, Claude Bernard University, Lyon Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wijtmans M, Leurs R, de Esch I. Histamine H3 receptor ligands break ground in a remarkable plethora of therapeutic areas. Expert Opin Investig Drugs 2007; 16:967-85. [PMID: 17594183 DOI: 10.1517/13543784.16.7.967] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neurotransmitter histamine exerts its action through four distinct histamine receptors. The histamine H(1) and H(2) receptor are well established drug targets, whereas the histamine H(4) receptor is undergoing rigorous characterisation at present. The histamine H(3) receptor (H(3)R) is a G(i/o)-protein coupled receptor and is mostly expressed in the CNS. A remarkably large and different array of therapeutic areas, in which ligands for the H(3)R may prove useful, has been identified and a massive research undertaking is underway to substantiate the high expectations for H(3)R ligands. At present, several ligands for the H(3)R are being evaluated in clinical studies. In this review, the many potential therapeutic areas for H(3)R antagonists, inverse agonists and agonists is discussed. Promising medicinal chemistry and toxicological developments, as well as the advancement of several H(3)R ligands into the clinic, will be highlighted. This review also describes the problems that have been overcome and the questions that remain in developing H(3)R-related drugs. Considering the tremendous efforts by industry, it can be expected that the first H(3)R drugs will reach the market soon.
Collapse
Affiliation(s)
- Maikel Wijtmans
- Vrije Universiteit Amsterdam, Leiden/Amsterdam Center of Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, De Boelelaan 1083, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Berlin M, Boyce CW. Recent advances in the development of histamine H3antagonists. Expert Opin Ther Pat 2007; 17:675-87. [DOI: 10.1517/13543776.17.6.675] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, Davis RK, Davis RP, Dawson LA, Foley AG, Gartlon J, Gonzalez MI, Heslop T, Hirst WD, Jennings C, Jones DNC, Lacroix LP, Martyn A, Ociepka S, Ray A, Regan CM, Roberts JC, Schogger J, Southam E, Stean TO, Trail BK, Upton N, Wadsworth G, Wald JA, White T, Witherington J, Woolley ML, Worby A, Wilson DM. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther 2007; 321:1032-45. [PMID: 17327487 DOI: 10.1124/jpet.107.120311] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.
Collapse
Affiliation(s)
- Andrew D Medhurst
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline, Third Ave., Harlow, Essex, CM19 5AW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Day M, Pan JB, Buckley MJ, Cronin E, Hollingsworth PR, Hirst WD, Navarra R, Sullivan JP, Decker MW, Fox GB. Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem Pharmacol 2007; 73:1123-34. [PMID: 17214974 DOI: 10.1016/j.bcp.2006.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/10/2006] [Accepted: 12/04/2006] [Indexed: 11/17/2022]
Abstract
Deficits in attention and response inhibition are apparent across several neurodegenerative and neuropsychiatric disorders for which current pharmacotherapy is inadequate. While it is difficult to model such executive processes in animals, the 5-choice serial reaction time test (5-CSRTT), which originated from the continuous performance test (CPT) in humans, may serve as a useful translational assay for efficacy in these key behavioral domains. At Wyeth and Abbott, we recently investigated the utility of employing the 5-CSRTT in adult rats. This involved training and testing groups of rats over an extended period of several months and required the animals to learn to nose-poke into one of five apertures following presentation of a brief visual stimulus in that aperture in order to obtain a food reward. When the stimulus duration was short, the rat had to pay close attention to make a correct choice--a nose-poke into the aperture with the brief visual stimulus. We evaluated nicotine and the histamine H(3) receptor antagonist, ciproxifan, since compounds targeting both nicotinic and histaminergic neurotransmission are currently under investigation for treating cognitive dysfunction in ADHD, AD and schizophrenia. After approximately 12 weeks of training, rats were tested with drug when they had achieved stable performance. Nicotine (0.2, 0.4 mg/kg s.c.) significantly improved accuracy and reduced errors of omission (reflecting improved attention and vigilance) when baseline performance was <90% correct. In contrast, nicotine tended to worsen accuracy when baseline performance was >90% correct. Using the same test paradigm, ciproxifan (3mg/kg i.p.) reduced premature responding, a measure of impulsivity. Under conditions of variable stimulus duration, ciproxifan also improved accuracy and decreased impulsivity. In summary, we have replicated previous findings by others of positive effects of nicotine on attention, but also showed that this is dependent on baseline performance. We also expanded on previous positive findings by others with ciproxifan on attention and both Wyeth and Abbott demonstrate for the first time decreased impulsivity with this mechanism.
Collapse
Affiliation(s)
- Mark Day
- Discovery Translational Medicine, Wyeth Research, 500 Arcola Road, PA 19426, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Humbert-Claude M, Morisset S, Gbahou F, Arrang JM. Histamine H3 and dopamine D2 receptor-mediated [35S]GTPgamma[S] binding in rat striatum: evidence for additive effects but lack of interactions. Biochem Pharmacol 2007; 73:1172-81. [PMID: 17306767 DOI: 10.1016/j.bcp.2007.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/19/2006] [Accepted: 01/03/2007] [Indexed: 11/28/2022]
Abstract
The interactions in the rat striatum between H(3) receptors (H(3)Rs) and D(2) receptors (D(2)Rs) were investigated with the [(35)S]GTPgamma[S] binding assay. The H(3)R agonist (R)alpha-methylhistamine increased [(35)S]GTPgamma[S] binding to striatal membranes with an EC(50)=14+/-5 nM and a maximal effect of +19+/-1%. This effect was inhibited by the H(3)R antagonist ciproxifan with a K(i)=1.0+/-0.3 nM. The D(2)R agonist quinpirole increased [(35)S]GTPgamma[S] binding to the same membranes with an EC(50)=1.5+/-0.5 microM and a maximal effect of +28+/-2%. Its effect was blocked by haloperidol with a K(i)=0.3+/-0.1 nM. The maximal effects of the H(3)R and D(2)R agonists were additive (+46+/-3%). However, D(2)R ligands did not modify the effects of H(3)R ligands and vice versa. Ciproxifan behaved as an H(3)R inverse agonist and decreased [(35)S]GTPgamma[S] binding. Haloperidol had no effect and did not change the inverse agonist effect of ciproxifan. Administrations for 10 days of ciproxifan (1.5mg/kg/day) or haloperidol (0.5mg/kg/day) did not change the effects of quinpirole and (R)alpha-methylhistamine, respectively. These data suggest that striatal H(3)Rs and D(2)Rs do not interact through their coupling to G-proteins. However, a hyperactivity of histaminergic and dopaminergic neurons being observed in schizophrenia, the additive activations of H(3)Rs and D(2)Rs suggest that they cooperate to generate some schizophrenic symptoms. Such a postsynaptic mechanism may underlie the antipsychotic-like effects of H(3)R inverse agonists and supports their therapeutic interest, alone or as adjunctive treatment with neuroleptics.
Collapse
Affiliation(s)
- Marie Humbert-Claude
- INSERM, Unité de Neurobiologie et Pharmacologie Moléculaire (U573), Centre Paul Broca, 75014 Paris, France
| | | | | | | |
Collapse
|