1
|
Zhang J, Li H, Dong J, Zhang N, Liu Y, Luo X, Chen J, Wang J, Wang A. Omics-Based Identification of Shared and Gender Disparity Routes in Hras12V-Induced Hepatocarcinogenesis: An Important Role for Dlk1-Dio3 Genomic Imprinting Region. Front Genet 2021; 12:620594. [PMID: 34135934 PMCID: PMC8202007 DOI: 10.3389/fgene.2021.620594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of gender disparity is very profound in hepatocellular carcinoma (HCC). Although previous research has revealed important roles of microRNA (miRNA) in HCC, there are no studies investigating the role of miRNAs in gender disparity observed hepatocarcinogenesis. In the present study, we investigated the global miRNAomics changes related to Ras-induced male-prevalent hepatocarcinogenesis in a Hras12V-transgenic mouse model (Ras-Tg) by next-generation sequencing (NGS). We identified shared by also unique changes in miRNA expression profiles in gender-dependent hepatocarcinogenesis. Two hundred sixty-four differentially expressed miRNAs (DEMIRs) with q value ≤0.05 and fold change ≥2 were identified. A vertical comparison revealed that the lower numbers of DEMIRs in the hepatic tumor (T) compared with the peri-tumor precancerous tissue (P) of Ras-Tg and normal liver tissue of wild-type C57BL/6J mice (W) in males indicated that males are more susceptible to develop HCC. The expression pattern analysis revealed 43 common HCC-related miRNAs and 4 Ras-positive-related miRNAs between males and females. By integrating the mRNA transcriptomic data and using 3-node FFL analysis, a group of significant components commonly contributing to HCC between sexes were filtered out. A horizontal comparison showed that the majority of DEMIRs are located in the Dlk1-Dio3 genomic imprinting region (GIR) and that they are closely related to not only hepatic tumorigenesis but also to gender disparity in hepatocarcinogenesis. This is achieved by regulating multiple metabolic pathways, including retinol, bile acid, and steroid hormones. In conclusion, the identification of shared and gender-dependent DEMIRs in hepatocarcinogenesis provides valuable insights into the mechanisms that contribute to male-biased Ras-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 2020; 11:46. [PMID: 32792008 PMCID: PMC7427087 DOI: 10.1186/s13293-020-00316-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.
Collapse
Affiliation(s)
- Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Hong Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Affiliated Sixth People's Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yi Zhao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xu Zheng
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuanyi Lei
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
3
|
Fan T, Rong Z, Dong J, Li J, Wang K, Wang X, Li H, Chen J, Wang F, Wang J, Wang A. Metabolomic and transcriptomic profiling of hepatocellular carcinomas in Hras12V transgenic mice. Cancer Med 2017; 6:2370-2384. [PMID: 28941178 PMCID: PMC5633588 DOI: 10.1002/cam4.1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of the Ras/MAPK pathway is prevalently involved in the occurrence and development of hepatocellular carcinoma (HCC). However, its effects on the deregulated cellular metabolic processes involved in HCC in vivo remain unknown. In this study, a mouse model of HCC induced by hepatocyte-specific expression of the Hras12V oncogene was investigated using an integrative analysis of metabolomics and transcriptomics data. Consistent with the phenotype of abundant lipid droplets in HCC, the lipid biosynthesis in HCC was significantly enhanced by (1) a sufficient supply of acetyl-CoA from enhanced glycolysis and citrate shuttle activity; (2) a sufficient supply of NADPH from enhanced pentose phosphate pathway (PPP) activity; (3) upregulation of key enzymes associated with lipid biosynthesis; and (4) downregulation of key enzymes associated with bile acid biosynthesis. In addition, glutathione (GSH) was significantly elevated, which may result from a sufficient supply of 5-oxoproline and L-glutamate as well as an enhanced reduction in the process of GSSG being turned into GSH by NADPH. The high level of GSH along with elevated Bcl2 and Ucp2 expression may contribute to a normal level of reactive oxygen species (ROS) in HCC. In conclusion, our results suggest that the lipid metabolism, glycolysis, PPP, tricarboxylic acid (TCA) cycle, citrate shuttle activity, bile acid synthesis, and redox homeostasis in the HCC induced by ras oncogene are significantly perturbed, and these altered metabolic processes may play crucial roles in the carcinogenesis, development, and pathological characteristics of HCC.
Collapse
Affiliation(s)
- Tingting Fan
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Zhuona Rong
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jianyi Dong
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Juan Li
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Kangwei Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Xinxin Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Huiling Li
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jun Chen
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Fujin Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jingyu Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Aiguo Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
4
|
Rong Z, Fan T, Li H, Li J, Wang K, Wang X, Dong J, Chen J, Wang F, Wang J, Wang A. Differential Proteomic Analysis of Gender-dependent Hepatic Tumorigenesis in Hras12V Transgenic Mice. Mol Cell Proteomics 2017; 16:1475-1490. [PMID: 28512230 DOI: 10.1074/mcp.m116.065474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/29/2017] [Indexed: 12/18/2022] Open
Abstract
Male prevalence is an outstanding characteristic of hepatocellular carcinoma (HCC), and the underlying mechanisms for this have remained largely unknown. In the present study, Hras12V transgenic mice, in which hepatocyte-specific expression of the ras oncogene induces male-biased hepatic tumorigenesis, were studied, and altered proteins were detected by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Protein samples from hepatic tumor tissues (T) and peritumor tissues (P) of transgenic males and females and the corresponding normal liver tissues (Wt) of nontransgenic males and females were subjected to pairwise comparisons based on proteomic analysis. Among 2381 autodetected protein spots, more than 1600 were differentially expressed based on a pairwise comparison (|ratio| > = 1.5, p < = 0.05). Of these, 180 spots were randomly selected for matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) identification; finally, 89 distinct proteins were obtained. Among these 89 proteins, 7 and 50 proteins were further validated by Western blotting and literature investigation, respectively. Intriguingly, compared with Wt, the altered proteins were relatively concentrated in T in transgenic females but in P in transgenic males. Consistently, the levels of p-ERK and p-mTOR were significantly higher in the T of females compared with that of males. The pathway enrichment assay showed that 5 pathways in males but only 1 in females were significantly altered in terms of the upregulated proteins in T compared with Wt. These data indicate that female hepatocytes are disturbed by oncogenes with great difficulty, whereas male hepatocytes readily do so. In addition, 33 proteins were gender-dependently altered in hepatic tumorigenesis. Moreover, 4% DNA packaging and 4% homeostasis-related functional proteins were found in females but not in males, and more nucleus proteins were found in females (8%) than in males (3%). In conclusion, the proteomic data and comparative analysis presented here offer crucial clues for elucidating the mechanisms that underlie the male prevalence in HCC.
Collapse
Affiliation(s)
- Zhuona Rong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Tingting Fan
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Huiling Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Juan Li
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Kangwei Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Xinxin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jianyi Dong
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jun Chen
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Fujin Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Jingyu Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| | - Aiguo Wang
- From the ‡Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning 116000, China.
| |
Collapse
|
5
|
Barone M, Margiotta M, Scavo MP, Gentile A, Francioso D, Papagni S, Castellaneta A, Mallamaci R, Di Leo A, Francavilla A. Possible involvement of androgen receptor alterations in hepatocarcinogenesis. Dig Liver Dis 2009; 41:665-670. [PMID: 19201267 DOI: 10.1016/j.dld.2008.12.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/10/2008] [Accepted: 12/23/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Androgen receptors (ARs) act as transcription factors. An increased AR activity could be due either to mutations or to an increased expression of the receptor. AR mutations involving the hormone binding domain could increase AR function and promote carcinogenesis, as suggested for prostate cancer. AIMS Herein, we evaluated qualitative (point mutations involving the hormone binding domain) and quantitative AR alterations and their possible correlation with cell proliferation and tumour grading. MATERIALS Carcinomatous and non-cancerous surrounding liver tissue was collected from 14 Caucasian patients with hepatocarcinoma. They were all affected by cirrhosis with different aetiologies. METHODS AR missense mutations, AR mRNA and protein levels, AR distribution in the liver, liver cell proliferation, and tumour staging were evaluated by DNA sequencing, quantitative real-time PCR, Western blot analysis, immunofluorescence, PCNA immunostaining, and conventional histological techniques, respectively. RESULTS AR gene regions encoding the hormone binding domain did not contain any missense mutation. AR mRNA and protein levels were increased in hepatocarcinoma compared to non-cancerous surrounding tissue. Cell proliferation was significantly increased in the tumour compared to non-cancerous surrounding tissue. CONCLUSIONS Mutations of the AR regions studied were not involved in hepatocarcinogenesis. Elevated AR levels in transformed cells could have a tumour promoting effect by stimulating cell growth.
Collapse
Affiliation(s)
- M Barone
- Section of Gastroenterology, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Ospedale Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14:5945-5961. [PMID: 18932272 PMCID: PMC2760195 DOI: 10.3748/wjg.14.5945] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/16/2008] [Accepted: 09/23/2008] [Indexed: 02/06/2023] Open
Abstract
The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERalpha alone until 1996 when ERbeta isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
Collapse
|
7
|
Sex hormone influence on hepatitis in young male A/JCr mice infected with Helicobacter hepaticus. Infect Immun 2008; 76:4071-8. [PMID: 18559427 DOI: 10.1128/iai.00401-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis B virus (HBV), the leading cause of human hepatocellular carcinoma, is especially virulent in males infected at an early age. Likewise, the murine liver carcinogen Helicobacter hepaticus is most pathogenic in male mice infected before puberty. We used this model to investigate the influence of male sex hormone signaling on infectious hepatitis. Male A/JCr mice were infected with H. hepaticus or vehicle at 4 weeks and randomized into surgical and pharmacologic treatment groups. Interruption of androgen pathways was confirmed by hormone measurements, histopathology, and liver gene and Cyp4a protein expression. Castrated males and those receiving the competitive androgen receptor antagonist flutamide had significantly less severe hepatitis as determined by histologic activity index than intact controls at 4 months. Importantly, the powerful androgen receptor agonist dihydrotestosterone did not promote hepatitis. No effect on hepatitis was evident in males treated with the 5alpha-reductase inhibitor dutasteride, the peroxisome proliferator-activated receptor-alpha agonist bezafibrate, or the nonsteroidal anti-inflammatory drug flufenamic acid. Consistent with previous observations of hepatitis-associated liver-gender disruption, transcriptional alterations involved both feminine (cytochrome P450 4a14) and masculine (cytochrome P450 4a12 and trefoil factor 3) genes, as well gender-neutral (H19 fetal liver mRNA, lipocalin 2, and ubiquitin D) genes. Hepatitis was associated with increased unsaturated C(18) long-chain fatty acids (oleic acid and linoleic acid) relative to saturated stearic acid. Our results indicate that certain forms of androgen interruption can inhibit H. hepaticus-induced hepatitis in young male mice, whereas androgen receptor agonism does not worsen disease. This raises the possibility of targeted hormonal therapy in young male patients with childhood-acquired HBV.
Collapse
|
8
|
Expression of the Ha-ras suppressor family member 5 gene in the maturing rat testis. Biosci Biotechnol Biochem 2008; 72:1360-3. [PMID: 18460797 DOI: 10.1271/bbb.70673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We analyzed the gene expression of Ha-ras suppressor family member 5 (Hrasls5), which is considered to modulate the Ha-ras signaling cascade, from maturing rat testis. Expression was detected primarily in the spermatocytes in the maturing rat testis. The Hrasls5 gene product might function as a tumor suppressor as well as in spermatogenesis, as deduced from its amino acid sequence.
Collapse
|