1
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Haduch A, Bromek E, Kuban W, Basińska-Ziobroń A, Danek PJ, Alenina N, Bader M, Daniel WA. The effect of brain serotonin deficit (TPH2-KO) on the expression and activity of liver cytochrome P450 enzymes in aging male Dark Agouti rats. Pharmacol Rep 2023; 75:1522-1532. [PMID: 37848703 PMCID: PMC10661807 DOI: 10.1007/s43440-023-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b5 decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Konstandi M, Johnson EO. Age-related modifications in CYP-dependent drug metabolism: role of stress. Front Endocrinol (Lausanne) 2023; 14:1143835. [PMID: 37293497 PMCID: PMC10244505 DOI: 10.3389/fendo.2023.1143835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 06/10/2023] Open
Abstract
Accumulating clinical evidence indicates extensive inter-individual variations in the effectiveness and adverse effects of standard treatment protocols, which are largely attributed to the multifactorial regulation of the hepatic CYP-dependent drug metabolism that is connected with either transcriptional or post-translational modifications. Age and stress belong to the most important factors in CYP gene regulation. Alterations in neuroendocrine responses to stress, which are associated with modified hypothalamo-pituitary-adrenal axis function, usually accompany ageing. In this light, ageing followed by a decline of the functional integrity of organs, including liver, a failure in preserving homeostasis under stress, increased morbidity and susceptibility to stress, among others, holds a determinant role in the CYP-catalyzed drug metabolism and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the drug metabolizing capacity of the liver with age have been reported and in particular, a decline in the activity of the main CYP isoforms in male senescent rats, indicating decreased metabolism and higher levels of the drug-substrates in their blood. These factors along with the restricted experience in the use of the most medicines in childhood and elderly, could explain at an extent the inter-individual variability in drug efficacy and toxicity outcomes, and underscore the necessity of designing the treatment protocols, accordingly.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Elizabeth O. Johnson
- Department of Anatomy, School of Medicine, European University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Haduch A, Danek PJ, Kuban W, Pukło R, Alenina N, Gołębiowska J, Popik P, Bader M, Daniel WA. Cytochrome P450 2D (CYP2D) enzyme dysfunction associated with aging and serotonin deficiency in the brain and liver of female Dark Agouti rats. Neurochem Int 2022; 152:105223. [PMID: 34780807 DOI: 10.1016/j.neuint.2021.105223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Among the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain. The CYP2D activity was measured in brain and liver microsomes of Dark Agouti wild type (WT) female rats (mature 15-week-old and senescent 18-month-old rats) and in tryptophan hydroxylase 2 (TPH2)-deficient senescent female rats. The CYP2D activity in mature WT Dark Agouti females was independent of the changing phases of the estrous cycle. In senescent WT females rats, the CYP2D activity and protein level were decreased in the cerebral cortex, hippocampus, cerebellum and liver, but increased in the brain stem. In the other examined structures (frontal cortex, hypothalamus, thalamus, striatum), the enzyme activity did not change. In aging TPH2-deficient females, the CYP2D activity and protein levels were decreased in the frontal cortex, hypothalamus and brain stem (activity only), remaining unchanged in other brain structures and liver, relative to senescent WT females. In summary, the aging process and TPH2 deficit affect the CYP2D activity and protein level in female rats, which may have a negative impact on the compensatory capacity of CYP2D in the synthesis of serotonin and dopamine in cerebral structures involved in cognitive and emotional functions. In the liver, the CYP2D-catalyzed drug metabolism may be diminished in elderly females. The results in female rats are compared with those obtained previously in males. It is concluded that aging and serotonin deficiency exert sex-dependent effects on brain CYP2D, which seem to be less favorable in females concerning CYP2D-mediated neurotransmitter synthesis, but beneficial regarding slower neurosteroid metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Joanna Gołębiowska
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Institute for Biology, University of Lübeck, Germany; Charité University Medicine, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
5
|
CYP 450 enzymes influence (R,S)-ketamine brain delivery and its antidepressant activity. Neuropharmacology 2021; 206:108936. [PMID: 34965407 DOI: 10.1016/j.neuropharm.2021.108936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Esketamine, the S-stereoisomer of (R,S)-ketamine was recently approved by drug agencies (FDA, EMA), as an antidepressant drug with a new mechanism of action. (R,S)-ketamine is a N-methyl-d-aspartate receptor (NMDA-R) antagonist putatively acting on GABAergic inhibitory synapses to increase excitatory synaptic glutamatergic neurotransmission. Unlike monoamine-based antidepressants, (R,S)-ketamine exhibits rapid and persistent antidepressant activity at subanesthetic doses in preclinical rodent models and in treatment-resistant depressed patients. Its major brain metabolite, (2R,6R)-hydroxynorketamine (HNK) is formed following (R,S)-ketamine metabolism by various cytochrome P450 enzymes (CYP) mainly activated in the liver depending on routes of administration [e.g., intravenous (largely used for a better bioavailability), intranasal spray, intracerebral, subcutaneous, intramuscular or oral]. Experimental or clinical studies suggest that (2R,6R)-HNK could be an antidepressant drug candidate. However, questions still remain regarding its molecular and cellular targets in the brain and its role in (R,S)-ketamine's fast-acting antidepressant effects. The purpose of the present review is: 1) to review (R,S)-ketamine pharmacokinetic properties in humans and rodents and its metabolism by CYP enzymes to form norketamine and HNK metabolites; 2) to provide a summary of preclinical strategies challenging the role of these metabolites by modifying (R,S)-ketamine metabolism, e.g., by administering a pre-treatment CYP inducers or inhibitors; 3) to analyze the influence of sex and age on CYP expression and (R,S)-ketamine metabolism. Importantly, this review describes (R,S)-ketamine pharmacodynamics and pharmacokinetics to alert clinicians about possible drug-drug interactions during a concomitant administration of (R,S)-ketamine and CYP inducers/inhibitors that could enhance or blunt, respectively, (R,S)-ketamine's therapeutic antidepressant efficacy in patients.
Collapse
|
6
|
Mori Ramulus Inhibits Pancreatic β-Cell Apoptosis and Prevents Insulin Resistance by Restoring Hepatic Mitochondrial Function. Antioxidants (Basel) 2021; 10:antiox10060901. [PMID: 34204891 PMCID: PMC8229938 DOI: 10.3390/antiox10060901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance and pancreatic beta (β)-cell dysfunction. Accumulating evidence suggests that mitochondrial dysfunction may cause insulin resistance in peripheral tissues. As commercial hypoglycemic drugs have side effects, it is necessary to develop safe and effective natural compound-based hypoglycemic treatments. This study aimed to investigate the hypoglycemic effects of Mori Ramulus ethanol extract (ME) in a high-fat diet (HFD)-induced diabetes mouse model to decipher the underlying mechanisms focusing on apoptosis and mitochondrial function. ME significantly decreased tunicamycin-induced apoptotic cell death and increased insulin secretion following glucose stimulation in NIT-1 pancreatic β-cells. Tunicamycin-exposed NIT-1 pancreatic β-cells showed elevated reactive oxygen species levels and reduced mitochondrial membrane potential, which were reversed by ME treatment. ME inhibited the tunicamycin-induced apoptosis cascade in tunicamycin-exposed NIT-1 pancreatic β-cells. In HFD diabetic mice, the serum-free fatty acid and insulin levels decreased following a 15-week ME administration. Glucose and insulin tolerance tests showed that ME improved insulin sensitivity. Moreover, ME ameliorated pancreatic β-cell mass loss in diabetic mice. Finally, ME-treated HFD-fed mice showed improved hepatic mitochondrial function resulting in insulin sensitivity in target tissues. Thus, ME provides protection against pancreatic β-cell apoptosis and prevents insulin resistance by improving mitochondrial function.
Collapse
|
7
|
Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 2019; 51:178-195. [PMID: 31203697 DOI: 10.1080/03602532.2019.1632889] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) plays a vital role in drug-induced hepatotoxicity and cancers (e.g. lung and bladder cancer), since it is responsible for metabolizing a number of medications and environmental toxins to reactive intermediate metabolites. CYP2E1 was recently found to be the highest expressed CYP enzyme in human livers using a proteomics approach, and CYP2E1-related toxicity is strongly associated with its protein level that shows significant inter-individual variability related to ethnicity, age, and sex. Furthermore, the expression of CYP2E1 demonstrates regulation by extensive genetic polymorphism, endogenous hormones, cytokines, xenobiotics, and varying pathological states. Over the past decade, the knowledge of pharmacology, toxicology, and biology about CYP2E1 has grown remarkably, but the research progress has yet to be summarized. This study presents a timely systematic review on CYP2E1's xenobiotic metabolism, genetic polymorphism, and inhibitors, with the focus on their clinical relevance for the efficacy and toxicity of various CYP2E1 substrates. Moreover, several knowledge gaps have been identified towards fully understanding the potential interactions among different CYP2E1 substrates in clinical settings. Through in-depth analyses of these knowns and unknowns, we expect this review will aid in future drug development and improve management of CYP2E1 related clinical toxicity.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| | - Sibo Jiang
- Department of Pharmaceutics, University of Florida , Orlando , FL , USA
| | - Jin Wang
- AbbVie Inc , North Chicago , IL , USA
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Suman Sirimulla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| |
Collapse
|
8
|
Debashree B, Kumar M, Keshava Prasad TS, Natarajan A, Christopher R, Nalini A, Bindu PS, Gayathri N, Srinivas Bharath MM. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder. J Neurochem 2018; 145:323-341. [PMID: 29424033 DOI: 10.1111/jnc.14318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. Cover Image for this Issue: doi: 10.1111/jnc.14177.
Collapse
Affiliation(s)
- Bandopadhyay Debashree
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manish Kumar
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal University, Manipal, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - Archana Natarajan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | |
Collapse
|
9
|
Michaut A, Le Guillou D, Moreau C, Bucher S, McGill MR, Martinais S, Gicquel T, Morel I, Robin MA, Jaeschke H, Fromenty B. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen. Toxicol Appl Pharmacol 2015; 292:40-55. [PMID: 26739624 DOI: 10.1016/j.taap.2015.12.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5mM) or high (20mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Anaïs Michaut
- INSERM, U991, Université de Rennes 1, Rennes, France
| | | | - Caroline Moreau
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | - Simon Bucher
- INSERM, U991, Université de Rennes 1, Rennes, France
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Thomas Gicquel
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | - Isabelle Morel
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | | | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
10
|
Mach J, Huizer-Pajkos A, Mitchell SJ, McKenzie C, Phillips L, Kane A, Jones B, de Cabo R, Cogger V, Le Couteur DG, Hilmer SN. The effect of ageing on isoniazid pharmacokinetics and hepatotoxicity in Fischer 344 rats. Fundam Clin Pharmacol 2015; 30:23-34. [PMID: 26454000 DOI: 10.1111/fcp.12157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/20/2015] [Accepted: 10/06/2015] [Indexed: 01/09/2023]
Abstract
Isoniazid is the first-line treatment for tuberculosis; however, its use is limited by hepatotoxicity. Age-related differences in isoniazid pharmacokinetics and hepatotoxicity are uncertain. We aimed to investigate these in young (3 ± 0 months, n = 26) and old (23.0 ± 0.2 months, n = 27) male Fischer 344 rats following a low- or high-dose toxic regimen of isoniazid or vehicle (4 doses/day over 2 days; low: 100, 75, 75, 75 mg/kg; high: 150, 105, 105, 105 mg/kg i.p. every 3 h). Fifteen hours after the last dose, animals were euthanized and sera and livers were prepared for analysis. Isoniazid treatment increased serum hepatotoxicity markers (alanine and aspartate transaminase) in young animals but not in old animals, and only reached significance with the high dose in young animals. Isoniazid treatment caused a trend towards an increase in necrosis in young animals with both doses. In contrast, microvesicular steatosis was increased in old isoniazid-treated animals, reaching significance only with the low dose (steatosis prevalence in old: vehicle 1/9, isoniazid 4/5; P < 0.05). Among isoniazid-treated animals, concentrations of toxic intermediates acetylhydrazine and hydrazine were higher in old than young animals (P < 0.05). With both doses, hepatic cytochrome P450 2E1 activity was higher in young animals compared with old (P < 0.05). There were no other age effects seen on any of the other measured enzymes involved in isoniazid metabolism (N-acetyl transferase, amidase, glutathione-S-transferase). These results show age-related changes in isoniazid pharmacokinetics may contribute towards differential patterns of toxicity and confirm that standard hepatotoxicity markers do not detect isoniazid-induced microvesicular steatosis.
Collapse
Affiliation(s)
- John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Sydney, NSW, Australia.,Department of Clin Pharmacol and Aged Care, Royal North Shore Hosp, Sydney, NSW, Australia.,Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia
| | - Aniko Huizer-Pajkos
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Sydney, NSW, Australia.,Department of Clin Pharmacol and Aged Care, Royal North Shore Hosp, Sydney, NSW, Australia
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Catriona McKenzie
- Pathology Department, Royal Prince Alfred Hosp, Sydney, NSW, Australia
| | - Leo Phillips
- Mass Spec Imaging and Proteomics Laboratory, Kolling institute of Medical Research, Sydney, NSW, Australia
| | - Alice Kane
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Sydney, NSW, Australia.,Department of Clin Pharmacol and Aged Care, Royal North Shore Hosp, Sydney, NSW, Australia.,Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia
| | - Brett Jones
- Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia.,Department of Gastroenterology, Kolling Institute of Medical Research, Sydney, NSW, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Victoria Cogger
- Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimers Institute, Centre for Education and Research on Ageing and Anzac Research Institute, Concord Hospital and University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimers Institute, Centre for Education and Research on Ageing and Anzac Research Institute, Concord Hospital and University of Sydney, Sydney, NSW, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Sydney, NSW, Australia.,Department of Clin Pharmacol and Aged Care, Royal North Shore Hosp, Sydney, NSW, Australia.,Sydney Medical School, Univ of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: Relationship with oxidative stress and smoking habit. Toxicol Appl Pharmacol 2015; 286:207-15. [DOI: 10.1016/j.taap.2015.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
|
12
|
Tammen SA, Dolnikowski GG, Ausman LM, Liu Z, Sauer J, SimonettaFriso, Choi SW. Aging and alcohol interact to alter hepatic DNA hydroxymethylation. Alcohol Clin Exp Res 2014; 38:2178-85. [PMID: 25070523 PMCID: PMC4146686 DOI: 10.1111/acer.12477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/21/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging and chronic alcohol consumption are both modifiers of DNA methylation, but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression. METHODS Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloric Lieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new liquid chromatography-tandem mass spectrometry method. Hepatic mRNA expression of the Tet enzymes were measured via quantitative real-time polymerase chain reaction. RESULTS In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22 ± 0.01 vs. 0.29 ± 0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24 ± 0.02 vs. 0.29 ± 0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 was decreased in the old mice relative to the young (p < 0.005). CONCLUSIONS The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation.
Collapse
Affiliation(s)
- Stephanie A. Tammen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA
| | - Gregory G. Dolnikowski
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA
| | - Lynne M. Ausman
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA
| | - Zhenhua Liu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA
| | - Julia Sauer
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
| | | | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA USA
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA
- University of Verona School of Medicine, Verona, Italy
- Chaum Life Center, CHA University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. Liver Int 2014; 34:e171-9. [PMID: 24575957 DOI: 10.1111/liv.12514] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/10/2014] [Accepted: 02/23/2014] [Indexed: 12/14/2022]
Abstract
Although acetaminophen (APAP) is usually considered as a safe drug, this painkiller can lead to acute liver failure after overdoses. Moreover, there is evidence that the maximum recommended dosage can induce hepatic cytolysis in some individuals. Several predisposing factors appear to enhance the risk and severity of APAP-induced liver injury including chronic alcoholic liver disease and nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions linked to obesity. In contrast, obesity by itself does not seem to be associated with a higher risk of APAP-induced liver injury. Since 1987, seven studies dealt with APAP-induced hepatotoxicity in rodent models of NAFLD and five of them found that this liver disease was associated with higher APAP toxicity. Unfortunately, these studies did not unequivocally established the mechanism(s) whereby NAFLD could favour APAP hepatotoxicity, although some investigations suggested that pre-existent induction of hepatic cytochrome P450 2E1 (CYP2E1) could play a significant role by increasing the generation of N-acetyl-p-benzoquinone imine (NAPQI), the toxic metabolite of APAP. Moreover, pre-existent mitochondrial dysfunction associated with NAFLD could also be involved. In contrast, some investigations suggested that factors that could reduce the risk and severity of APAP hepatotoxicity in obesity and NAFLD include higher hepatic APAP glucuronidation, reduced CYP3A4 activity and increased volume of body distribution. Thus, the occurrence and the outcome of APAP-induced liver injury in an obese individual with NAFLD might depend on a delicate balance between metabolic factors that can be protective and others that favour large hepatic levels of NAPQI.
Collapse
Affiliation(s)
- Anaïs Michaut
- INSERM, U991, Université de Rennes 1, Rennes, France
| | | | | | | |
Collapse
|
14
|
Mach J, Huizer-Pajkos A, Cogger VC, McKenzie C, Le Couteur DG, Jones BE, de Cabo R, Hilmer SN. The effect of aging on acetaminophen pharmacokinetics, toxicity and Nrf2 in Fischer 344 rats. J Gerontol A Biol Sci Med Sci 2013; 69:387-97. [PMID: 23863315 DOI: 10.1093/gerona/glt095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We investigated the effect of aging on hepatic pharmacokinetics and the degree of hepatotoxicity following a toxic dose of acetaminophen. Young and old male Fischer 344 rats were treated with 800 mg/kg acetaminophen (young n = 8, old n = 5) or saline (young n = 9, old n = 9). Serum measurements showed old rats treated with acetaminophen had significantly lower serum alanine aminotransferase and higher acetaminophen and acetaminophen glucuronide levels and creatinine, compared with acetaminophen treated young rats (p < .05). Immunoblotting and activity assays showed old saline-treated rats had twofold lower cytochrome P450 2E1 activity and threefold higher NAD(P)H quinone oxireductase 1 protein expression and activity than young saline-treated rats (p < .05), although Nrf2, glutathione cysteine ligase-modulatory subunit, glutathione cysteine ligase-catalytic subunit, and cytochrome P450 2E1 protein expressions were unchanged. Primary hepatocytes isolated from young rats treated with 10 mM acetaminophen had lower survival than those from old rats (52.4% ± 5.8%, young; 83.6% ± 1.7%, old, p < .05). The pharmacokinetic changes described may decrease susceptibility to acetaminophen-induced hepatotoxicity but may increase risk of nephrotoxicity in old age.
Collapse
Affiliation(s)
- John Mach
- Department of Clinical Pharmacology, Level 1, Acute services building, Royal North Shore Hospital, Pacific Hwy, St Leonards, NSW 2065, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yongvanit P, Phanomsri E, Namwat N, Kampan J, Tassaneeyakul W, Loilome W, Puapairoj A, Khuntikeo N. Hepatic cytochrome P450 2A6 and 2E1 status in peri-tumor tissues of patients with Opisthorchis viverrini-associated cholangiocarcinoma. Parasitol Int 2011; 61:162-6. [PMID: 21745589 DOI: 10.1016/j.parint.2011.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/03/2011] [Accepted: 06/27/2011] [Indexed: 11/28/2022]
Abstract
Endogenous nitrosation due to chronic inflammation is enhanced in opisthorchiasis and plays a crucial role in the development of cholangiocarcinoma (CCA). Hepatic cytochrome P450 (CYP) family enzymes, especially CYP2A6 and CYP2E1, are involved in the metabolism of procarcinogens; these two enzymes metabolize endogenous nitrosamines to carcinogenic N-dimethylnitrosamine (NDMA). CYP2A6 activity is increased in patients infected with Opisthorchis viverrini. Our aim was to determine whether the expression and function of CYP2A6 and 2E1 in the livers of patients with O. viverrini-associated cholangiocarcinoma (CCA) was altered compared to livers without CCA. Livers of CCA patients (n = 13 cases) showed increased enzyme activities, protein and mRNA levels of CYP2A6 whereas the enzyme activity and protein levels of CYP2E1 were markedly decreased (P < 0.05). CYP2E1 mRNA levels were not altered. Large numbers of inflammatory cells and increased iNOS expression was found in areas adjacent to the tumor. The data provide evidence to support the concept that enhanced CYP2A6 activity and diminished CYP2E1 activity probably involve to the progression of CCA.
Collapse
Affiliation(s)
- Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002 Thailand
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mitchell SJ, Huizer-Pajkos A, Cogger VC, McLachlan AJ, Le Couteur DG, Jones B, de Cabo R, Hilmer SN. Age-related pseudocapillarization of the liver sinusoidal endothelium impairs the hepatic clearance of acetaminophen in rats. J Gerontol A Biol Sci Med Sci 2011; 66:400-8. [PMID: 21300741 DOI: 10.1093/gerona/glq221] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the effect of age-related pseudocapillarization of the liver sinusoidal endothelium on the hepatic disposition of acetaminophen. The multiple indicator dilution technique assessed the hepatic disposition of tracer (14)C-acetaminophen and reference markers in isolated perfused livers of young (n = 11) and old (n = 12) rats. Electron microscopy confirmed defenestration of the sinusoidal endothelium in old rats compared with young rats. Acetaminophen recovery following a single pass through the liver was significantly increased in old rats (0.64 ± 0.04, old; 0.59 ± 0.05, young; p < .05). In old age, there was significant reduction of the intercompartmental rate constant k(1) (0.34 ± 0.10 s(-1), old; 0.61 ± 0.38 s(-1), young; p < .05) and the permeability-surface area product for the transfer of acetaminophen across the sinusoidal endothelium (0.034 ± 0.006 mL/s/g, old; 0.048 ± 0.014 mL/s/g, young; p < .005). There was no difference in k(3), the measure of sequestration of acetaminophen that reflects enzyme activity. Age-related pseudocapillarization of the liver sinusoid resulted in increased acetaminophen recovery and decreased transfer of acetaminophen into the liver.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Park JK, Hong IH, Ki MR, Chung HY, Ishigami A, Ji AR, Goo MJ, Kim DH, Kwak JH, Min CW, Lee SS, Jeong KS. Vitamin C deficiency increases the binucleation of hepatocytes in SMP30 knock-out mice. J Gastroenterol Hepatol 2010; 25:1769-76. [PMID: 21039840 DOI: 10.1111/j.1440-1746.2010.06239.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The binucleation of hepatocytes, which was known as an important feature of liver growth and physiology, has been reported to be increased during the chronic oxidative injury stage and has been regarded as an age-related change of hepatic structures. Therefore, we investigated the binuclearity pattern in the livers of senescence marker proteins-30 (SMP30) knock-out (KO) mice compared with wild-type (WT) mice and vitamin C-treated KO (KO + VC) mice. METHODS The WT, KO and KO + VC mice were fed a vitamin C free diet and VC(+) group mice were given vitamin C water containing 1.5 g/L of vitamin C, whereas VC(-) group was given normal drinking water without vitamin C, for 16 weeks. RESULTS In microscopic examination, the livers of KO mice showed a significantly increased number of binuclear hepatocytes compared with that of WT mice and KO + VC mice. KO mice also showed the most increased expression level of CYP2E1 and PCNA determined by immunohistochemistry and immunoblot analysis. Moreover, KO mice indicated the highest level of serum alanine aminotransferase and aspartate aminotransferase level in serum biochemical analysis. Accordingly, significantly decreased levels of reactive oxygen species, MDA (malondialdehyde) and HAE (4-hydroxyalkenals) were detected in KO + VC mice compared with KO mice. CONCLUSION Therefore, it is concluded that vitamin C deficiency induces an increase of CYP2E1 expression and elevated ROS production, which causes oxidative liver injury and the elevation of hepatocyte binucleation in SMP30 KO mice.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Benites J, Valderrama JA, Taper H, Buc Calderon P. An in vitro comparative study with furyl-1,4-quinones endowed with anticancer activities. Invest New Drugs 2010; 29:760-7. [PMID: 20237828 DOI: 10.1007/s10637-010-9419-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/04/2010] [Indexed: 01/22/2023]
Abstract
We describe the biological activity of some furylbenzo- and naphthoquinones (furylquinones) on hepatocarcinoma cells and healthy rat liver slices. The effects of furylquinones on cancer cells (Transplantable Liver Tumor, TLT) were assessed by measuring cell death (membrane cell lysis); intracellular contents of ATP and GSH and the activity of caspase-3 were used to determine the type of cell death. Most of the furylquinones tested (at a concentration of 25 μg/ml) induced caspase-independent cell death but compound 4 had no cytotoxic effects. The levels of both ATP and GSH were severely affected by quinones 1, 2 and 5, while no effect was observed with compound 4. These cytotoxic properties of quinones are associated with physico-chemical properties as shown by the LUMO energies and lipophilicity. Interestingly, no cytotoxic effects of furylquinones were detected when the in vitro model of precision-cut liver slices (PCLS) was used. Indeed, although CYP2E1 activity was slightly affected, ATP and GSH levels as well as protein synthesis were not modified by furylquinones. Paracetamol, a well-known hepatotoxicant, reduced these parameters by more than 80% compared to control conditions. Taking into account the considerable incidence of adverse-effects induced by most current anticancer drugs, the selective cytotoxicity shown by compounds 1, 2 and 5, in particular that of 1, represents a safety factor that encourages the further development of these quinones as new drugs in cancer therapy.
Collapse
Affiliation(s)
- Julio Benites
- Departamento de Ciencias Químicas y Farmacéuticas, Universidad Arturo Prat, Iquique, Chile, Avenida Arturo Prat 2120, Casilla 121, Iquique, Chile
| | | | | | | |
Collapse
|
19
|
Karanth S, Liu J, Ray A, Pope C. Comparative in vivo effects of parathion on striatal acetylcholine accumulation in adult and aged rats. Toxicology 2007; 239:167-79. [PMID: 17707571 DOI: 10.1016/j.tox.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/27/2022]
Abstract
Aged rats are more sensitive to the acute toxicity of the prototype organophosphate insecticide, parathion. We compared the acute effects of parathion on diaphragm and brain regional cholinesterase activity, muscarinic receptor binding and striatal acetylcholine levels in 3- and 18-month-old male Sprague-Dawley rats. Adult and aged rats were surgically implanted with a microdialysis cannula into the right striatum 5-7 days prior to parathion treatment. Rats were given either vehicle (peanut oil, 2 ml/kg) or one of a range of dosages of parathion (adult: 1.8, 3.4, 6.0, 9.0, 18 and 27 mg/kg, s.c.; aged: 1.8, 3.4, 6 and 9 mg/kg, s.c.) and body weight, functional signs of toxicity, and nocturnal motor activity were recorded for seven days. Three and seven days after parathion treatment, microdialysis samples were collected and rats were subsequently sacrificed for biochemical measurements. Higher dosages of parathion led to significant time-dependent reductions in body weight in both age groups. Rats in both age groups treated with lower dosages showed few overt signs of cholinergic toxicity while equitoxic high dosages (adult, 27 mg/kg; aged, 9 mg/kg) elicited marked signs of cholinergic toxicity (involuntary movements and SLUD [i.e., acronym for Salivation, Lacrimation, Urination and Defecation] signs) with peak effects being noted 3-4 days after treatment. Nocturnal activity (ambulation and rearing) was reduced in both age groups following parathion dosing, with more prominent effects in adults and rearing being more consistently affected. Dose- and time-dependent inhibition of cholinesterase activity was noted in both diaphragm and striatum. Total muscarinic receptor ([(3)H]quinuclidinyl benzilate, QNB) binding was significantly lower in aged rats, and both total binding and muscarinic agonist ([(3)H]oxotremorine methiodide] binding was significantly reduced in both age-groups treated with the highest dosages of parathion (adult, 27 mg/kg; aged, 9 mg/kg). In contrast to relatively similar levels of cholinesterase inhibition, striatal extracellular acetylcholine levels were significantly lower (2.2- to 2.9-fold) in aged rats at both 3 and 7 day time-points compared to adult rats treated with equitoxic dosages (i.e., 9 and 27 mg/kg, respectively). No age-related differences in in vitro striatal acetylcholine synthesis or in vivo acetylcholine accumulation following direct infusion of the cholinesterase inhibitor neostigmine (1 microM) were noted. While aged rats are more sensitive than adults to the acute toxicity of parathion, lesser acetylcholine accumulation was noted in the striatum of aged rats exhibiting similar levels of cholinesterase inhibition. These findings suggest that lesser acetylcholine accumulation may be required to elicit cholinergic signs in the aged rat, possibly based on aging-associated changes in muscarinic receptor density.
Collapse
Affiliation(s)
- Subramanya Karanth
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, United States
| | | | | | | |
Collapse
|
20
|
Hashimoto K, Takasaki W, Sato I, Tsuda S. DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats. J Toxicol Sci 2007; 32:249-59. [PMID: 17785942 DOI: 10.2131/jts.32.249] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To evaluate the effects of aging on DNA damage, spontaneous and chemical-induced DNA damage and its repair were examined using comet assays at pH 9, 12.1 and 13, and an 8-OH-dG assay in the liver and kidney of young (9-week-old) and aged (20-month-old) rats. Additionally, blood chemistry was examined to investigate any correlation between vital functions and age-dependent DNA damage. DNA migration at pH 13 and 8-OH-dG levels increased in the liver and/or kidney of aged rats, but DNA migration did not increase at pH 9 or 12.1; that is, alkali-labile sites and 8-OH-dG were concomitantly accumulated in aged rats. These results suggest that 8-OH-dG production caused by reactive oxygen species exceeded glycosylation and that the glycosylation activity is far more than the AP endonucleation in aged rats. Methyl methanesulfonate (MMS, 80 mg/kg, i.p.) increased DNA migration at pH 12.1 and 13 in the liver and kidney at 3 and 24 hr after treatment in young and aged rats. The DNA damage in aged rats was less and decreased more slowly compared with young rats. The pictures of MMS-induced DNA migrations at pH 12.1 and 13 were very similar to each other. These results suggest that the adduct glycosylation and repair of the single-strand breaks (SSBs) of aged rats are less than those of young rats, although AP endonucleation is sufficient to remove the AP sites. N-nitrosodiethylamine (160 mg/kg, i.p.) increased DNA migration at pH 12.1 and 13 in the liver and kidney at 3 and 24 hr in young rats and at pH 12.1 and 13 in the kidney at 24 hr in aged rats. These results showed that SSBs were predominantly detected as chemical-induced DNA damage and DNA repairs such as N-glycosylase, DNA polymerase and DNA ligase, and that the metabolic activation declined in aged rats. Aspartate aminotransferase, alanine aminotransferase, total bilirubin, total cholesterol, total protein, globulin, creatinine and chloride age-dependently increased and alkaline phosphates, albumin/globulin ratio, inorganic phosphorus and potassium age-dependently decreased, and these changes were correlated with the DNA migration at pH 13 and/or 8-OH-dG. These results suggest that the activity of DNA repair and metabolic activation enzymes declines in aged rats and that the accumulation of spontaneous DNA damage may affect vital functions.
Collapse
Affiliation(s)
- Kazuyuki Hashimoto
- Department of Applied Veterinary Science, The Doctoral Course of the United Graduate School of Veterinary Science,Gifu University, 1-1 Yanagito, Gifu 501-1112, Japan.
| | | | | | | |
Collapse
|
21
|
Wauthier V, Dubois P, Verbeeck RK, Calderon PB. Induction of CYP2C12 expression in senescent male rats is well correlated to an increase of HNF3beta expression, while the decline of CYP2C11 expression is unlikely due to a decrease of STAT5 activation. Biochem Pharmacol 2006; 73:923-33. [PMID: 17239351 DOI: 10.1016/j.bcp.2006.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/16/2006] [Accepted: 12/04/2006] [Indexed: 11/22/2022]
Abstract
Ageing affects drugs metabolism influencing the therapeutic efficacy and safety of drugs. By using the experimental model of aged male rats, we investigated the influence of ageing on some CYP2C isoforms, the most important CYP450 sub-family in rats. The activity of the male specific CYP2C11 is decreased by 55% in senescent male rats. This correlates with a significant reduction of both protein content (80%) and mRNA (60%) indicating a demasculinization process. The expression of CYP2C12, a female specific isoform, is induced in senescent male rats indicating a feminization process. Neither the activity nor the expression of CYP2C6, a female predominant isoform, is modified in senescent male rats. Thereafter, certain putative GH mediators like some liver enriched transcription factors (LETFs) or STAT5b were investigated. The amount of HNF3beta mRNA, a transcription factor involved in the up-regulation of CYP2C12, has been shown to increase by about three-fold in senescent male rats. With regard to STAT5b, which has been reported to be involved in the male specific regulation of CYP2C11, large amounts of phosphorylated STAT5 were observed in the liver of senescent male rats. These results indicate that while the induction of CYP2C12 during ageing could be due, at least partially, to the enhanced HNF3beta expression, the decline of CYP2C11 is unlikely related to a decrease of STAT5 activation.
Collapse
Affiliation(s)
- Valérie Wauthier
- Unité de Pharmacocinétique, Métabolisme, Nutrition, et Toxicologie (PMNT), Département des sciences pharmaceutiques, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|