1
|
Anti-Allergic Effects of Myrciaria dubia (Camu-Camu) Fruit Extract by Inhibiting Histamine H1 and H4 Receptors and Histidine Decarboxylase in RBL-2H3 Cells. Antioxidants (Basel) 2021; 11:antiox11010104. [PMID: 35052608 PMCID: PMC8773304 DOI: 10.3390/antiox11010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
Although Myrciaria dubia (camu-camu) has been shown to exert anti-oxidant and anti-inflammatory effects in both in vitro and in vivo studies, its use in allergic responses has not been elucidated. In the present study, the anti-allergic effect of 70% ethanol camu-camu fruit extract was tested on calcium ionophore (A23187)-induced allergies in RBL-2H3 cells. The RBL-2H3 cells were induced with 100 nM A23187 for 6 h, followed by a 1 h camu-camu fruit extract treatment. A23187 sanitization exacerbated mast cell degranulation; however, camu-camu fruit extract decreased the release of histamine and β-hexosaminidase, which are considered as key biomarkers in cell degranulation. Camu-camu fruit extract inhibited cell exocytosis by regulating the calcium/nuclear factor of activated T cell (NFAT) signaling. By downregulating the activation of mitogen-activated protein kinase (MAPK) signaling, camu-camu fruit extract hindered the activation of both histamine H1 and H4 receptors and inhibited histidine decarboxylase (HDC) expression by mediating its transcription factors KLF4/SP1 and GATA2/MITF. In A23187-induced ROS overproduction, camu-camu fruit extract activated nuclear factor erythroid-2-related factor 2 (Nrf2) to protect mast cells against A23187-induced oxidative stress. These findings indicate that camu-camu fruit extract can be developed to act as a mast cell stabilizer and an anti-histamine. This work also “opens the door” to new investigations using natural products to achieve breakthroughs in allergic disorder treatment.
Collapse
|
2
|
Iwasaki N, Terawaki S, Shimizu K, Oikawa D, Sakamoto H, Sunami K, Tokunaga F. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling. PLoS One 2021; 16:e0248158. [PMID: 33662037 PMCID: PMC7932145 DOI: 10.1371/journal.pone.0248158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/20/2021] [Indexed: 01/27/2023] Open
Abstract
Histamine, which is mainly produced by mast cells and basophils, participates in various allergic symptoms, and some studies have reported that macrophages also produce histamine. Moreover, recent studies have revealed that macrophages, especially alternatively activated macrophages (M2) induced by T helper 2 (Th2) cytokines, such as interleukin (IL)-4 and IL-13, participate in the pathogenesis of allergic diseases. The major source of Th2 cytokines is antigen-specific Th2 cells. To elucidate the relationship between histamine, macrophages, and Th2 cells in allergic inflammation, we established a macrophage-Th2 cell co-culture model in vitro and an antigen-specific Th2 cell transfer mouse model of rhinitis. In vitro analyses indicated that macrophages produce histamine by interacting with antigen-specific Th2 cells through the antigen. Furthermore, Th2 cells and macrophages cooperatively elicited rhinitis in the mouse model. We determined that histamine induces Th2- and macrophage-elicited sneezing responses through H1 receptor signaling, whereas it induces nasal eosinophil infiltrations through H4 receptor signaling. Collectively, these results indicate a novel histamine production mechanism by macrophages, in which Th2 cells and macrophages cooperatively induce nasal allergic inflammation through histamine signaling.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
- * E-mail:
| | - Seigo Terawaki
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kouhei Shimizu
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hirokazu Sakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kishiko Sunami
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
3
|
Hirasawa N. Expression of Histidine Decarboxylase and Its Roles in Inflammation. Int J Mol Sci 2019; 20:ijms20020376. [PMID: 30654600 PMCID: PMC6359378 DOI: 10.3390/ijms20020376] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/26/2022] Open
Abstract
Histamine is a well-known mediator of inflammation that is released from mast cells and basophils. To date, many studies using histamine receptor antagonists have shown that histamine acts through four types of receptors: H1, H2, H3, and H4. Thus, histamine plays more roles in various diseases than had been predicted. However, our knowledge about histamine-producing cells and the molecular mechanisms underlying histamine production at inflammatory sites is still incomplete. The histamine producing enzyme, histidine decarboxylase (HDC), is commonly induced at inflammatory sites during the late and chronic phases of both allergic and non-allergic inflammation. Thus, histamine levels in tissues are maintained at effective concentrations for hours, enabling the regulation of various functions through the production of cytokines/chemokines/growth factors. Understanding the regulation of histamine production will allow the development of a new strategy of using histamine antagonists to treat inflammatory diseases.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Salem A, Rozov S, Al-Samadi A, Stegajev V, Listyarifah D, Kouri VP, Han X, Nordström D, Hagström J, Eklund K. Histamine metabolism and transport are deranged in human keratinocytes in oral lichen planus. Br J Dermatol 2017; 176:1213-1223. [DOI: 10.1111/bjd.14995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Affiliation(s)
- A. Salem
- Department of Medicine; University of Helsinki; Helsinki Finland
- Department of Oral and Maxillofacial Diseases; University of Helsinki; Helsinki Finland
| | - S. Rozov
- Department of Anatomy; University of Helsinki; Helsinki Finland
| | - A. Al-Samadi
- Department of Oral and Maxillofacial Diseases; University of Helsinki; Helsinki Finland
| | - V. Stegajev
- Department of Medicine; University of Helsinki; Helsinki Finland
| | - D. Listyarifah
- Department of Medicine; University of Helsinki; Helsinki Finland
- Department of Oral and Maxillofacial Diseases; University of Helsinki; Helsinki Finland
| | - V.-P. Kouri
- Department of Medicine; University of Helsinki; Helsinki Finland
| | - X. Han
- Department of Medicine; University of Helsinki; Helsinki Finland
| | - D. Nordström
- Department of Medicine; University of Helsinki; Helsinki Finland
- Department of Rheumatology, Internal Medicine and Rehabilitation; University of Helsinki; Helsinki Finland
- Helsinki University Central Hospital; Helsinki Finland
| | - J. Hagström
- Helsinki University Central Hospital; Helsinki Finland
- Department of Pathology and Oral Pathology; University of Helsinki; Helsinki Finland
| | - K.K. Eklund
- Department of Medicine; University of Helsinki; Helsinki Finland
- Department of Rheumatology, Internal Medicine and Rehabilitation; University of Helsinki; Helsinki Finland
| |
Collapse
|
5
|
Takakuwa S, Mizuno N, Takano T, Asakawa S, Sato T, Hiratsuka M, Hirasawa N. Down-regulation of Na +/H + exchanger 1 by Toll-like receptor stimulation in macrophages. Immunobiology 2016; 222:176-182. [PMID: 27771174 DOI: 10.1016/j.imbio.2016.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
The role of Na+/H+ exchanger 1 (NHE1) in various cell types, including inflammatory cells, has been extensively studied. However, regulation of NHE1 protein level in activated inflammatory cells is yet to be characterized. In this study, we investigated whether Toll-like receptor (TLR) ligands can regulate NHE1 protein level in the mouse macrophage-like RAW 264 cell line. We found that lipopolysaccharide (LPS), a TLR4 ligand, lowered NHE1 level and activity in RAW 264 cells and in primary murine macrophages. Other TLR ligands, such as zymosan A and poly(I:C), also displayed reduced NHE1 level. LPS promoted NHE1 ubiquitination and reduced the expression of calcineurin homologous protein 1 (CHP1), a regulator of NHE1 activity and stability. These responses were inhibited by c-Jun N-terminal kinase (JNK) inhibitor SP600125 and dexamethasone. A proteasome inhibitor, but not caspase-3 or lysosomal inhibitors, blocked the LPS-induced NHE1 down-regulation. These results suggested that LPS promotes the degranulation of NHE1 mediated by the ubiquitin-proteasome system and CHP1 downregulation resulting from activation of JNK.
Collapse
Affiliation(s)
- Shiho Takakuwa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Takayuki Takano
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sanki Asakawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Lifestyle Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
6
|
Gutowska‐Owsiak D, Greenwald L, Watson C, Selvakumar T, Wang X, Ogg G. The histamine‐synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin. Br J Dermatol 2014; 171:771-8. [DOI: 10.1111/bjd.13199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- D. Gutowska‐Owsiak
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - L. Greenwald
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - C. Watson
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - T.A. Selvakumar
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - X. Wang
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
- Department of Oral Medicine and Periodontology School of Stomatology the Fourth Military Medical University Xi'an China
| | - G.S. Ogg
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| |
Collapse
|
7
|
Masuda K, Kimura A, Hanieh H, Nguyen NT, Nakahama T, Chinen I, Otoyo Y, Murotani T, Yamatodani A, Kishimoto T. Aryl hydrocarbon receptor negatively regulates LPS-induced IL-6 production through suppression of histamine production in macrophages. Int Immunol 2011; 23:637-45. [PMID: 21930594 DOI: 10.1093/intimm/dxr072] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macrophages play a pivotal role in innate immune responses to pathogens via toll-like receptors. We previously demonstrated that aryl hydrocarbon receptor (Ahr) in combination with signal transducer and activator of transcription 1 (Stat1) negatively regulates pro-inflammatory cytokine production by inhibiting nuclear factor-κB activation in macrophages after LPS stimulation. Here, we show that Ahr also negatively regulates production of the pro-inflammatory cytokine IL-6 by suppressing histamine production in macrophages stimulated by LPS. We found that Ahr-Sp1 complex, independent of Stat1, represses histidine decarboxylase expression by inhibiting LPS-induced Sp1 phosphorylation on Ser residues in macrophages; this leads to suppression of histamine production. Moreover, we found that loratadine and chlorpromazine, histamine 1 receptor (H1R) antagonists, more effectively impair the production of LPS-induced IL-6 than that of other inflammatory cytokines in Ahr(-/-) macrophages. Collectively, these results demonstrate that Ahr negatively regulates IL-6 production via H1R signaling through the suppression of histamine production in macrophages following LPS stimulation.
Collapse
Affiliation(s)
- Kazuya Masuda
- Laboratory of Immune Regulation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hirasawa N, Goi Y, Tanaka R, Ishihara K, Ohtsu H, Ohuchi K. Involvement of prostaglandins and histamine in nickel wire-induced acute inflammation in mice. J Biomed Mater Res A 2010; 93:1306-11. [PMID: 19839048 DOI: 10.1002/jbm.a.32628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The irritancy of Nickel (Ni) ions has been well documented clinically. However, the chemical mediators involved in the acute inflammation induced by solid Ni are not fully understood. We used the Ni wire-implantation model in mice and examined roles of prostaglandins and histamine in plasma leakage in the acute phase. The subcutaneous implantation of a Ni wire into the back of mice induced plasma leakage from 8 to 24 h and tissue necrosis around the wire at 3 days, whereas the implantation of an aluminum wire induced no such inflammatory responses. An increase in the mRNA for cyclooxygenase (COX)-2 and HDC in cells around the Ni wire was detected 4 h after the implantation. The leakage of plasma at 8 h was inhibited by indomethacin in a dose-dependent manner. Dexamethasone and the p38 MAP kinase inhibitor SB203580 also inhibited the exudation of plasma consistent with the inhibition of the expression of COX-2 mRNA. Furthermore, plasma leakage was partially but siginificantly reduced in histamine H1 receptor knockout mice and histidine decarboxylase (HDC) knockout mice but not in H2 receptor knockout mice. These results suggested that the Ni ions released from the wire induced the expression of COX-2 and HDC, resulting in an increase in vascular permeability during the acute phase of inflammation.
Collapse
Affiliation(s)
- Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Induction of histidine decarboxylase in macrophages inhibited by the novel NF-κB inhibitor (−)-DHMEQ. Biochem Biophys Res Commun 2009; 379:379-83. [DOI: 10.1016/j.bbrc.2008.12.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 12/18/2022]
|
10
|
Tani T, Ayuzawa R, Takagi T, Kanehira T, Maurya DK, Tamura M. Angiotensin II bi-directionally regulates cyclooxygenase-2 expression in intestinal epithelial cells. Mol Cell Biochem 2008; 315:185-93. [PMID: 18543083 PMCID: PMC2950175 DOI: 10.1007/s11010-008-9806-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that angiotensin II (Ang II) receptor signaling is involved in azoxymethane-induced mouse colon tumorigenesis. In order to clarify the role of Ang II in COX-2 expression in the intestinal epithelium, the receptor subtype-specific effect on COX-2 expression in a rat intestinal epithelial cell line (RIE-1) has been investigated. Ang II dose- and time-dependently increased the expression of COX-2, but not COX-1 mRNA and protein. This stimulation was completely blocked by the AT(1) receptor antagonist but not the AT(2) receptor antagonist. Ang II and lipopolysaccharide (LPS) additively induced COX-2 protein in RIE-1 cells, whereas the LPS-induced COX-2 expression was significantly attenuated by low concentrations of Ang II or the AT(2) agonistic peptide CGP-42112A only in AT(2) over-expressed cells. These data indicate that Ang II bi-directionally regulates COX-2 expression via both AT(1) and AT(2) receptors. Control of COX-2 expression through Ang II signaling may have significance in cytokine-induced COX-2 induction and colon tumorigenesis.
Collapse
Affiliation(s)
- Tatsuo Tani
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Rie Ayuzawa
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506
| | - Tetsuo Takagi
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Tsutomu Kanehira
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Dharmendra Kumar Maurya
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506
| | - Masaaki Tamura
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506
| |
Collapse
|