1
|
Stanojević S, Blagojević V, Ćuruvija I, Vujić V. Lactobacillus rhamnosus Affects Rat Peritoneal Cavity Cell Response to Stimulation with Gut Microbiota: Focus on the Host Innate Immunity. Inflammation 2021; 44:2429-2447. [PMID: 34505975 DOI: 10.1007/s10753-021-01513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Gut microbiota contribute to shaping the immune repertoire of the host, whereas probiotics may exert beneficial effects by modulating immune responses. Having in mind the differences in both the composition of gut microbiota and the immune response between rats of Albino Oxford (AO) and Dark Agouti (DA) rat strains, we investigated if intraperitoneal (i.p.) injection of live Lactobacillus rhamnosus (LB) may influence peritoneal cavity cell response to in vitro treatments with selected microbiota in the rat strain-dependent manner. Peritoneal cavity cells from AO and DA rats were lavaged two (d2) and seven days (d7) following i.p. injection with LB and tested for NO, urea, and H2O2 release basally, or upon in vitro stimulation with autologous E.coli and Enterococcus spp. Whereas the single i.p. injection of LB nearly depleted resident macrophages and increased the proportion of small inflammatory macrophages and monocytes on d2 in both rat strains, greater proportion of MHCIIhiCD163- and CCR7+ cells and increased NO/diminished H2O2 release in DA compared with AO rats suggest a more intense inflammatory priming by LB in this rat strain. Even though E.coli- and/or Enterococcus spp.-induced rise in H2O2 release in vitro was abrogated by LB in cells from both rat strains, LB prevented microbiota-induced increase in NO/urea ratio only in cells from AO and augmented it in cells from DA rats. Thus, the immunomodulatory properties may not be constant for particular probiotic bacteria, but shaped by innate immunity of the host.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia. .,Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia.
| | - Veljko Blagojević
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Ivana Ćuruvija
- Immunology Research Centre "Branislav Janković, Institute of Virology, Vaccines and Sera "Torlak, Belgrade, Serbia
| | - Vesna Vujić
- Department of Chemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Wang X, Tian J, Jiao X, Geng J, Wang R, Liu N, Gao X, Griffin N, Gao Y, Shan F. The novel mechanism of anticancer effect on gastric cancer through inducing G0/G1 cell cycle arrest and caspase-dependent apoptosis in vitro and in vivo by methionine enkephalin. Cancer Manag Res 2018; 10:4773-4787. [PMID: 30425572 PMCID: PMC6201847 DOI: 10.2147/cmar.s178343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Gastric cancer (GC) is the second cause of cancer-related deaths. Methionine enkephalin (MENK), an endogenous opioid peptide, has immunological and antitumor activity. Purpose The aim of this work was to investigate whether MENK could exhibit activity against human GC in vitro and in vivo. Materials and methods Human GC cells were treated with MENK. Cell viability, colony formation, cell morphology, cell cycle, and apoptosis were assessed. The effects of MENK on gene expression of OGFr, Bax, BCL-2, caspase-3, PARP, Ki67, cyclin D1, c-myc, survivin were quantifed by qRT-PCR. Western blot was used to analyze the effects of MENK on protein expression of OGFr, Bax, BCL-2, caspase-3, PARP. The anti-tumor activity of MENK in gastic carcinoma was also investigated with animal experiments. Results The results indicate that MENK could significantly inhibit the growth of human GC cells SGC7901 and HGC27 in a concentration- and time-dependent manner, decrease the number of cell colonies, and arrest cell cycle in the G0/G1 phase by causing a decrease in Ki67, cyclin D1, and c-myc mRNA. Furthermore, MENK could induce tumor cell apoptosis associated with the upregulation of Bax, a corresponding downregulation of BCL-2 and survivin, and activation of caspase-3 and PARP. Moreover, MENK upregulated the expression of opioid receptors (OGFr) in SGC7901 and HGC27 cells. The interaction between MENK and OGFr in SGC7901 and HGC27 cells appears to be essential for the antitumor activity of MENK. Conclusion We conclude that MENK may be a potential drug for the treatment of GC.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| | - Jing Tian
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| | - Xue Jiao
- Department of Translational Medicine, No. 4 Teaching Hospital, China Medical University, Shenyang, China
| | - Jin Geng
- Department of Ophthalmology, China Medical University, Shenyang, China
| | - Reizhe Wang
- Department of Gynecology, No. 1 Teaching Hospital, China Medical University, Shenyang, China
| | - Ning Liu
- Department of Gynecologic Oncology, Shengjing Hospital
| | - Xinghua Gao
- Department of Dermatology, No. 1 Teaching Hospital, China Medical University, Shenyang, China
| | | | - Yuan Gao
- Faculty of Information and Engineering, Northeastern University, Shenyang, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| |
Collapse
|
4
|
Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol 2018; 55:38-48. [DOI: 10.1016/j.intimp.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
|
5
|
Stanojević S, Ćuruvija I, Blagojević V, Petrović R, Vujić V, Dimitrijević M. Strain-dependent response to stimulation in middle-aged rat macrophages: A quest after a useful indicator of healthy aging. Exp Gerontol 2016; 85:95-107. [DOI: 10.1016/j.exger.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
|
6
|
Ninkov M, Popov Aleksandrov A, Mirkov I, Demenesku J, Mileusnic D, Jovanovic Stojanov S, Golic N, Tolinacki M, Zolotarevski L, Kataranovski D, Brceski I, Kataranovski M. Strain differences in toxicity of oral cadmium intake in rats. Food Chem Toxicol 2016; 96:11-23. [DOI: 10.1016/j.fct.2016.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
|
7
|
Zhao D, Plotnikoff N, Griffin N, Song T, Shan F. Methionine enkephalin, its role in immunoregulation and cancer therapy. Int Immunopharmacol 2016; 37:59-64. [DOI: 10.1016/j.intimp.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
|
8
|
Stanojević S, Kuštrimović N, Mitić K, Vujić V, Aleksić I, Dimitrijević M. Peritoneal mast cell degranulation differently affected thioglycollate-induced macrophage phenotype and activity in Dark Agouti and Albino Oxford rats. Life Sci 2013; 93:564-72. [PMID: 24002019 DOI: 10.1016/j.lfs.2013.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/20/2013] [Indexed: 11/15/2022]
Abstract
AIMS Macrophages are heterogeneous population of inflammatory cells and, in response to the microenvironment, become differentially activated. The objective of the study was to explore macrophage effector functions during different inflammatory conditions in two rat strains. MAIN METHODS We have investigated the effects of in vivo treatment with mast cell-degranulating compound 48/80 and/or thioglycollate on peritoneal macrophage phagocytosis and capacity to secrete hydrogen peroxide (H2O2), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in Dark Agouti (DA) and Albino Oxford (AO) rat strains. Besides, fresh peritoneal cells were examined for the expression of ED1, ED2 and CD86 molecules. KEY FINDINGS In thioglycollate-elicited macrophages, increased proportion of ED1+ cells was accompanied with elevated phagocytosis of zymosan (DA strain), whereas increased expression level of CD86 molecule on ED2+ macrophages matched elevated secretory capacity for H2O2, TNF-α and NO (AO rats). Although mast cell degranulation induced by compound 48/80 increased the percentages of ED2+ macrophages in both rat strains, the proportion of ED2+ cells expressing CD86 molecule was decreased and increased in DA and AO rats, respectively. Furthermore, in DA strain compound 48/80 diminished macrophage secretion of NO, but stimulated all macrophage functions tested in AO strain. If applied concomitantly, the compound 48/80 additively increased macrophage activity induced by thioglycollate in AO rats. SIGNIFICANCE Macrophages from DA and AO rat strains show different susceptibility to mediators released from mast cells, suggesting that strain-dependant predisposition(s) toward particular activation pattern is decisive for the macrophage efficacy in response to inflammatory agents.
Collapse
Affiliation(s)
- Stanislava Stanojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
9
|
Liu J, Chen W, Meng J, Lu C, Wang E, Shan F. Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin (MENK). Cancer Immunol Immunother 2012; 61:1699-711. [PMID: 22392190 PMCID: PMC11028663 DOI: 10.1007/s00262-012-1221-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/06/2012] [Indexed: 12/22/2022]
Abstract
Methionine enkephalin (MENK), the endogenous neuropeptide, is known to exert direct effects on the neuroendocrine and the immune systems and participates in regulation of various functions of cells related to both the innate and adaptive immune systems. Dendritic cells (DCs) play important role in initiating and regulating T cell responses. The aim of this work is to investigate the effects of MENK on differentiation, maturation, and function of DCs derived from murine bone marrow progenitors (BM-derived DCs). Our result showed that MENK could induce BM-derived DCs to polarize predominantly to mDC subtype, rather than pDC both in vivo and in vitro, and this was in favor of Th1 response. BM-derived DCs, after treatment with MENK, up-regulated the expressions of MHC class II and key costimulatory molecules. Result by RT-PCR showed MENK could increase expressions of delta and kappa receptors on BM-derived DCs. Also MENK promoted BM-derived DCs to secret higher levels of proinflammatory cytokines of IL-12p70, TNF-α. Furthermore, differentiated BM-derived DCs treated with MENK displayed higher activity to induce allogeneic T cell proliferation and MENK also inhibited tumor growth in vivo and induced apoptosis of tumor cells in vitro. Thus, it is concluded that MENK could be an effective inducer of BM-derived DCs and might be a new therapeutic agent for cancer, as well as other immune handicapped disease. Also we may consider MENK as a potential adjuvant in vaccine preparation.
Collapse
Affiliation(s)
- Jingling Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866 People’s Republic of China
| | - Wenna Chen
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Jingjuan Meng
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Changlong Lu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Enhua Wang
- Institute of Pathology and Pathophysiology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| |
Collapse
|
10
|
Hua H, Lu C, Li W, Meng J, Wang D, Plotnikoff NP, Wang E, Shan F. Comparison of stimulating effect on subpopulations of lymphocytes in human peripheral blood by methionine enkephalin with IL-2 and IFN-γ. Hum Vaccin Immunother 2012; 8:1082-9. [PMID: 22854663 DOI: 10.4161/hv.20759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the effects of mechanisms of methionine enkephalin (MENK) on lymphocytes in human peripheral blood. We detected CD4+T cells, CD8+T cells, CD4+CD25+ regulatory T cells (Treg), dendritic cells (DCs), natural killer cells (NK), NKT cells and γδT cells before and after treatment with 10 (-12) M MENK, in cell culture by FCM and RT-PCR. Our findings show that MENK stimulating expansion of lymphocyte subpopulationns by inhibiting CD4+CD25+ regulatory T cells (Treg), which is unique discovery of our study. We may use MENK as a drug to treat cancer patients, whose immune systems are damaged by chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Hui Hua
- Department of Immunology; School of Basic Medical Science; China Medical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shan F, Xia Y, Wang N, Meng J, Lu C, Meng Y, Plotnikoff NP. Functional modulation of the pathway between dendritic cells (DCs) and CD4+T cells by the neuropeptide: methionine enkephalin (MENK). Peptides 2011; 32:929-37. [PMID: 21335041 DOI: 10.1016/j.peptides.2011.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 11/26/2022]
Abstract
MENK, the endogenous neuropeptide, is suggested to be involved in the regulatory loop between the immune and neuroendocrine systems, with modulation of various functions of cells related to both the innate and adaptive immune systems. Our present research findings show that MENK serves as an immune modulator to the pathway between DCs and CD4+T cells. We studied changes of DCs in key surface molecules, the activity of acid phosphatases (ACPs), the production of IL-12, and the effects on murine CD4+T cell expansion and their cytokine production by MENK alone, and in combination with interleukin-2 (IL-2) or interferon-γ (IFN-γ). In fact, we found that MENK could markedly induce the maturation of DCs through the addition of surface molecules such as MHC class II, CD86, and CD40 on murine DCs, the production of IL-12, and the down-regulation of ACP inside DCs, (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). We also found that MENK alone or in combination with IL-2 or IFN-γ, could markedly up-regulate both CD4+T cell expansion and the CD4 molecule expression in vivo and in vitro and that MENK alone, or MENK+IL-2, could enhance the production of interferon-γ from CD4+T cells. Moreover, MENK alone, or MENK+IFN-γ, could enhance the production of IL-2 from CD4+T cells. It is therefore concluded that MENK can exert positive modulation to the pathway between dendritic cells and CD4+T cells.
Collapse
Affiliation(s)
- Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang 110001, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Assis MA, Valdomero A, García-Keller C, Sotomayor C, Cancela LM. Decrease of lymphoproliferative response by amphetamine is mediated by dopamine from the nucleus accumbens: influence on splenic met-enkephalin levels. Brain Behav Immun 2011; 25:647-57. [PMID: 21237264 DOI: 10.1016/j.bbi.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/04/2011] [Accepted: 01/06/2011] [Indexed: 02/08/2023] Open
Abstract
Despite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in the methionine(met)-enkephalin content at limbic and immune levels, 4 days after drug administration. In this study, we investigated if a possible dopamine mechanism underlies these amphetamine-induced effects by administering D1 and D2 dopaminergic antagonists or a dopaminergic terminal neurotoxin before the drug. Pre-treatment with either SCH-23390 (0.1 mg/kg, i.p.) or raclopride (0.1 mg/kg, i.p.), a D1 or D2 dopaminergic receptor antagonist, respectively, abrogated the effects of amphetamine on the lymphoproliferative response and on met-enkephalin levels of the spleen. The amphetamine-induced increase in limbic met-enkephalin content was suppressed by SCH-23390 but not by raclopride pre-treatment. Finally, an intra-accumbens 6-hydroxy-dopamine injection administered 2 weeks previously prevented amphetamine-induced effects on the lymphoproliferative response and on met-enkephalin levels in the prefrontal cortex and spleen. These findings strongly suggest that D1 and D2 dopaminergic receptors are involved in amphetamine-induced effects at immune level as regards the lymphoproliferative response and the changes in spleen met-enkephalin content, whereas limbic met-enkephalin levels were modulated only by the D1 dopaminergic receptors. In addition, this study showed that a mesolimbic component modulated amphetamine-induced effects on the immune response, as previously shown at a behavioral level.
Collapse
Affiliation(s)
- María Amparo Assis
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
13
|
Singh R, Rai U. Delta opioid receptor-mediated immunoregulatory role of methionine-enkephalin in freshwater teleost Channa punctatus (Bloch.). Peptides 2009; 30:1158-64. [PMID: 19463750 DOI: 10.1016/j.peptides.2009.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/26/2009] [Accepted: 02/26/2009] [Indexed: 11/23/2022]
Abstract
The immunoregulatory role of methionine-enkephalin (Met-enk) is well studied in mammals, but has not been explored in ectotherms despite the fact that this peptide is highly conserved in vertebrates. The present study demonstrates the diverse effects of Met-enk depending on its concentration and specific function of splenic phagocytes in the freshwater fish Channa punctatus. Although Met-enk increased both phagocytic as well as respiratory burst activity, the concentration-related response was opposite to each other. It had the maximum stimulatory effect on phagocytosis at 10(-9)M, while the same concentration was least effective in increasing superoxide production. Similarly, Met-enk at concentrations lower or higher than 10(-9)M was either ineffective or less effective in case of phagocytosis, while highly effective in stimulating superoxide production. On the other hand, concentration-independent inhibitory effect of Met-enk was observed in case of nitrite production. Nonetheless, Met-enk regulated all the functions of phagocyte through opioid receptors since non-specific opioid receptor antagonist naltrexone completely blocked the effect of Met-enk on phagocytosis, superoxide and nitrite production by splenic phagocytes of C. punctatus. Among selective opioid receptor antagonists, delta-opioid receptor antagonist naltrindole completely antagonized the effect of Met-enk on phagocytosis, superoxide and nitrite production, while mu- and kappa-opioid receptor antagonist, CTAP and norbinaltorphimine, respectively, were ineffective in influencing any of the functions. This suggests that Met-enk modulates splenic phagocyte functions in the fish C. punctatus via delta-opioid receptor. This is further substantiated by using highly selective delta-opioid receptor agonist, SNC80.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
14
|
Assis MA, Hansen C, Lux-Lantos V, Cancela LM. Sensitization to amphetamine occurs simultaneously at immune level and in met-enkephalin of the nucleus accumbens and spleen: an involved NMDA glutamatergic mechanism. Brain Behav Immun 2009; 23:464-73. [PMID: 19486656 DOI: 10.1016/j.bbi.2009.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/28/2022] Open
Abstract
Administration of psychostimulants can elicit a sensitized response to the stimulating and reinforcing properties of the drugs, although there is scarce information regarding their effects at immune level. We previously demonstrated that an acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in met-enkephalin at limbic and immune levels, 4 days following drug administration. In this study, we evaluated the amphetamine-induced effects at weeks one and three after the same single dose treatment (5 mg/kg, i.p.) on the lymphoproliferative response and on the met-enkephalin in the nucleus accumbens (NAc), prefrontal cortex (PfC), spleen and thymus. It was demonstrated that these effects disappeared completely after three weeks, although re-exposure to an amphetamine challenge induced the expression of sensitization to the effects of amphetamine on the lymphoproliferative response and on the met-enkephalin from NAc, spleen and thymus, but not in the PfC. Pre-treatment with MK-801 (0.1 mg/kg, i.p.), an N-methyl-d-aspartate (NMDA) glutamatergic receptor antagonist, blocked the effects of a single amphetamine exposure on the lymphoproliferative response and on met-enkephalin in the NAc and spleen. Furthermore, the NMDA receptor antagonist administered prior to amphetamine challenge also blocked the expression of sensitization in both parameters evaluated. These findings show a long-lasting amphetamine-induced sensitization phenomenon at the immune level in a parallel way to that occurring in the limbic and immune enkephalineric system. A glutamate mechanism is implied in the long-term amphetamine-induced effects at immune level and in the met-enkephalin from NAc and spleen.
Collapse
Affiliation(s)
- María Amparo Assis
- National University of Córdoba, School of Chemical Sciences, Department of Pharmacology, Instituto de Farmacología Experimental de Córdoba-CONICET, Medina Allende y Haya de la Torre, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | | | | |
Collapse
|
15
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Stanojević S, Vujić V, Mitić K, Kustrimović N, Kovacević-Jovanović V, Miletić T, Dimitrijević M. Methionine-enkephalin modulation of hydrogen peroxide (H2O2) release by rat peritoneal macrophages involves different types of opioid receptors. Neuropeptides 2008; 42:147-58. [PMID: 18237778 DOI: 10.1016/j.npep.2007.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/15/2007] [Accepted: 12/19/2007] [Indexed: 11/23/2022]
Abstract
We investigated the involvement of specific types of opioid receptors in methionine-enkephalin (MET)-induced modulation of hydrogen peroxide (H2O2) release by rat macrophages primed with sub-optimal concentrations of phorbol myristate acetate (PMA). Peritoneal macrophages in vitro treated with different concentrations of MET were tested for H2O2 release in phenol red assay. In the antagonistic study macrophages were treated with MET and one opioid receptor antagonist, or combination of MET and two or three opioid receptor antagonists. MET decreased H2O2 release in eight individual macrophage samples, and increased it in 10 samples. The increase of H2O2 release induced by MET in macrophages was blocked with combination of opioid receptor antagonists specific delta1,2 and mu receptors, as well as with combination of antagonists specific for delta1,2 and kappa opioid receptors. MET-induced decrease of the H2O2 release in macrophages was prevented by opioid receptor antagonists specific for delta1,2 or mu receptors, and also with combination of two or three opioid receptor antagonists. MET-induced enhancement of H2O2 release was mediated via delta1 or delta2 opioid receptor subtypes, or by mu-kappa opioid receptor functional interactions, while MET-induced suppression involved functional interactions between delta1 and mu, delta2 and mu, or delta1 and kappa opioid receptors. It is possible that individual differences in basal or induced macrophage capacity to produce H2O2 might shape the repertoire of opioid receptors expression and in that way pre-determine the direction of MET-induced changes after the in vitro treatment.
Collapse
MESH Headings
- Animals
- Benzylidene Compounds/pharmacology
- Carcinogens/pharmacology
- Dose-Response Relationship, Drug
- Enkephalin, Methionine/metabolism
- Enkephalin, Methionine/pharmacology
- Hydrogen Peroxide/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Stanislava Stanojević
- Institute of Virology, Vaccines and Sera Torlak, Immunology Research Centre Branislav Janković, Vojvode Stepe 458, 11152 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|