1
|
Xun Y, Chen G, Tang G, Zhang C, Zhou S, Fong TL, Chen Y, Xiong R, Wang N, Feng Y. Traditional Chinese medicine and natural products in management of hepatocellular carcinoma: Biological mechanisms and therapeutic potential. Pharmacol Res 2025; 215:107733. [PMID: 40209965 DOI: 10.1016/j.phrs.2025.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC), originating from hepatocytes, is the most common type of primary liver cancer. HCC imposes a significant global health burden with high morbidity and mortality, making it a critical public concern. Surgical interventions, including hepatectomy and liver transplantation, are pivotal in achieving long-term survival for patients with HCC. Additionally, ablation therapy, endovascular interventional therapy, radiotherapy, and systemic anti-tumor therapies are commonly employed. However, these treatment modalities are often associated with considerable challenges, including high postoperative recurrence rates and adverse effects. Traditional Chinese medicine (TCM) and natural products have been utilized for centuries as a complementary approach in managing HCC and its complications, demonstrating favorable clinical outcomes. Various bioactive compounds derived from TCM and natural products have been identified and purified, and their mechanisms of action have been extensively investigated. This review aims to provide a comprehensive and up-to-date evaluation of the clinical efficacy of TCM, natural products and their active constituents in the treatment and management of HCC. Particular emphasis is placed on elucidating the potential molecular mechanisms and therapeutic targets of these agents, including their roles in inhibiting HCC cell proliferation, inducing apoptosis and pyroptosis, suppressing tumor invasion and metastasis, and restraining angiogenesis within HCC tissues.
Collapse
Affiliation(s)
- Yunqing Xun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Shichen Zhou
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Tung-Leong Fong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yue Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ruogu Xiong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
2
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Yamada K, Yoshida K. Multiple subcellular localizations and functions of protein kinase Cδ in liver cancer. World J Gastroenterol 2022; 28:188-198. [PMID: 35110944 PMCID: PMC8776529 DOI: 10.3748/wjg.v28.i2.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications have been reported in various biological and cancerous processes, including cell proliferation, cell death, tumor suppression, and tumor progression. In liver cancer cells, accumulating reports show the bi-functional regulation of PKCδ in cell death and survival. PKCδ function is defined by various factors, such as phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ has multiple intracellular distribution patterns, ranging from the cytosol to the nucleus. We recently found a unique extracellular localization of PKCδ in liver cancer and its growth factor-like function in liver cancer cells. In this review, we first discuss the structural features of PKCδ and then focus on the functional diversity of PKCδ based on its subcellular localization, such as the nucleus, cell surface, and extracellular space. These findings improve our knowledge of PKCδ involvement in the progression of liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
5
|
Yang L, Chai CZ, Yan Y, Duan YD, Henz A, Zhang BL, Backlund A, Yu BY. Spasmolytic Mechanism of Aqueous Licorice Extract on Oxytocin-Induced Uterine Contraction through Inhibiting the Phosphorylation of Heat Shock Protein 27. Molecules 2017; 22:molecules22091392. [PMID: 28850076 PMCID: PMC6151720 DOI: 10.3390/molecules22091392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Licorice derived from the roots and rhizomes of Glycyrrhiza uralensis Fisch. (Fabaceae), is one of the most widely-used traditional herbal medicines in China. It has been reported to possess significant analgesic activity for treating spastic pain. The aim of this study is to investigate the spasmolytic molecular mechanism of licorice on oxytocin-induced uterine contractions and predict the relevant bioactive constituents in the aqueous extract. The aqueous extraction from licorice inhibited the amplitude and frequency of uterine contraction in a concentration-dependent manner. A morphological examination showed that myometrial smooth muscle cells of oxytocin-stimulated group were oval-shaped and arranged irregularly, while those with a single centrally located nucleus of control and licorice-treated groups were fusiform and arranged orderly. The percentage of phosphorylation of HSP27 at Ser-15 residue increased up to 50.33% at 60 min after oxytocin stimulation. Furthermore, this increase was significantly suppressed by licorice treatment at the concentration of 0.2 and 0.4 mg/mL. Colocalization between HSP27 and α-SMA was observed in the myometrial tissues, especially along the actin bundles in the oxytocin-stimulated group. On the contrary, the colocalization was no longer shown after treatment with licorice. Additionally, employing ChemGPS-NP provided support for a preliminary assignment of liquiritigenin and isoliquiritigenin as protein kinase C (PKC) inhibitors in addition to liquiritigenin, isoliquiritigenin, liquiritin and isoliquiritin as MAPK-activated protein kinase 2 (MK2) inhibitors. These assigned compounds were docked with corresponding crystal structures of respective proteins with negative and low binding energy, which indicated a high affinity and tight binding capacity for the active site of the kinases. These results suggest that licorice exerts its spasmolytic effect through inhibiting the phosphorylation of HSP27 to alter the interaction between HSP27 and actin. Furthermore, our results provide support for the prediction that potential bioactive constituents from aqueous licorice extract inhibit the relevant up-stream kinases that phosphorylate HSP27.
Collapse
Affiliation(s)
- Lu Yang
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Cheng-Zhi Chai
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China.
| | - Ying-Dan Duan
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Astrid Henz
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Li Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Anders Backlund
- Divsion of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC box 574, S-751 23 Uppsala, Sweden.
| | - Bo-Yang Yu
- Department of Complex Prescription of TCM, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| |
Collapse
|
6
|
Jia K, Sun D, Ling S, Tian Y, Yang X, Sui J, Tang B, Wang L. Activated δ‑opioid receptors inhibit hydrogen peroxide‑induced apoptosis in liver cancer cells through the PKC/ERK signaling pathway. Mol Med Rep 2014; 10:839-47. [PMID: 24912447 DOI: 10.3892/mmr.2014.2301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Apoptotic liver cancer cells have important roles in liver tumorigenesis and liver cancer progression. Recent studies have shown that δ‑opioid receptors are highly expressed in human liver and liver cancer cells. The present study aimed to investigate the role of activated δ‑opioid receptors on human liver cancer cell apoptosis and its interrelation with the mitochondria and the protein kinase C/extracellular‑signal‑regulated kinase (PKC/ERK) signaling pathway. H2O2 was used to induce apoptosis in human liver cancer cells. During apoptosis, mitochondrial transmembrane potentials were observed to decrease, cytochrome c expression was found to increase and B cell lymphoma 2 (Bcl‑2) expression decreased. These findings suggested that H2O2‑induced apoptosis was mediated through the mitochondrial pathway. Of note, activated δ‑opioid receptors were observed to inhibit H2O2‑induced apoptosis in human liver cancer cells. Following δ‑opioid receptor activation, the number of apoptotic liver cancer cells decreased, mitochondrial transmembrane potentials were restored, cytoplasmic cytochrome c and Bcl‑2‑associated X protein expression decreased and Bcl‑2 expression increased. These data suggested that δ‑opioid receptor activation inhibited mitochondria‑mediated apoptosis. In addition, activation of δ‑opioid receptors was observed to increase the expression of PKC and ERK in human liver cancer cells. Furthermore, upon inhibition of the PKC/ERK signaling pathway, the protective effect associated with the δ‑opioid receptor on liver cancer cell apoptosis was inhibited, which was not associated with the status of δ‑opioid receptor activation. These findings suggested that the PKC/ERK signaling pathway has an important role in δ‑opioid receptor‑mediated inhibition of apoptosis in human liver cancer cells.
Collapse
Affiliation(s)
- Kaiqi Jia
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Deguang Sun
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Sunbin Ling
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yu Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Xuejun Yang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Jidong Sui
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Liming Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| |
Collapse
|
7
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
8
|
The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells. J Nutr Biochem 2012; 23:1668-75. [PMID: 22475810 DOI: 10.1016/j.jnutbio.2011.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/03/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022]
Abstract
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ɛ showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKCɛ, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKCɛ after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKCɛ abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKCɛ knockdown. Collectively, all of the PKCs, including α, δ and ɛ, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ɛ kinase activities, as well as subsequent inhibition of PKD1 activation.
Collapse
|
9
|
Activity of tumor necrosis factor-α blocked by phytoglycoprotein (38 kDa) at initiation stage in N-nitrosodiethylamine-induced ICR mice. Mol Cell Biochem 2011; 362:177-86. [PMID: 22045064 DOI: 10.1007/s11010-011-1140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Hepatocellular carcinoma is becoming one of the most prominent types of cancer in the world. Recently, from Styrax japonica Siebold et al. Zuccarini (SJSZ), we isolated a glycoprotein which consists of carbohydrate moiety (52.64%) and protein moiety (42.35%). We evaluated whether SJSZ glycoprotein prevents hepatocarcinogenesis induced by N-nitrosodiethylamine (DEN). The purpose of this study was to evaluate the effect of SJSZ glycoprotein in DEN-induced hepatocarcinogenesis in ICR mice. To know chemopreventive effect of SJSZ glycoprotein on hepatocarcinogenesis, ICR mice were intraperitoneally injected with N-nitrosodiethylamine (DEN, 10 mg/kg) for 7 weeks. After sacrifice, we evaluated indicators of liver tissue damage [the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT), and thiobarbituric acid reactive substances (TBARS)], antioxidative enzymes [activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], and initiating hepatocarcinogenic indicator [heat shock protein (HSP) 27 and 70] and hepatocarcinogenic signals [protein kinase C (PKC), extracellular signal-regulating kinase (ERK) 1/2, nuclear factor (NF)-κB (p50 and p65) and tumor necrosis factor-α (TNF-α)] using biochemical methods, immunoblot analysis, and RT-PCR. The results obtained from this study revealed that SJSZ glycoprotein (10 mg/kg, BW) decreased the levels of LDH, ALT, and TBARS, whereas the activities of SOD, GPx, and CAT increased in the DEN-induced ICR mice. With respect to the hepatocarcinogenic indicator and hepatocarcinogenic signals, HSP27, HSP70, PKC, ERK1/2, NF-κB (p50 and p65), and TNF-α, activity decreased. Hence, SJSZ glycoprotein might prevent expression of HSP27 and HSP70 by DEN.
Collapse
|
10
|
Dokas LA, Malone AM, Williams FE, Nauli SM, Messer WS. Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells. Neuropharmacology 2011; 61:12-24. [PMID: 21338617 PMCID: PMC3105189 DOI: 10.1016/j.neuropharm.2011.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/25/2011] [Accepted: 02/11/2011] [Indexed: 01/21/2023]
Abstract
In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt.
Collapse
Affiliation(s)
- Linda A. Dokas
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Amy M. Malone
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Frederick E. Williams
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Surya M. Nauli
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
- Department of Medicinal & Biological Chemistry, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - William S. Messer
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
- Department of Medicinal & Biological Chemistry, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| |
Collapse
|
11
|
Modulators of Protein Kinase C Affect SR-BI-Dependent HDL Lipid Uptake in Transfected HepG2 Cells. CHOLESTEROL 2011; 2011:687939. [PMID: 21490774 PMCID: PMC3065880 DOI: 10.1155/2011/687939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 11/17/2022]
Abstract
SR-BI is a cell surface HDL receptor that mediates selective uptake of the lipid cargo of HDL, an important process in hepatocytes, driving reverse cholesterol transport from cells in the artery wall. To facilitate examination of factors that modulate SR-BI activity in hepatocytes, we have generated fluorescent protein-tagged versions of SR-BI that allow for facile monitoring of SR-BI protein levels and distribution in transfected cells. We show that deletion of the C-terminal cytosolic tail does not affect the distribution of SR-BI in HepG2 cells, nor is the C-terminal cytosolic tail required for SR-BI-mediated uptake of HDL lipids. We also demonstrate that the phorbol ester, PMA, increased, while protein kinase C inhibitors reduced SR-BI-mediated HDL lipid uptake in HepG2 cells. These data suggest that protein kinase C may modulate selective uptake of HDL lipids including cholesterol in hepatocytes, thereby influencing hepatic HDL cholesterol clearance and reverse cholesterol transport.
Collapse
|
12
|
Jiang W, Bian L, Ma LJ, Tang RZ, Xun S, He YW. Hyperthermia-induced apoptosis in Tca8113 cells is inhibited by heat shock protein 27 through blocking phospholipid scramblase 3 phosphorylation. Int J Hyperthermia 2011; 26:523-37. [PMID: 20569108 DOI: 10.3109/02656731003793393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Hyperthermia induces tumour cell apoptosis through the mitochondrial apoptotic pathway; however, the signal transduction mechanism underlying this process still needs to be fully elucidated. Phospholipid scramblase 3 (PLS3), a target of protein kinase C-delta (PKC-delta), resides in mitochondria and plays pivotal roles in regulating apoptotic response. Activated PLS3 facilitates cardiolipin (CL) translocation from the mitochondrial inner membrane to the outer leaflet of the mitochondrial outer membrane and triggers apoptosis. MATERIALS AND METHODS The tongue squamous cell carcinoma Tca8113 cells were transfected or co-transfected using Lipofectamine 2000 with plasmids pCMV-6xHis-PLS3, pCMV-6xHis-PLS3 (T21A), pHA-PKC-delta, pHA-PKC-delta-KD (K376R), pHA-Hsp27, and empty control plasmid pcDNA3.1. The transfected cells were heated in water bath at 43 degrees C for 20 min, 40 min and 60 min. Assessments of apoptosis and redistribution of mitochondrial cardiolipin were performed by flow cytometry. PLS3, PKC-delta, Hsp27, phosphorylation of PLS3 and PLS3/PKC-delta interaction were detected by western blotting. RESULTS In our study the results show that elevated levels of the wild-type PLS3, but not the PLS3 (T21A) mutant, is able to increase hyperthermia-induced CL translocation and apoptosis. Wild-type PKC-delta facilitates PLS3 phosphorylation, PKC-delta/PLS3 interaction, and CL translocation, which consequently promote apoptosis. In contrast, heat shock protein 27 (Hsp27) blocks PKC-delta-induced PLS3 phosphorylation, suppresses PKC-delta/PLS3 interaction and CL translocation, and inhibits apoptosis. CONCLUSIONS Our findings suggest that phosphorylation of PLS3 by PKC-delta is involved in the hyperthermia-induced apoptotic signal transduction pathway in Tca8113 cells, and that Hsp27 blocks this pathway to suppress hyperthermia-induced apoptosis.
Collapse
Affiliation(s)
- Wen Jiang
- The Affiliated Stomatological Hospital of Kunming Medical College, Kunming, China
| | | | | | | | | | | |
Collapse
|
13
|
Launay N, Tarze A, Vicart P, Lilienbaum A. Serine 59 phosphorylation of {alpha}B-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 2010; 285:37324-32. [PMID: 20841355 DOI: 10.1074/jbc.m110.124388] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock protein (sHSP) αB-crystallin is a new oncoprotein in breast carcinoma that predicts poor clinical outcome in breast cancer. However, although several reports have demonstrated that phosphorylation of sHSPs modify their structural and functional properties, the significance of αB-crystallin phosphorylation in cancer cells has not yet been investigated. In this study, we have characterized the phosphorylation status of αB-crystallin in breast epithelial carcinoma cells line MCF7 submitted to anti-cancer agents like vinblastine. We have showed that the main phosphorylation site of αB-crystallin in response to vinblastine is serine 59 and determined a correlation between this post-translational modification and higher apoptosis level. The overexpression of the serine 59 "pseudophosphorylated" mutant (S59E) induces a significant increase in the apoptosis level of vinblastine-treated MCF7 cells. In contrast, overexpression of wild-type αB-crystallin or "nonphosphorylatable" mutant (S59A) result in a resistance to this microtubule-depolymerizing agent, while inhibition of endogenous levels of αB-crystallin by expression of shRNA lowers it. Analyzing further the molecular mechanism of this phenomenon, we report for the first time that phosphorylated αB-crystallin preferentially interacts with Bcl-2, an anti-apoptotic protein, and this interaction prevents the translocation of Bcl-2 to mitochondria. Hence, this study identifies serine 59 phosphorylation as an important key in the down-regulation of αB-crystallin anti-apoptotic function in breast cancer and suggests new strategies to improve anti-cancer treatments.
Collapse
Affiliation(s)
- Nathalie Launay
- Unité de Biologie Fonctionnelle et Adaptative BFA EAC4413, Université Paris 7 Denis Diderot/CNRS, Laboratoire Stress et Pathologies du Cytosquelette, 4 rue Marie-Andrée Lagroua Weill-Hallé 75250 Paris Cedex 13, France
| | | | | | | |
Collapse
|
14
|
Nakashima M, Hamajima H, Xia J, Iwane S, Kwaguchi Y, Eguchi Y, Mizuta T, Fujimoto K, Ozaki I, Matsuhashi S. Regulation of tumor suppressor PDCD4 by novel protein kinase C isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1020-7. [PMID: 20471435 DOI: 10.1016/j.bbamcr.2010.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/24/2010] [Accepted: 05/05/2010] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) induces apoptosis in normal hepatocytes and hepatoma cells. PDCD4 is involved in TGF-beta1-induced apoptosis via the Smad pathway. The tumor promoter 12-O-tetradecanoylphorbor-13-acetate (TPA), a protein kinase C stimulator, inhibits TGF-beta1-induced apoptosis. However, the mechanisms of TPA action on PDCD4 expression remain to be elucidated. Therefore. the regulatory mechanism of PDCD4 expression by PKC was investigated. The treatment of the human hepatoma cell line, Huh7 with TPA suppressed PDCD4 protein expression and TGF-beta1 failed to increase the PDCD4 protein expression. PKC inhibitors Ro-31-8425 or bisindolylmaleimide-1-hydrocholoride (pan-PKC inhibitors) and rottlerin (PKCdelta inhibitor), but not Go6976 (PKCalpha inhibitor), enhanced the induction of PDCD4 protein by TGF-beta1. Furthermore, siRNA-mediated knockdown of PKCdelta and epsilon, but not PKCalpha, augmented the TGF-beta1-stimulated PDCD4 protein expression. However, TPA or pan-PKC inhibitor did not alter the PDCD4 mRNA expression either under basal- and TGF-beta1-treated conditions. The down-regulation of PDCD4 by TPA was restored by treatment with the proteasome inhibitor MG132. These data suggest that two isoforms of PKCs are involved in the regulation of the PDCD4 protein expression related to the proteasomal degradation pathway.
Collapse
Affiliation(s)
- Mayumi Nakashima
- Department of Internal Medicine, Saga Medical School, Saga, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Karmacharya MB, Jang JI, Lee YJ, Lee YS, Soh JW. Mutation of the hydrophobic motif in a phosphorylation-deficient mutant renders protein kinase C delta more apoptotically active. Arch Biochem Biophys 2010; 493:242-8. [DOI: 10.1016/j.abb.2009.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/06/2009] [Accepted: 11/07/2009] [Indexed: 11/26/2022]
|
16
|
Baloui H, Stettler O, Weiss S, Nothias F, von Boxberg Y. Upregulation in rat spinal cord microglia of the nonintegrin laminin receptor 37 kDa-LRP following activation by a traumatic lesion or peripheral injury. J Neurotrauma 2009; 26:195-207. [PMID: 19196078 DOI: 10.1089/neu.2008.0677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms triggering microglial activation after injury to the central nervous system, involving cell-extracellular matrix interactions and cytokine signaling, are not yet fully understood. Here, we report that resident microglia in spinal cord express low levels of the non-integrin laminin receptor precursor (LRP), also found on certain neurons and glial cells in the peripheral nervous system. 37LRP/p40 and its 67-kDa isoform laminin receptor (LR) were the first high-affinity laminin binding proteins identified. While the role of laminin receptor was later attributed to integrins, LRP/LR gained new interest as receptors for prions, and their interaction with laminin seems important for migration of metastatic cancer cells. Using immunohistochemistry and Western blotting, we demonstrate that traumatic spinal cord injury leads to a strong and rapid increase in LRP levels in relation to activated microglia/macrophages. Associated with laminin re-expression in the lesion epicenter, LRP-positive microglia/macrophages exhibit a rounded, ameboid-like shape characteristic of phagocytic cells, whereas in more distant loci they reveal a hypertrophied cell body and short ramifications. The same morphological difference is observed in vitro for purified microglia cultured with or without laminin. Strong, transient upregulation of LRP by activated spinal cord microglia is also induced by transection of the sciatic nerve that affects the spinal cord circuitry without blood-brain barrier dysruption. LRP expression is maximal by 1 week post-lesion, before becoming restricted to dorsal and ventral horns, sites of major structural reorganization. Our findings strongly suggest the involvement of LRP in lesion-induced activation and migration of microglia.
Collapse
Affiliation(s)
- Hasna Baloui
- Université Pierre et Marie Curie-Paris6, UMR7101 NSI; and CNRS, UMR7101 IFR-83, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Kostenko S, Moens U. Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009; 66:3289-307. [PMID: 19593530 PMCID: PMC11115724 DOI: 10.1007/s00018-009-0086-3] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
The small heat shock protein Hsp27 or its murine homologue Hsp25 acts as an ATP-independent chaperone in protein folding, but is also implicated in architecture of the cytoskeleton, cell migration, metabolism, cell survival, growth/differentiation, mRNA stabilization, and tumor progression. A variety of stimuli induce phosphorylation of serine residues 15, 78, and 82 in Hsp27 and serines 15 and 86 in Hsp25. This post-translational modification affects some of the cellular functions of Hsp25/27. As a consequence of the functional importance of Hsp25/27 phosphorylation, aberrant Hsp27 phosphorylation has been linked to several clinical conditions. This review focuses on the different Hsp25/27 kinases and phosphatases that regulate the phosphorylation pattern of Hsp25/27, and discusses the recent findings of the biological implications of these phosphorylation events in physiological and pathological processes. Novel therapeutic strategies aimed at restoring anomalous Hsp27 phosphorylation in human diseases will be presented.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| | - Ugo Moens
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
18
|
Pan JS, Hong MZ, Ren JL. Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 2009; 15:1702-1707. [PMID: 19360913 PMCID: PMC2668775 DOI: 10.3748/wjg.15.1702] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are molecules or ions formed by the incomplete one-electron reduction of oxygen. Of interest, it seems that ROS manifest dual roles, cancer promoting or cancer suppressing, in tumorigenesis. ROS participate simultaneously in two signaling pathways that have inverse functions in tumorigenesis, Ras-Raf-MEK1/2-ERK1/2 signaling and the p38 mitogen-activated protein kinases (MAPK) pathway. It is well known that Ras-Raf-MEK1/2-ERK1/2 signaling is related to oncogenesis, while the p38 MAPK pathway contributes to cancer suppression, which involves oncogene-induced senescence, inflammation-induced cellular senescence, replicative senescence, contact inhibition and DNA-damage responses. Thus, ROS may not be an absolute carcinogenic factor or cancer suppressor. The purpose of the present review is to discuss the dual roles of ROS in the pathogenesis of cancer, and the signaling pathway mediating their role in tumorigenesis.
Collapse
|
19
|
Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 2008; 35:1-8. [PMID: 18778896 DOI: 10.1016/j.ctrv.2008.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/11/2022]
Abstract
Protein kinase C is a family of serine/threonine kinases. The PKC family is made up of at least 12 isozymes, which have a role in cell proliferation, differentiation, angiogenesis, and apoptosis. Activation of PKC isozyme is dependent on tyrosine-kinase receptors and G-protein-coupled receptors. PKC isozymes regulate multiple signaling pathways including PI3-K/Akt, MAPK, and GSK-3beta. PKC isozymes have variable roles in tumor biology which in part depend on the cell type and intracellular localization. PKC isozymes are commonly dysregulated in the cancer of the prostate, breast, colon, pancreatic, liver, and kidney. Currently, several classes of PKC inhibitors are being evaluated in clinical trials and several challenges in targeting PKC isozymes have been recently identified. In conclusion, PKC remains a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
20
|
Matsushima-Nishiwaki R, Takai S, Adachi S, Minamitani C, Yasuda E, Noda T, Kato K, Toyoda H, Kaneoka Y, Yamaguchi A, Kumada T, Kozawa O. Phosphorylated Heat Shock Protein 27 Represses Growth of Hepatocellular Carcinoma via Inhibition of Extracellular Signal-regulated Kinase. J Biol Chem 2008; 283:18852-60. [DOI: 10.1074/jbc.m801301200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
21
|
Tanabe K, Takai S, Matsushima-Nishiwaki R, Kato K, Dohi S, Kozawa O. Alpha2 adrenoreceptor agonist regulates protein kinase C-induced heat shock protein 27 phosphorylation in C6 glioma cells. J Neurochem 2008; 106:519-28. [PMID: 18384648 DOI: 10.1111/j.1471-4159.2008.05389.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dexmedetomidine (Dexmd), a potent and highly specific alpha(2) adrenoreceptor agonist, is an efficient therapeutic agent for sedation. Dexmd has been recently reported to have a neuroprotective effect. Heat shock protein (HSP) 27, a low-molecular weight HSP has been shown to be expressed following cerebral ischemia in astrocytes but not in neurons. HSP27 expression is involved in ischemic tolerance of the brain. This study investigated the effect of Dexmd on HSP27 in rat C6 glioma cells. 12-O-tetradecanoylphorbol-13-actate (TPA), a direct activator of protein kinase C (PKC), stimulated the phosphorylation of HSP27 at Ser82, but not Ser15 in a time-dependent manner. Prostaglandin (PG) E(1) or PGE(2) which activates the adenylyl cyclase-cAMP system as well as forskolin and dibutyryl-cAMP, suppressed the TPA-induced phosphorylation of HSP27. Dexmd reversed the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system. Therefore, these results strongly suggest that Dexmd reverses the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system activation through the inhibition of its system in C6 cells. alpha(2) Adrenoreceptor agonists may therefore show a neuroprotective effect through the modification of HSP27 phosphorylation induced by PKC activation.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Studies indicate that the development of HCC is related to signal transduction of Ras-MAPK.P38MAPK, an important member of the family of mitogen-activated protein kinases. P38MAPK participates in cell proliferation, apoptosis and differentiation and plays a key role in cell apoptosis. P38MAPK is closely related with carcinogenesis, rapid generation and infinite growth of liver cancer and plays a role in the occurrence and development of liver cancer induced by organics, HBV and HCV. Drugs exert their anti-tumor effects through p38MAPK which also takes part in the formation of drug resistance to HCC. This paper reviews the advances in studies on p38MAPK-related HCC.
Collapse
|