1
|
Bastola S, Kothapalli C, Ramamurthi A. Sodium Nitroprusside Stimulation of Elastic Matrix Regeneration by Aneurysmal Smooth Muscle Cells. Tissue Eng Part A 2023; 29:225-243. [PMID: 36597287 PMCID: PMC10122248 DOI: 10.1089/ten.tea.2022.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
The chronic overexpression of matrix metalloproteases leading to consequent degradation and loss of the elastic matrix with the reduction in tissue elasticity is central to the pathophysiology of proteolytic disorders, such as abdominal aortic aneurysms (AAAs), which are localized rupture-prone aortic expansions. Effecting tissue repair to alleviate this condition is contingent on restoring elastic matrix homeostasis in the aortic wall. This is naturally irreversible due to the poor elastogenicity of adult and diseased vascular cells, and the impaired ability to assemble mature elastic fibers, more so in the context of phenotypic changes to medial smooth muscle cells (SMCs) owing to the loss of nitric oxide (NO) signaling in the AAA wall tissue. In this study, we report the benefits of the exposure of primary human aneurysmal SMCs (aHASMCs) to NO donor drug, sodium nitroprusside (SNP), in improving extracellular matrix homeostasis, particularly aspects of elastic fiber assembly, and inhibition of proteolytic degradation. SNP treatment (100 nM) upregulated elastic matrix regeneration at both gene (p < 0.05) and protein levels (p < 0.01) without affecting cell proliferation, improved gene, and protein expression of crosslinking enzyme, lysyl oxidase (p < 0.05), inhibited the expression of MMP2 (matrix metalloprotease 2) significantly (p < 0.05) and promoted contractile SMC phenotypes in aHASMC culture. In addition, SNP also attenuated the expression of mitogen-activated protein kinases, a significant player in AAA formation and progression. Our results indicate the promise of SNP for therapeutic augmentation of elastic matrix regeneration, with prospects for wall repair in AAAs. Impact Statement Chronic and naturally irreversible enzymatic degradation and loss of elastic fibers are centric to proteolytic disorders such as abdominal aortic aneurysms (AAAs). This is linked to poor elastogenicity of adult and diseased vascular cells, compromising their ability to assemble mature elastic fibers. Toward addressing this, we demonstrate the phenotype-modulatory properties of a nitric oxide donor drug, sodium nitroprusside on aneurysmal smooth muscle cells, and its dose-specific proelastogenic and antiproteolytic properties for restoring elastic matrix homeostasis. Combined with the development of vehicles for site-localized, controlled drug delivery, this can potentially lead to a new nonsurgical approach for AAA wall repair in the future.
Collapse
Affiliation(s)
- Suraj Bastola
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Chandrasekhar Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
2
|
Matsuda K, Sasaki M, Baba H, Kamiya Y. Neuronal Nitric Oxide Synthase Suppression Confers the Prolonged Analgesic Effect of Sciatic Nerve Block with Perineural Dexamethasone in Postoperative Pain Model Mice. THE JOURNAL OF PAIN 2022; 23:1765-1778. [PMID: 35705162 DOI: 10.1016/j.jpain.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Dexamethasone supplementation to local anesthetics prolongs its action, yet the underlying mechanism is unclear. Previous studies have reported that increased p-p38 mitogen-activated protein kinase (MAPK) in the dorsal root ganglia (DRG) is associated with pain-associated behavior and that nitric oxide (NO), which is known to be a pronociceptive substance, directly inhibits sciatic nerve conduction. Here, we investigated the temporal changes in the hyperalgesic effect and p-p38 MAPK and NO synthase (NOS) expression levels in the DRG when dexamethasone was added to ropivacaine used for a sciatic nerve block (SNB) in postoperative pain model mice. Dexamethasone supplementation to ropivacaine significantly prolonged the analgesic effect of SNB via glucocorticoid receptor activation. Histological examination revealed that ropivacaine suppressed p-p38 MAPK expression in the DRG regardless of dexamethasone supplementation, suggesting that p-p38 MAPK was not involved in the prolonging effect of dexamethasone on nerve block. Contrastingly, plantar incision markedly increased the expression of neuronal NOS (nNOS) in DRG, and dexamethasone supplementation to ropivacaine significantly suppressed nNOS expression. Supplementation of L-NAME, an inhibitor of NOS, to ropivacaine markedly prolonged the effect of SNB, similar to dexamethasone. These results suggest that dexamethasone supplementation to local anesthetics prolongs the analgesic effect by inhibiting nNOS activity.
Collapse
Affiliation(s)
- Keiichiro Matsuda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| | - Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo Ward, Niigata City 951-8510, Japan.
| |
Collapse
|
3
|
Bhargava P, Janda J, Schnellmann RG. Elucidation of cGMP-dependent induction of mitochondrial biogenesis through PKG and p38 MAPK in the kidney. Am J Physiol Renal Physiol 2019; 318:F322-F328. [PMID: 31841384 DOI: 10.1152/ajprenal.00533.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that cGMP increases mitochondrial biogenesis (MB). Our laboratory has determined that formoterol and LY344864, agonists of the β2-adrenergic receptor and 5-HT1F receptor, respectively, signal MB in a soluble guanylyl cyclase (sGC)-dependent manner. However, the pathway between cGMP and MB produced by these pharmacological agents in renal proximal tubule cells (RPTCs) and the kidney has not been determined. In the present study, we showed that treatment of RPTCs with formoterol, LY344864, or riociguat, a sGC stimulator, induces MB through protein kinase G (PKG), a target of cGMP, and p38, an associated downstream target of PKG and a regulator of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in RPTCs. We also examined if p38 plays a role in PGC-1α phosphorylation in vivo. Administration of l-skepinone, a potent and specific inhibitor of p38α and p38β, to naïve mice inhibited phosphorylated PGC-1α localization in the nuclear fraction of the renal cortex. Taken together, we demonstrated a pathway, sGC/cGMP/PKG/p38/PGC-1α, for pharmacological induction of MB and the importance of p38 in this pathway.
Collapse
Affiliation(s)
- Pallavi Bhargava
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
4
|
Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 2014; 306:H856-66. [PMID: 24441548 DOI: 10.1152/ajpheart.00353.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF). We tested the hypothesis that UcnII differentially regulates NFAT activity in cardiac myocytes from both normal and failing hearts through the PI3K/Akt/eNOS/NO pathway. Isoforms NFATc1 and NFATc3 revealed different basal subcellular distribution in normal and HF rabbit ventricular myocytes with a nuclear NFATc1 and a cytosolic localization of NFATc3. However, in HF, the nuclear localization of NFATc1 was less pronounced, whereas the nuclear occupancy of NFATc3 was increased. In normal myocytes, UcnII induced nuclear export of NFATc1 and attenuated NFAT-dependent transcriptional activity but did not affect the distribution of NFATc3. In HF UcnII facilitated nuclear export of both isoforms and reduced transcriptional activity. NFAT regulation was mediated by a PI3K/Akt/eNOS/NO signaling cascade that converged on the activation of several kinases, including glycogen synthase kinase-3β (GSK3β), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated kinase (p38), and PKG, resulting in phosphorylation, deactivation, and nuclear export of NFAT. In conclusion, while NFATc1 and NFATc3 reveal distinct subcellular distribution patterns, both are regulated by the UcnII-PI3K/Akt/eNOS/NO pathway that converges on the activation of NFAT kinases and NFAT inactivation. The data reconcile cardioprotective and prohypertrophic UcnII effects mediated by different NFAT isoforms.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | |
Collapse
|
5
|
Sanz-Luque E, Ocaña-Calahorro F, Llamas A, Galvan A, Fernandez E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3373-83. [PMID: 23918969 DOI: 10.1093/jxb/ert175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrate and ammonium are major inorganic nitrogen sources for plants and algae. These compounds are assimilated by means of finely regulated processes at transcriptional and post-translational levels. In Chlamydomonas, the expression of several genes involved in high-affinity ammonium (AMT1.1, AMT1.2) and nitrate transport (NRT2.1) as well as nitrate reduction (NIA1) are downregulated by ammonium through a nitric oxide (NO)-dependent mechanism. At the post-translational level, nitrate/nitrite uptake and nitrate reductase (NR) are also inhibited by ammonium, but the mechanisms implicated in this regulation are scarcely known. In this work, the effect of NO on nitrate assimilation and the high-affinity ammonium uptake was addressed. NO inhibited the high-affinity uptake of ammonium and nitrate/nitrite, as well as the NR activity, in a reversible form. In contrast, nitrite reductase and glutamine synthetase activities were not affected. The in vivo and in vitro studies suggested that NR enzyme is inhibited by NO in a mediated process that requires the cell integrity. These data highlight a role of NO in inorganic nitrogen assimilation and suggest that this signalling molecule is an important regulator for the first steps of the pathway.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Agroalimentario CeiA3, Campus de Rabanales, Edificio Severo Ochoa, Córdoba 14071, Spain
| | | | | | | | | |
Collapse
|
6
|
Makris AC, Sotzios Y, Zhou Z, Makropoulou M, Papapetropoulos N, Zacharatos P, Pyriochou A, Roussos C, Papapetropoulos A, Vassilakopoulos T. Nitric oxide stimulates interleukin-6 production in skeletal myotubes. J Interferon Cytokine Res 2010; 30:321-7. [PMID: 20035621 DOI: 10.1089/jir.2009.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Strenuous exercise leads to the up-regulation of interleukin-6 (IL-6) production and enhanced nitric oxide (NO) release within the contracting skeletal muscles. In this study, we investigated whether NO regulates IL-6 production in C2C12 myotubes. These cells exhibited a concentration-dependent increase in IL-6 production upon stimulation with NO donors (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate), (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA-NONOate), and sodium nitroprusside (SNP). This treatment did not alter cGMP levels nor did the soluble guanylyl cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(ODQ), alter this response. The NO-independent sGC activator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY41-2272) and cyclic guanosine monophosphate (cGMP) analog 8Br-cGMP failed to induce IL-6 production. Upon exposure to NO donors, we observed an increase in Erk1/2 and p38 MAPK phosphorylation but not in SAPK/JNK. In addition, NO-induced IL-6 release was inhibited in a concentration-dependent fashion by the MEK1/2 inhibitor PD98059 and the p38 MAPK inhibitor SB203580 but not by the SAPK/JNK inhibitor SP600125. We conclude that NO-stimulated IL-6 production in differentiated C2C12 myotubes is cGMP-independent and mediated by activation of MAPK pathways.
Collapse
Affiliation(s)
- Anastasia C Makris
- George P. Livanos and Marianthi Simou Laboratories, Department of Critical Care and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School , Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rabkin SW. Nitric oxide and peroxynitrite induce gene expression of interleukin receptors increasing IL-21, IL-7, IL-1 and oncostatin M in cardiomyocytes. Life Sci 2010; 86:45-51. [DOI: 10.1016/j.lfs.2009.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
|
8
|
Tsang MYC, Rabkin SW. p38 MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) IS ACTIVATED BY NORADRENALINE AND SERVES A CARDIOPROTECTIVE ROLE, WHEREAS ADRENALINE INDUCES p38 MAPK DEPHOSPHORYLATION. Clin Exp Pharmacol Physiol 2009; 36:e12-9. [DOI: 10.1111/j.1440-1681.2009.05193.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Sharma V, Mustafa S, Patel N, Wambolt R, Allard MF, McNeill JH. Stimulation of cardiac fatty acid oxidation by leptin is mediated by a nitric oxide-p38 MAPK-dependent mechanism. Eur J Pharmacol 2009; 617:113-7. [PMID: 19573526 DOI: 10.1016/j.ejphar.2009.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 06/14/2009] [Accepted: 06/22/2009] [Indexed: 12/24/2022]
Abstract
Leptin has previously been shown to stimulate fatty acid oxidation independent of AMP-activated protein kinase (AMPK). Nitric oxide and p38 mitogen activated protein kinase (MAPK) are known effectors of leptin signaling. The aim of the present study was to determine whether nitric oxide and p38 MAPK mediate the stimulation of leptin by MAPK. Hearts from male Sprague-Dawley rats were mounted on the isolated perfused working heart in the presence or absence of leptin (1.9 nM), N-Nitro-L-Arginine Methyl Ester (L-NAME) (3 microM), the specific p38 MAPK inhibitor 4-[4-(4-Fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190, 2 microM) and the specific STAT-3 inhibitor (E)-2-Cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide (AG490, 5 microM) for the measurement of substrate metabolism and function. AMPK and carnitine palimitoyltransferase-1 activity, nitrate/nitrite levels, STAT-3 phosphorylation and p38 MAPK phosphorylation were measured. To assess mitochondrial function, hearts were perfused with or without leptin prior to the isolation of mitochondria. Leptin stimulated fatty acid oxidation and decreased cardiac function, associated with the activation of STAT-3 and p38 MAPK and an increase in tissue nitrate/nitrite levels; the effect on function was ameliorated and the effect on fatty acid oxidation was prevented by L-NAME, B202190 and AG490. L-NAME lowered tissue nitrate/nitrite levels, and prevented the phosphorylation of p38, whereas SB202190 had no effect on tissue nitrate/nitrite levels. AG490 also lowered tissue nitrate/nitrite levels. Leptin had no effect on fatty acid-dependent mitochondrial respiration or uncoupling activity, but, surprisingly, stimulated pyruvate-dependent mitochondrial respiration. These data indicate that leptin stimulates fatty acid oxidation by a STAT-3-nitric oxide-p38 MAPK-dependent mechanism. The target of the pathway is upstream of the mitochondria.
Collapse
Affiliation(s)
- Vijay Sharma
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
To define the effects of pregnancy on mechanical properties and reactivity, mesenteric veins from late pregnant and virgin control (nonpregnant) rats were pressurized to determine gestational changes in size and distensibility. Reactivity studies used an adrenergic constrictor (norepinephrine) and an endothelium-mediated vasodilator (acetylcholine). The contribution of nitric oxide to endothelial function was evaluated with pharmacologic inhibition of nitric oxide synthase. Roles of nitric oxide and cyclic guanosine monophosphate in smooth muscle vasodilation were determined using an nitric oxide donor with and without cyclic guanosine monophosphate inhibition using ODQ, a selective inhibitor of guanylyl cyclase. In pregnancy, endothelium-dependent vasodilation markedly increased (largely due to endogenous nitric oxide), smooth muscle response to nitric oxide decreased (primarily related to cyclic guanosine monophosphate production), and norepinephrine sensitivity decreased considerably, with no changes in vessel size or distensibility. Our results identify a provasodilatory state in the systemic venous system, which would serve to facilitate the accommodation to plasma volume expansion requisite for normal pregnancy.
Collapse
Affiliation(s)
- Cresta Wedel Jones
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont College of Medicine, Burlington, VT
| | - Maurizio Mandala
- Department of Cell Biology, University of Calabria, Cosenza, Italy
| | - Carolyn Barron
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont College of Medicine, Burlington, VT
| | - Ira Bernstein
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont College of Medicine, Burlington, VT
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
11
|
Lee SK, Choi HI, Yang YS, Jeong GS, Hwang JH, Lee SI, Kang KH, Cho JH, Chae JM, Lee SK, Kim YC, Kim EC. Nitric Oxide Modulates Osteoblastic Differentiation with Heme Oxygenase-1 via the Mitogen Activated Protein Kinase and Nuclear Factor-kappaB Pathways in Human Periodontal Ligament Cells. Biol Pharm Bull 2009; 32:1328-34. [DOI: 10.1248/bpb.32.1328] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Hee-In Choi
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Yun-Seok Yang
- Department of Obstetrics and Gynecology, College of Medicine, Eulgi University
| | | | - Joo-Hee Hwang
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Sang-Im Lee
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| | - Kyung-Hwa Kang
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Jin-Hyung Cho
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Jong-Moon Chae
- Department of Orthodontics, College of Dentistry, Wonkwang University
| | - Suk-Keun Lee
- Department of Oral Pathology, College of Dentistry, Kangnung National University
| | | | - Eun-Cheol Kim
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang University
| |
Collapse
|
12
|
Rabkin SW, Tsang MY. Interaction of the HMG-CoA reductase inhibitor lovastatin and nitric oxide in cardiomyocyte cell death. Pharmacology 2008; 82:74-82. [PMID: 18504415 DOI: 10.1159/000134380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022]
Abstract
AIM The objective of this study was to examine the interaction ofa 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (statin) with a nitric oxide (NO) donor from the perspective of the impact on cardiomyocyte cell viability. METHODS Embryonic chick cardiomyocytes in culture were treated with a wide range of concentrations of sodium nitroprusside (SNP), which releases NO and also generates toxic reactive nitrogen species. SNP was combined with the HMG-CoA reductase inhibitor lovastatin and cell viability was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. RESULTS SNP and lovastatin each produced a significant (p < 0.01) concentration-dependent increase in cell death. Using SNP concentrations at or below the ED50, SNP (0.01, 0.1 or 0.5 mmol/l) increased the amount of cell death when combined with lovastatin (1, 10, 50 and 100 micromol/l). At lovastatin concentrations of 50 micromol/l and less, the amount of cell death was consistently similar to the arithmetic sum of SNP and lovastatin, suggesting that there was an additive and not synergistic relationship between SNP and lovastatin. In combination with lovastatin (100 micromol/l), however, the amount of cell death was consistently lower than the calculated expected value and suggested saturation of a common mechanism. The combination of SNP and lovastatin produced the characteristic microscopic changes of apoptosis. Considering that both SNP and lovastatin can activate caspase-3, cells were treated with the caspase-3 inhibitor Ac-DEVD-CHO. This inhibitor produced a significant (p < 0.05) and consistent 30% reduction in the amount of cell death induced by SNP and lovastatin. CONCLUSION These data suggest that the cardiomyocyte toxicity from NO continues to be evident uninterrupted by and not accentuated by the presence of an HMG-CoA inhibitor. The cardiac adverse effect of each of these agents utilizes a common pathway involving caspase-3 so that their cardiotoxicity can be blunted by a caspase-3 inhibitor.
Collapse
|
13
|
Rabkin SW, Klassen SS. Metalloporphyrins as a therapeutic drug class against peroxynitrite in cardiovascular diseases involving ischemic reperfusion injury. Eur J Pharmacol 2008; 586:1-8. [DOI: 10.1016/j.ejphar.2008.02.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
14
|
Rabkin SW, Tsang MYC. The action of nitric oxide to enhance cell survival in chick cardiomyocytes is mediated through a cGMP and ERK1/2 pathway while p38 mitogen-activated protein kinase-dependent pathways do not alter cell death. Exp Physiol 2008; 93:834-42. [PMID: 18344257 DOI: 10.1113/expphysiol.2008.042176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to determine whether the dual action of nitric oxide (NO) on cardiomyocyte cell viability is mediated through p38 mitogen-activated protein kinase (MAPK)-induced cell death and extracellular signal-regulated kinase (ERK1/2)-mediated cell survival pathways, and whether either of these is mediated through a cGMP-protein kinase G (PKG) pathway. Cell viability of embryonic chick cardiomyocytes was assessed by the MTT assay, which is based on the ability of viable cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. The NO donor sodium nitroprusside (SNP) produced a significant (P < 0.01) concentration-dependent reduction in cell viability or increase in cell death. Sodium nitroprusside induced ERK1/2 phosphorylation, and the mitogen-activated protein kinase (MEK1/2) inhibitor PD 98059 significantly increased cell death. In contrast, SB202190, a relatively selective inhibitor of p38 MAPK, did not affect SNP-induced cell death. The cardioprotective effect of NO was prbably mediated in part via cGMP because 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a selective inhibitor of NO-sensitive guanylyl cyclase, produced a significant enhancement of SNP-induced cell death. In contrast, the PKG inhibitor KT5823 did not affect cell viability. In summary, these data suggest that NO, via stimulation of soluble guanylyl cyclase, activates MEK1/2 whose product, ERK1/2, protects against cell death. In contrast, SNP-induced p38 MAPK activation does not modulate NO-induced cardiomyocyte cell death. Not all cGMP targets affect NO-induced cell death, since the PKG pathway does not enhance or suppress NO-induced cardiomyocyte cell death. Enhancement of the ERK1/2 responses to NO may permit the beneficial effects of NO to predominate.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, Level 9, 2775 Laurel Street, Vancouver, BC, Canada V5Z 1M9.
| | | |
Collapse
|