1
|
Pecio Ł, Pecio S, Mroczek T, Oleszek W. Spiro-Flavonoids in Nature: A Critical Review of Structural Diversity and Bioactivity. Molecules 2023; 28:5420. [PMID: 37513292 PMCID: PMC10385819 DOI: 10.3390/molecules28145420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Solomiia Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| | - Tomasz Mroczek
- Department of Chemistry of Natural Products, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 8 Czartoryskich Street, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Pecio Ł, Alilou M, Kozachok S, Orhan IE, Eren G, Şenol Deniz FS, Stuppner H, Oleszek W. Absolute configuration of spiro-flavostilbenoids from Yucca schidigera Roezl ex Ortgies: First indication of (2R)-naringenin as the key building block. PHYTOCHEMISTRY 2023; 207:113584. [PMID: 36603655 DOI: 10.1016/j.phytochem.2022.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The absolute configurations of the known but unusual spiro-flavostilbenoids found in the bark of Yucca schidigera Roezl ex Ortgies, were determined by applying time-dependent density functional theory simulation of electronic circular dichroism spectra. The absolute configurations obtained were as follows: (2S,3R) for yuccaol A, yuccaol D and yuccalide A; (2S,3S) for yuccaol B, yuccaol C and yuccaol E; (2S,3S,2'S,3'S) for gloriosaol A; (2S,3R,2'S,3'R) for gloriosaol C; (2S,3S,2'S,3'R) for gloriosaol D; (2S,3R,2'S,3'S) for gloriosaol E. These findings indicate that the compounds are all biosynthetic derivatives either of (2R)-naringenin and trans-resveratrol or of trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene. In contrast, gloriosaols are direct derivatives of yuccaols (note that substituting by stilbenoid changes the absolute configuration of C-2 naringenin carbon to 2S). A putative mechanism for their biosynthesis is proposed taking into account key aspects of regio- and stereoselectivity. Yuccaol B and gloriosaol A showed in vitro moderate inhibitory effects against acetyl-/butyrylcholinesterases (AChE/BChE) with IC50 values of 43/81 and 45/65 μM respectively. The selectivity index values calculated from the IC50 values of BChE and AChE were 1.9 and 1.4. Molecular docking simulations showed their interaction with the peripheral anionic site of human AChE and the catalytic site of the human BChE.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Mostafa Alilou
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Gökçen Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
3
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
4
|
Wang T, Wang G, Zhang Y, Zhang J, Cao W, Chen X. Effect of lentivirus-mediated overexpression or silencing of MnSOD on apoptosis of resveratrol-treated fibroblast-like synoviocytes in rheumatoid arthritis. Eur J Pharmacol 2019; 844:65-72. [DOI: 10.1016/j.ejphar.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
|
5
|
Cao W, Zhang J, Wang G, Lu J, Wang T, Chen X. Reducing-Autophagy Derived Mitochondrial Dysfunction during Resveratrol Promotes Fibroblast-Like Synovial Cell Apoptosis. Anat Rec (Hoboken) 2018; 301:1179-1188. [PMID: 29461680 DOI: 10.1002/ar.23798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
In rheumatoid arthritis patients, the fibroblast-like synovial cells (FLS) growth is not controlled normally, but is similar to the tumor cells proliferation in histology. Our previous studies have shown that resveratrol inhibits the proliferation of FLS and promotes FLS apoptosis. However, the molecular mechanisms involved in resveratrol-induced FLS apoptosis have not been determined yet. Here, we showed that the FLS cell viability (following pretreatment with 5 µM H2 O2 for 24 hr) exhibited better proliferation performance than at other concentrations via the CCK-8 assay. The cell apoptotic rate increased with the increasing concentration of resveratrol (0, 40, 80, 160, 320 μM), as detected by TdT-mediated dUTP nick-end labeling (TUNEL) staining and western blotting. Furthermore, the expression level of autophagy-related proteins (LC3A/B, ATG-5) decreased with the increased concentration of resveratrol, as determined by immunofluorescence and western blot analysis. We also showed that resveratrol induced FLS mitochondrial morphology change. Moreover, mitochondrial function detection showed that the mitochondrial membrane potential was lost with the increased concentration of resveratrol as examined by the JC-1 assay. The production of ATP in cells was positively and negatively correlated with the resveratrol concentration. Simultaneously, the intracellular calcium release and calcium influx decreased gradually with the increase in resveratrol concentration. Therefore, we proposed that resveratrol can reduce the level of autophagy in FLS. The decrease in the autophagy level can lead to the accumulation of reactive oxygen species, which may result in mitochondrial dysfunction and promotion of FLS apoptosis. Anat Rec, 301:1179-1188, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Cao
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Junqiang Zhang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Gaoyuan Wang
- Department of Orthopaedic, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Jinsen Lu
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
6
|
Pieme CA, Ambassa P, Yankep E, Saxena AK. Epigarcinol and isogarcinol isolated from the root of Garcinia ovalifolia induce apoptosis of human promyelocytic leukemia (HL-60 cells). BMC Res Notes 2015; 8:700. [PMID: 26592743 PMCID: PMC4656183 DOI: 10.1186/s13104-015-1596-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Plants from garcinia genus have been used for centuries against several diseases. Objective This study aimed to investigate the mechanism of apoptosis induced by epigarcinol and isogarcinol isolated from the root of Garcinia ovalifolia (Clusiaceae) on human promyelocytic leukemia (HL-60 cells). Methods Epigarcinol and isogarcinol were isolated from the root of G. ovalifolia by using column chromatography method. The antiproliferative property of these molecules and fractions were assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The light fluorescence microscope was utilized to observe the morphological changes of HL-60 cells after 24 h treatment. Early apoptosis and cell cycle distribution were analyzed by using flow cytometry (FCM). Results The results showed that epigarcinol and isogarcinol inhibited the proliferation of HL-60 and PC-3 cells in a concentration-dependent manner with IC50 varying between 4 and 76 µg/mL depending on the cell line and the molecule. The apoptosis rate and the number of apoptotic cells significantly increased with the augmentation of the concentration of the molecules. The results of flow cytometry (FCM) indicated that epigarcinol and isogarcinol induced significant G2/S arrest of HL-60 cells, the disruption of mitochondrial membrane potential and reactive oxygen species (ROS) generation. Conclusion These results indicated that epigarcinol and isogarcinol demonstrated in vitro antiproliferative properties and induce apoptosis of HL-60 cells which is related to the G2/S arrest, and it exerts its apoptotic effect through the loosing of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Constant Anatole Pieme
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, PO Box 1364, Yaoundé, Cameroon. .,Cancer Pharmacology Division, Indian Institute of Integrative Medicine, 180001, Canal Road, Jammu, India.
| | - Pathaleon Ambassa
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, 180001, Canal Road, Jammu, India. .,Department of Chemistry, Faculty of Sciences, University of Yaoundé I, PO Box 812, Yaounde, Cameroon.
| | - Emmanuel Yankep
- Department of Chemistry, Faculty of Sciences, University of Yaoundé I, PO Box 812, Yaounde, Cameroon.
| | - Ajit Kumar Saxena
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, 180001, Canal Road, Jammu, India.
| |
Collapse
|
7
|
Gong X, Lin C, Cheng J, Su J, Zhao H, Liu T, Wen X, Zhao P. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. PLoS One 2015; 10:e0130348. [PMID: 26090664 PMCID: PMC4474551 DOI: 10.1371/journal.pone.0130348] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/19/2015] [Indexed: 12/31/2022] Open
Abstract
Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.
Collapse
Affiliation(s)
- Xue Gong
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Prosthodontics, School of Stomatology, Tongji University, Shanghai, P.R. China
| | - Chao Lin
- Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Jian Cheng
- Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
| | - Jiansheng Su
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Prosthodontics, School of Stomatology, Tongji University, Shanghai, P.R. China
- * E-mail: (JS); (PZ)
| | - Hang Zhao
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Prosthodontics, School of Stomatology, Tongji University, Shanghai, P.R. China
| | - Tianlin Liu
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Prosthodontics, School of Stomatology, Tongji University, Shanghai, P.R. China
| | - Xuejun Wen
- Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
- Institute for Engineering and Medicine, Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Peng Zhao
- Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Tongji University, Shanghai, P.R. China
- * E-mail: (JS); (PZ)
| |
Collapse
|
8
|
Skhirtladze AV, Benidze MM, Kemertelidze EP, Grigolava BL, Sturm S, Ganzera M. Steroid Composition of Fruit from Yucca gloriosa Introduced into Georgia. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1262-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ma C, Song M, Zhang Y, Yan M, Zhang M, Bi H. Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Rep 2014; 1:114-121. [PMID: 28962232 PMCID: PMC5598471 DOI: 10.1016/j.toxrep.2014.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 01/21/2023] Open
Abstract
Nickel nanowires (Ni NWs) have great potential to be used as a living cell manipulation tool and developed into an anticancer agent. However, their candidacy as biomedical appliances need detailed human cell studies, such as study of the interaction between Ni NWs and tumor cells. The present study investigated the cytotoxicity of Ni NWs in HeLa cells. A dose-dependent inhibition of cell growth was observed by using the MTT assay. We demonstrated that Ni NWs induced oxidative stress by generation of reactive oxygen species (ROS). Apoptosis induction was evidenced by flow cytometry, annexin V binding assay and DAPI staining. DNA flow cytometric analysis indicated that Ni NWs significantly increased the percentages of cells in S phase compared with control cells. This process was accompanied by the loss of mitochondrial membrane potential. These results revealed that Ni NWs induced apoptosis in HeLa cells via ROS generation and cell cycle arrest.
Collapse
Affiliation(s)
- ChangGuo Ma
- School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - MengMeng Song
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.,School of Medical Science, Anhui Medical University, Hefei 230032, PR China
| | - Ye Zhang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - ManQing Yan
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - Hong Bi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
10
|
Rivière C, Pawlus AD, Mérillon JM. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 2013; 29:1317-33. [PMID: 23014926 DOI: 10.1039/c2np20049j] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stilbenoids, a family of polyphenols known for the complexity of their structure and for their diverse biological activities, occur with a limited but heterogeneous distribution in the plant kingdom. The most prominent stilbene containing plant family, the Vitaceae, represented by the famous wine producing grape vines Vitis vinifera L., is one of the richest sources of novel stilbenes currently known, together with other families, such as Dipterocarpaceae, Gnetaceae and Fabaceae. This review focuses on the distribution of stilbenes and 2-arylbenzofuran derivatives in the plant kingdom, the chemical structure of stilbenes in the Vitaceae family and their taxonomic implication.
Collapse
Affiliation(s)
- Céline Rivière
- Université de Bordeaux, Groupe d'Etude des Substances Végétales à Activité Biologique (GESVAB), EA 3675, Institut des Sciences de la Vigne et du Vin, 210 Chemin de Leysotte, CS 50008, F-33882 Villenave d'Ornon Cedex, France.
| | | | | |
Collapse
|
11
|
Ho WY, Yeap SK, Ho CL, Rahim RA, Alitheen NB. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One 2012; 7:e44640. [PMID: 22970274 PMCID: PMC3435305 DOI: 10.1371/journal.pone.0044640] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 11/21/2022] Open
Abstract
In comparison to monolayer cells, MCTS has been claimed as more suitable candidate for studying drug penetration due to the high resemblance to solid tumors. However, the cultivation of MCTS is cumbersome, time consuming, and most technique fail to generate spheroids with uniform sizes. Therefore, the application of spheroid cultures in high throughput screening has been rather limiting. Besides, the lack of a well established screening protocol method that is applicable to spheroid could also be attributed to this limitation. Here we report a simple way of cultivating homogenous MCTS cultures with compact and rigid structure from the MCF-7 cells. Besides, we had also made some modifications to the standard MTT assay to realize high throughput screening of these spheroids. Using the modified protocol, tamoxifen showed cytotoxicity effect towards MCTS cultures from MCF-7 with high consistency. The results correlated well with the cultures’ response assessed by LDH release assay but the latter assay was not ideal for detecting a wide range of cytotoxicity due to high basal background reading. The MTT assay emerged as a better indicator to apoptosis event in comparison to the LDH release assay. Therefore, the method for spheroid generation and the modified MTT assay we reported here could be potentially applied to high throughput screening for response of spheroid cultures generated from MCF-7 as well as other cancer cell lines towards cytotoxic stimuli.
Collapse
Affiliation(s)
- Wan Yong Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
12
|
Radical decisions in cancer: redox control of cell growth and death. Cancers (Basel) 2012; 4:442-74. [PMID: 24213319 PMCID: PMC3712695 DOI: 10.3390/cancers4020442] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 12/21/2022] Open
Abstract
Free radicals play a key role in many physiological decisions in cells. Since free radicals are toxic to cellular components, it is known that they cause DNA damage, contribute to DNA instability and mutation and thus favor carcinogenesis. However, nowadays it is assumed that free radicals play a further complex role in cancer. Low levels of free radicals and steady state levels of antioxidant enzymes are responsible for the fine tuning of redox status inside cells. A change in redox state is a way to modify the physiological status of the cell, in fact, a more reduced status is found in resting cells while a more oxidative status is associated with proliferative cells. The mechanisms by which redox status can change the proliferative activity of cancer cells are related to transcriptional and posttranscriptional modifications of proteins that play a critical role in cell cycle control. Since cancer cells show higher levels of free radicals compared with their normal counterparts, it is believed that the anti-oxidative stress mechanism is also increased in cancer cells. In fact, the levels of some of the most important antioxidant enzymes are elevated in advanced status of some types of tumors. Anti-cancer treatment is compromised by survival mechanisms in cancer cells and collateral damage in normal non-pathological tissues. Though some resistance mechanisms have been described, they do not yet explain why treatment of cancer fails in several tumors. Given that some antitumoral treatments are based on the generation of free radicals, we will discuss in this review the possible role of antioxidant enzymes in the survival mechanism in cancer cells and then, its participation in the failure of cancer treatments.
Collapse
|
13
|
Skhirtladze A, Perrone A, Montoro P, Benidze M, Kemertelidze E, Pizza C, Piacente S. Steroidal saponins from Yucca gloriosa L. rhizomes: LC-MS profiling, isolation and quantitative determination. PHYTOCHEMISTRY 2011; 72:126-135. [PMID: 21094503 DOI: 10.1016/j.phytochem.2010.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The occurrence of steroidal saponins in the rhizomes of Yucca gloriosa has been detected by LC-MS. On the basis of the LC-MS analysis, five steroidal glycosides, including three spirostane, one furostane and one cholestane glycosides, along with seven known compounds have been isolated and characterized by ESI-MS and by the extensive use of 1D- and 2D-NMR experiments. Quantitative analysis of the steroidal glycosides in Y. gloriosa rhizomes was performed by an LC-MS method validated according to European Medicines Agency (EMEA) guidelines. The dried BuOH extract obtained from rhizomes contains more than 25% w/w of glycosides, thus Y. gloriosa rhizomes can be considered a rich source of steroidal glycosides.
Collapse
|
14
|
Huang CP, Au LC, Chiou RYY, Chung PC, Chen SY, Tang WC, Chang CL, Fang WH, Lin SB. Arachidin-1, a peanut stilbenoid, induces programmed cell death in human leukemia HL-60 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12123-12129. [PMID: 21067217 DOI: 10.1021/jf102993j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The stilbenoids, arachidin-1 (Ara-1), arachidin-3, isopentadienylresveratrol, and resveratrol, have been isolated from germinating peanut kernels and characterized as antioxidant and anti-inflammatory agents. Resveratrol possesses anticancer activity, and studies have indicated that it induces programmed cell death (PCD) in human leukemia HL-60 cells. In this study, the anticancer activity of these stilbenoids was determined in HL-60 cells. Ara-1 had the highest efficacy in inducing PCD in HL-60 cells, with an approximately 4-fold lower EC50 than resveratrol. Ara-1 treatment caused mitochondrial membrane damage, activation of caspases, and nuclear translocation of apoptosis-inducing factor, resulting in chromosome degradation and cell death. Therefore, Ara-1 induces PCD in HL-60 cells through caspase-dependent and caspase-independent pathways. Ara-1 demonstrates its efficacy as an anticancer agent by inducing caspase-independent cell death, which is an alternative death pathway of cancer cells with mutations in key apoptotic genes. These findings indicate the merits of screening other peanut stilbenoids for anticancer activity.
Collapse
Affiliation(s)
- Cheng-Po Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules 2010; 15:7035-74. [PMID: 20944521 PMCID: PMC6259231 DOI: 10.3390/molecules15107035] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/02/2010] [Accepted: 10/11/2010] [Indexed: 02/07/2023] Open
Abstract
Despite considerable improvements in the tolerance and efficacy of novel chemotherapeutic agents, the mortality of hematological malignancies is still high due to therapy relapse, which is associated with bad prognosis. Dietary polyphenolic compounds are of growing interest as an alternative approach, especially in cancer treatment, as they have been proven to be safe and display strong antioxidant properties. Here, we provide evidence that both resveratrol and curcumin possess huge potential for application as both chemopreventive agents and anticancer drugs and might represent promising candidates for future treatment of leukemia. Both polyphenols are currently being tested in clinical trials. We describe the underlying mechanisms, but also focus on possible limitations and how they might be overcome in future clinical use – either by chemically synthesized derivatives or special formulations that improve bioavailability and pharmacokinetics.
Collapse
Affiliation(s)
- Mareike Kelkel
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66123 Saarbruecken, Germany; E-Mail:
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540 Luxembourg, Luxembourg; E-Mail: (M.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-2468-4040; Fax: +352-2468-4060
| |
Collapse
|
16
|
Qadri SM, Föller M, Lang F. Inhibition of suicidal erythrocyte death by resveratrol. Life Sci 2009; 85:33-8. [PMID: 19409912 DOI: 10.1016/j.lfs.2009.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 01/04/2023]
Abstract
AIMS Pleiotropic effects of resveratrol include antioxidant activity and inhibition of cyclooxygenase with decrease of PGE(2) formation. In erythrocytes oxidation and PGE(2) activate Ca(2+)-permeable cation channels. The Ca(2+)-entry leads to activation of Ca(2+)-sensitive K(+) channels with subsequent cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cell shrinkage and phosphatidylserine exposure are hallmarks of suicidal erythrocyte death or eryptosis. Eryptotic cells adhere to the vascular wall thus compromising microcirculation and are cleared from circulating blood thus leading to anemia. The present experiments explored whether resveratrol influences eryptosis. MAIN METHODS Erythrocyte phosphatidylserine exposure was identified by annexin V-binding, cell volume estimated from forward scatter and cytosolic Ca(2+) activity determined utilizing Fluo3 fluorescence in FACS analysis. KEY FINDINGS Energy depletion (48 h glucose removal) significantly increased Fluo3 fluorescence and annexin V-binding and decreased forward scatter, effects significantly blunted by resveratrol (>/=5 microM). Moreover, oxidative stress (30 min 0.3 mM tert-butylhydroperoxide) and isoosmotic cell shrinkage (48 h replacement of extracellular chloride by gluconate) similarly triggered eryptosis, effects again significantly blunted in the presence of resveratrol. SIGNIFICANCE Resveratrol is a potent inhibitor of suicidal erythrocyte death during energy depletion, oxidative stress and isoosmotic cell shrinkage. The nutrient could thus counteract anemia and impairment of microcirculation under conditions with excessive eryptosis.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Physiology, Eberhard-Karls-University of Tübingen, Gmelinstrasse 5, Tübingen, Germany
| | | | | |
Collapse
|
17
|
Wilson MA, Rimando AM, Wolkow CA. Methoxylation enhances stilbene bioactivity in Caenorhabditis elegans. BMC Pharmacol 2008; 8:15. [PMID: 18700960 PMCID: PMC2532997 DOI: 10.1186/1471-2210-8-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/13/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Stilbenes are 1,2-diphenylethylene congeners produced by plants in response to stress. Many stilbenes also exhibit xenobiotic activities in animal cells, such as inhibition of cancer cell growth, neuroprotection, and immune modulation. In vivo, hydroxylated stilbenes are metabolized by glucuronidation to facilitate excretion. Methoxylated stilbenes are metabolized more slowly, which may have a positive effect on in vivo bioactivity. Here, we have directly compared in vivo bioactivities of methoxylated and hydroxylated stilbenes in a whole organism using the roundworm Caenorhabditis elegans, an advantageous experimental system for such studies due to its rapid lifecycle, genetic amenability and relatively low-cost. RESULTS Toxicity towards C. elegans adults was observed for trimethoxylated and dimethoxylated stilbenes, as well as the monomethoxylated stilbene desoxyrhapontigenin. Toxicity was not observed for the monomethoxylated stilbene, pinostilbene, nor for hydroxylated stilbenes. The methoxylated stilbenes that exhibited toxicity also showed stronger inhibitory effects than the hydroxylated stilbenes on germline tumor growth in gld-1(q485) adults. However, steady-state levels of three inhibitory methoxylated stilbenes did not directly correlate to their relative bioactivities. CONCLUSION These findings demonstrate that, for the group of stilbenes investigated, methoxylation generally increased bioactivity in vivo in a whole organism, with the exception of pinostilbene. Differences in bioactivity in C. elegans adults did not appear to correlate with differential uptake. Rather, we speculate that methoxylated stilbenes may have increased interactions with biological targets in vivo or may interact with specific targets unaffected by hydroxylated stilbenes. The potent activities of methoxylated stilbenes provide a basis for further investigations to identify in vivo targets for these compounds.
Collapse
Affiliation(s)
- Mark A Wilson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Agnes M Rimando
- Natural Products Utilization Research Unit, ARS, US Department of Agriculture, PO Box 8048, University, MS 38677, USA
| | - Catherine A Wolkow
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|