1
|
Matsumura S, Fujisawa M, Fujiwara M, Okayama H, Marutani M, Nousou E, Sasaki T, Harada N. CREB coactivator CRTC1 in melanocortin-4 receptor-expressing cells regulate dietary fat intake. FASEB Bioadv 2024; 6:597-611. [PMID: 39650226 PMCID: PMC11618889 DOI: 10.1096/fba.2024-00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024] Open
Abstract
Cyclic adenosine monophosphate-response element-binding protein-1-regulated transcription coactivator-1 (CRTC1), a cytoplasmic coactivator that translocates to the nucleus in response to cAMP, is associated with obesity. We previously reported that CRTC1 deficiency in melanocortin-4 receptor (MC4R)-expressing neurons, which regulate appetite and energy metabolism in the brain, causes hyperphagia and obesity under a high-fat diet (HFD). HFD is preferred for mice, and the dietary fat in HFD is the main factor contributing to its palatability. These findings, along with our previous results, suggest that CRTC1 regulates the appetite for dietary fat. Therefore, in this study, we aimed to investigate the dietary fat intake behavior and energy metabolism of MC4R neuron-specific CRTC1 knockout mice fed soybean oil or lard. CRTC1 deficiency increased the intake of soybean oil and significantly increased body weight gain. Furthermore, obesity induced by soybean oil intake was partially due to leptin resistance. No significant changes in soybean oil intake were observed between young CRTC1-deficient and wild-type mice; however, soybean oil intake increased with age. Moreover, lard intake did not significantly affect the body weight. Overall, our findings highlighted the crucial role of CRTC1 in the regulation of spontaneous dietary fat intake. Furthermore, the role of CRTC1 becomes increasingly significant with age.
Collapse
Affiliation(s)
| | - Miyu Fujisawa
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Mizuki Fujiwara
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Houko Okayama
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Miona Marutani
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Eri Nousou
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversityHabikino CityOsakaJapan
| |
Collapse
|
2
|
Narita K, Kudo TA, Hong G, Tominami K, Izumi S, Hayashi Y, Nakai J. Effect of Beta 2-Adrenergic Receptor Gly16Arg Polymorphism on Taste Preferences in Healthy Young Japanese Adults. Nutrients 2022; 14:1430. [PMID: 35406043 PMCID: PMC9003210 DOI: 10.3390/nu14071430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
The Gly16Arg polymorphism results in a G to C nucleotide mutation in the human beta 2-adrenergic receptor (ADRB2) gene and has a relationship with obesity; however, this substitution’s effects on food preferences are unclear. Therefore, we determined this relationship among healthy young adults (mean age, 23.4; n = 52). To evaluate food preferences, four categories of food (sweet, salty, sour, and bitter) along with high-fat foods were evaluated using a self-reporting questionnaire. Male (n = 26) and female subjects (n = 26) were genotyped for the polymorphism and further divided into three groups (two homozygous groups, GG, CC; and a heterozygous group, GC). Preference for sour foods in the GG group was higher compared with that in the CC group in females (p < 0.05). When sweet foods were classified into low- and high-fat subgroups, preference for high-fat sweet foods in the GG group was higher than that for low-fat sweet foods in all subjects (p < 0.05). The degree of preference for high-fat foods in the GG group was higher than other groups for males (p < 0.05). These results suggest that ADRB2 polymorphism is associated with food preference. Understanding the relationship of ADRB2 substitution to food preference will be valuable for designing individualized anti-obesity strategies.
Collapse
Affiliation(s)
- Kohei Narita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
- Graduate Medical Education Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Guang Hong
- Division of Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan;
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (K.N.); (K.T.); (S.I.); (J.N.)
| |
Collapse
|
3
|
Matsumura S, Odanaka M, Ishikawa F, Sasaki T, Manio MCC, Fushiki T, Inoue K. Chronic high corticosterone with voluntary corn oil ingestion induces significant body weight gain in mice. Physiol Behav 2019; 204:112-120. [DOI: 10.1016/j.physbeh.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
|
4
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
5
|
Matsumura S, Ishikawa F, Sasaki T, Odanaka M, Manio MCC, Fushiki T, Inoue K. Voluntary Corn Oil Ingestion Increases Energy Expenditure and Interscapular UCP1 Expression Through the Sympathetic Nerve in C57BL/6 Mice. Mol Nutr Food Res 2018; 62:e1800241. [DOI: 10.1002/mnfr.201800241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Tsutomu Sasaki
- Department of Neurology; Graduate School of Medicine; Osaka University; Yamadaoka 2-2, Suita Osaka 565-0871 Japan
| | - Mayuki Odanaka
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Mark Christian C. Manio
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Tohru Fushiki
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| |
Collapse
|
6
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Lee S, Adachi SI, Fujitani M, Tsuzuki S, Inoue K, Fushiki T. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration. J Nutr Sci Vitaminol (Tokyo) 2016; 61:247-54. [PMID: 26226962 DOI: 10.3177/jnsv.61.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Adachi SI, Eguchi A, Sakamoto K, Asano H, Manabe Y, Matsumura S, Tsuzuki S, Inoue K, Fushiki T. Behavioral palatability of dietary fatty acids correlates with the intracellular calcium ion levels induced by the fatty acids in GPR120-expressing cells. Biomed Res 2015; 35:357-67. [PMID: 25743342 DOI: 10.2220/biomedres.35.357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We recently reported that G-protein-coupled receptor 120 (GPR120) is expressed on taste buds, and that rodents showed preference for long-chain fatty acids (LCFA) at a low concentration. We also showed that the LCFA (1% linoleic acid) increased the extracellular dopamine (DA) level in the nucleus accumbens (NAc), which participates in reward behavior. However, the mechanism underlying the involvement of the GPR120-agonistic activity of LCFA in the palatability of dietary fat remains elusive. Therefore, we examined the association between the GPR120-agonistic activity and palatability of LCFA. First, we measured Ca(2+) signaling in HEK293 cells stably expressing GPR120 under stimulation by various LCFAs. We then assessed the palatability of the various LCFAs by testing the licking behavior in mice and measured the changes in the NAc-DA level by in vivo microdialysis. Consequently, 14- to 22-carbon unsaturated LCFAs showed strong GPR120-agonistic activity. Additionally, mice displayed high licking response to unsaturated 16- and 18-carbon LCFAs, and unsaturated 18-carbon LCFA significantly increased the DA level. The licking rate and the LCFA-dependent increase in DA level also correlated well with the GPR120- agonistic activity. These findings demonstrate that chemoreception of LCFA by GPR120 is involved in the recognition and palatability of dietary fat.
Collapse
Affiliation(s)
- Shin-ichi Adachi
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
9
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Yoneda T, Mizushige T, Tsuzuki S, Inoue K, Fushiki T. The opioid system contributes to the acquisition of reinforcement for dietary fat but is not required for its maintenance. Physiol Behav 2015; 138:227-35. [DOI: 10.1016/j.physbeh.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
|
10
|
Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs. Psychopharmacology (Berl) 2015; 232:4043-57. [PMID: 26156636 PMCID: PMC4600476 DOI: 10.1007/s00213-015-4009-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/28/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE Touchscreens are widely used to examine rodent cognition. Current paradigms require animals to view stimuli and nose poke at an appropriate touchscreen location. After responding, there is little screen interaction and, as infra-red touchscreens eliminate the need for physical contact, minimal somatosensory feedback. It is therefore unclear if touchscreens can support the vigorous, repetitive responding required in paradigms like progressive ratio (PR) for assessing motivation and effort-related choice (ERC) for assessing decision-making. OBJECTIVES This study aims to adapt and validate PR and ERC for the rodent touchscreen. METHODS Male C57Bl/6 mice were trained until responding on PR stabilised. Amphetamine, sulpiride and raclopride were administered via the intraperitoneal route to modify performance. Mice were transferred to ERC and paradigm parameters adjusted to demonstrate behavioural modification. ERC reward preference was assessed by home cage choice analysis. RESULTS PR performance stabilised within seven sessions. Amphetamine (1 mg/kg) increased and raclopride (0.3 mg/kg) decreased performance by 63 and 28 %, respectively, with a 20-min injection-test interval. Sulpiride (50 mg/kg) decreased performance by 19 % following a 40-min injection-test interval. Increasing ERC operant requirements shifted responding from the operant response-dependent preferred reward towards the freely available alternative. CONCLUSIONS Vigorous, repetitive responding is sustainable in touchscreen PR and ERC and task validation mirrors non-touchscreen versions. Thus, motivation and reward-related decision-making can be measured directly with touchscreens and can be evaluated prior to cognitive testing in the same apparatus to avoid confounding by motivational factors.
Collapse
|
11
|
Portella AK, Silveira PP, Laureano DP, Cardoso S, Bittencourt V, Noschang C, Werlang I, Fontella FU, Dalmaz C, Goldani MZ. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res 2014; 278:66-73. [PMID: 25264577 DOI: 10.1016/j.bbr.2014.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 11/25/2022]
Abstract
Postnatal overfeeding is a well-known model of early-life induced obesity and glucose intolerance in rats. However, little is known about its impact on insulin signaling in specific brain regions such as the mesocorticolimbic system, and its putative effects on dopamine-related hedonic food intake in adulthood. For this study, rat litters were standardized to 4 (small litter - SL) or 8 pups (control - NL) at postnatal day 1. Weaning was at day 21, and all tests were conducted after day 60 of life in male rats. In Experiment 1, we demonstrated that the SL animals were heavier than the NL at all time points and had decreased AKT/pAKT ratio in the Ventral Tegmental Area (VTA), without differences in the skeletal muscle insulin signaling in response to insulin injection. In Experiment 2, the standard rat chow intake was addressed using an automated system (BioDAQ, Research Diets(®)), and showed no differences between the groups. On the other hand, the SL animals ingested more sweet food in response to the 1 min tail-pinch challenge and did not develop conditioned place preference to sweet food. In Experiment 3 we showed that the SL rats had increased VTA TH content but had no difference in this protein in response to a sweet food challenge, as the NL had. The SL rats also showed decreased levels of dopamine D2 receptors in the nucleus accumbens. Here we showed that early postnatal overfeeding was linked to an altered functioning of the mesolimbic dopamine pathway, which was associated with altered insulin signaling in the VTA, suggesting increased sensitivity, and expression of important proteins of the dopaminergic system.
Collapse
Affiliation(s)
- A K Portella
- Departamento de Pediatria, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil.
| | - P P Silveira
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde - Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - D P Laureano
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde - Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - S Cardoso
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| | - V Bittencourt
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| | - C Noschang
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| | - I Werlang
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| | - F U Fontella
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| | - C Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde - Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - M Z Goldani
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Fushiki T. Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci Biotechnol Biochem 2014; 78:363-9. [DOI: 10.1080/09168451.2014.905186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Potential mechanisms underlying the high palatability of fat can be assessed by reviewing animal studies on fat detection and brain patterns during reward behavior. Fatty acids are likely recognized by receptors on taste buds, with the signals transmitted to the brain through taste nerves. Ingested oil is broken down and absorbed in the gastrointestinal tract, which also sends signals to the brain through unknown mechanisms. Information from both sensory receptors and peripheral tissue is integrated by the brain, resulting in a strong appetite for fatty foods via a reward system. Understanding mechanisms of fat recognition will prove valuable in the development of strategies to manage the high palatability of foods.
Collapse
Affiliation(s)
- Tohru Fushiki
- Division of Food Science & Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Acosta V, Natanova E, Touzani K, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2013; 110:127-36. [DOI: 10.1016/j.pbb.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
|
14
|
Olarte-Sánchez CM, Valencia-Torres L, Cassaday HJ, Bradshaw CM, Szabadi E. Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR). Psychopharmacology (Berl) 2013; 230:617-30. [PMID: 23828157 PMCID: PMC3838603 DOI: 10.1007/s00213-013-3189-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023]
Abstract
RATIONALE Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules. OBJECTIVE The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats' performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen's (Behav Brain Sci 17:105-172, 1994) Mathematical Principles of Reinforcement. METHOD Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg(-1)) and haloperidol (0.05 and 0.1 mg kg(-1)) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model's parameters were compared between treatments. RESULTS Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil. CONCLUSIONS The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors.
Collapse
Affiliation(s)
- C. M. Olarte-Sánchez
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH UK ,Present Address: School of Psychology, University of Cardiff, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
| | - L. Valencia-Torres
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH UK ,Present Address: Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - H. J. Cassaday
- School of Psychology, University of Nottingham, Nottingham, UK
| | - C. M. Bradshaw
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH UK
| | - E. Szabadi
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Room B109, Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
15
|
Dela Cruz JAD, Icaza-Cukali D, Tayabali H, Sampson C, Galanopoulos V, Bamshad D, Touzani K, Sclafani A, Bodnar RJ. Roles of dopamine D1 and D2 receptors in the acquisition and expression of fat-conditioned flavor preferences in rats. Neurobiol Learn Mem 2012; 97:332-7. [PMID: 22390857 DOI: 10.1016/j.nlm.2012.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/08/2011] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
Abstract
Sugars and fats elicit innate and learned flavor preferences with the latter mediated by flavor-flavor (orosensory) and flavor-nutrient (post-ingestive) processes. Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC), but not opioid antagonists blocked the acquisition and expression of flavor-flavor preferences conditioned by sugars. In addition, systemic D1, but not D2 or opioid antagonists blocked the acquisition of flavor-nutrient preferences conditioned by intragastric (IG) sugar infusions. Given that DA antagonists reduce fat intake, the present study examined whether systemic D1 or D2 antagonists altered the acquisition and/or expression of conditioned flavor preferences (CFP) produced by pairing one novel flavor (CS+, e.g., cherry) with a 3.5% corn oil (CO: fat) solution relative to another flavor (CS-, e.g., grape) paired with a 0.9% CO solution. In an expression study, food-restricted rats were trained to drink either flavored 3.5% or 0.9% CO solutions on alternate days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 0.9% CO solutions occurred 0.5h after systemic administration of vehicle (VEH), SCH (50-800 nmol/kg) or RAC (50-800 nmol/kg). The rats displayed a robust CS+ preference following VEH treatment (87-88%) the expression of which was attenuated by treatment with moderate doses of RAC, and to a lesser degree, SCH. In an acquisition study, six groups of rats received VEH, SCH (25, 50, 200 nmol/kg) or RAC (50, 200 nmol/kg) 0.5 h prior to 1-bottle training trials with CS+ flavored 3.5% and CS- flavored 0.9% (CS-) CO solutions. A seventh Limited VEH group was trained with its training intakes limited to that of the SCH and RAC groups. Subsequent two-bottle tests were conducted with the CS+ and CS- flavors presented in 0.9% CO without injections. Significant and persistent CS+ preferences were observed in VEH (75-82%), Limited VEH (70-88%), SCH25 (75-84%), SCH50 (64-87%), SCH200 (78-91%) and RAC200 (74-91%) groups. In contrast, the group trained with RAC50 displayed a significant initial CS+ preference (76%) which declined over testing to 61%. These data indicate limited DA D1 and D2 receptor signaling involvement in the expression and acquisition of a fat-CFP relative to previous robust effects for sugar-CFP.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Neuropsychology Doctoral Sub-Program, The Graduate Center, City University of New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 2012; 15:137-49. [PMID: 22244528 PMCID: PMC3278569 DOI: 10.1016/j.cmet.2011.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention.
Collapse
Affiliation(s)
- Karen K Ryan
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
17
|
Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E, Engel JA, Dickson SL. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 2011; 12:141-51. [PMID: 21340584 PMCID: PMC3145094 DOI: 10.1007/s11154-011-9166-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we review the emerging neurobiological understanding of the role of the brain's reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular 'incentive salience theory' of food reward recognises not only a hedonic/pleasure component ('liking') but also an incentive motivation component ('wanting' or 'reward-seeking'). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists.
Collapse
Affiliation(s)
- Emil Egecioglu
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Caroline Hansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Mayte Alvarez-Crespo
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - P. Anders Friberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Jörgen A. Engel
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| | - Suzanne L. Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
18
|
|
19
|
Wojnicki FHE, Babbs RK, Corwin RLW. Reinforcing efficacy of fat, as assessed by progressive ratio responding, depends upon availability not amount consumed. Physiol Behav 2010; 100:316-21. [PMID: 20298708 PMCID: PMC2874653 DOI: 10.1016/j.physbeh.2010.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 12/23/2022]
Abstract
Intermittent limited access to an optional source of dietary fat can induce binge-type behavior in rats. However, the ability of such access to alter the reinforcing efficacy of fat has not been clearly demonstrated. In this study, performance under progressive ratio one (PR1) and three (PR3) schedules of shortening (fat) reinforcement was assessed in non-food deprived rats (n=15/group). One group of rats had intermittent access to a dietary fat option (INT, 1-hour shortening access in the home cage each Monday, Wednesday, and Friday), whereas the other group had daily access to the fat option (D, 1-hour shortening access daily). Chow and water were continuously available. After five weeks, the INT group consumed more shortening during the 1-hour access period than did the D group. Rats were then trained to lever press for a solid shortening reinforcer (0.1 gm). INT rats earned significantly more reinforcers than did D rats under PR1, but not under PR3. Subgroups of INT and D rats (n=7 each) were matched on the amount of shortening consumed in the home cage during week five of the protocol and the PR data were reanalyzed. The INT subgroup earned significantly more reinforcers than the D subgroup did under PR1, but not PR3. These results demonstrate that: (1) intermittent access to shortening in the home cage, but not the amount consumed during the access period (i.e. bingeing), increases the reinforcing efficacy of solid shortening; and (2) the type of PR schedule is critical in delineating differences between the groups.
Collapse
Affiliation(s)
- F H E Wojnicki
- Pennsylvania State University, Nutritional Sciences, 110 Chandlee Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
20
|
Matsumura S, Yoneda T, Aki S, Eguchi A, Manabe Y, Tsuzuki S, Inoue K, Fushiki T. Intragastric infusion of glucose enhances the rewarding effect of sorbitol fatty acid ester ingestion as measured by conditioned place preference in mice. Physiol Behav 2010; 99:509-14. [PMID: 20045421 DOI: 10.1016/j.physbeh.2009.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
We investigated substances that induce a rewarding effect during the postingestive process using the conditioned place preference (CPP) test. Although mice showed high affinity for a low-energy fat substitute--sorbitol fatty acid esters and low-concentration linoleic acid solution--they did not exhibit a place preference toward a voluntary intake of fat substitute in the CPP test. However, during a conditioning session of CPP that involved intragastric administration of corn oil immediately before the intake of the fat substitute, the test mice displayed a place preference. Similarly, intragastric administration of glucose, galactose, and dextrin also induced CPP; however, fructose, mannose, and a nonmetabolized carbohydrate did not. These results suggest that administration of corn oil and glucose has the same postingestive effect with regard to inducing CPP and that the structural specificity of carbohydrates influences the postingestive effect.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto City, 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mizushige T, Saitoh K, Manabe Y, Nishizuka T, Taka Y, Eguchi A, Yoneda T, Matsumura S, Tsuzuki S, Inoue K, Fushiki T. Preference for dietary fat induced by release of beta-endorphin in rats. Life Sci 2009; 84:760-5. [DOI: 10.1016/j.lfs.2009.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
22
|
Contribution of gustation to the palatability of linoleic acid. Physiol Behav 2009; 96:142-8. [DOI: 10.1016/j.physbeh.2008.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022]
|
23
|
Matsumura S, Saitou K, Miyaki T, Yoneda T, Mizushige T, Eguchi A, Shibakusa T, Manabe Y, Tsuzuki S, Inoue K, Fushiki T. Mercaptoacetate inhibition of fatty acid β-oxidation attenuates the oral acceptance of fat in BALB/c mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R82-91. [DOI: 10.1152/ajpregu.00060.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of β-oxidation inhibition on the fat ingestive behavior of BALB/c mice. Intraperitoneal administration to mice of mercaptoacetate, an inhibitor of fatty acid oxidation, significantly suppressed intake of corn oil but not intake of sucrose solution or laboratory chow. To further examine the effect of mercaptoacetate on the acceptability of corn oil in the oral cavity, we examined short-term licking behavior. Mercaptoacetate significantly and specifically decreased the number of licks of corn oil within a 60-s period but did not affect those of a sucrose solution, a monosodium glutamate solution, or mineral oil. In contrast, the administration of 2-deoxyglucose, an inhibitor of glucose metabolism, did not affect the intake or short-term licking counts of any of the tasted solutions. These findings suggest that fat metabolism is involved in the mechanism underlying the oral acceptance of fat as an energy source.
Collapse
|