1
|
Liu J, Chang YT, Kou YY, Zhang PP, Dong QL, Guo RY, Liu LY, Lin HW, Yang F. Marine sponge-derived alkaloid inhibits the PI3K/AKT/mTOR signaling pathway against diffuse large B-cell lymphoma. Med Oncol 2024; 41:212. [PMID: 39073639 DOI: 10.1007/s12032-024-02448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous non-Hodgkin lymphoma that is extremely aggressive and has an intermediate to high malignancy. Some patients still experience treatment failure, relapse, or resistance to rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) therapy. Therefore, there is an urgent need for further research on new agents for the treatment of DLBCL. AP-48 is an aaptamine alkaloid analog with potent anti-tumor effects that originates from marine natural products. In this study, we found that AP-48 exhibits dose-dependent cytotoxicity in DLBCL cell lines. Flow cytometry showed that AP-48 induced cell cycle arrest in the G0/G1 phase in SU-DHL-4 and Farage cells and in the S phase in WSU-DLCL-2 cells. AP-48 also accelerated apoptosis via the caspase-3-mediated intrinsic apoptotic pathway. Further experiments demonstrated that AP-48 exerted its anti-DLBCL effects through the PI3K/AKT/mTOR pathway, and that the PI3K agonist YS49 partially alleviated the inhibition of cell proliferation and apoptosis induced by AP-48. Finally, in a tumor xenograft model, AP-48 inhibited tumor growth and promoted apoptosis in tumor tissues, indicating its therapeutic potential in DLBCL.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yung-Ting Chang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan-Yu Kou
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pei-Pei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai, 200052, China.
| | - Qing-Li Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruo-Yu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, China
| | - Li-Yun Liu
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hou-Wen Lin
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fan Yang
- Department of Pharmacy, Research Center for Marine Drugs, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
2
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
3
|
Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol Cell Biochem 2018; 448:77-89. [DOI: 10.1007/s11010-018-3316-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/26/2023]
|
4
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
5
|
Saito K, Mori S, Date F, Hong G. Epigallocatechin gallate stimulates the neuroreactive salivary secretomotor system in autoimmune sialadenitis of MRL-Fas(lpr) mice via activation of cAMP-dependent protein kinase A and inactivation of nuclear factor κB. Autoimmunity 2016; 48:379-88. [PMID: 25847253 DOI: 10.3109/08916934.2015.1030617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The water channel aquaporin 5 (AQP5) plays a crucial role in regulating salivary flow rates. Xerostomia is often observed in patients with Sjögren's syndrome, and this is attributed to reduced AQP5 expression in the salivary glands. Recently, anti-type 3 muscarinic cholinergic receptors (M3R) autoantibodies and nuclear factor κB (NF-κB) have been found to be negative regulators of AQP5 expression in the salivary gland. Anti-M3R autoantibodies desensitize M3R to salivary secretagogues in Sjögren's syndrome, while activated NF-κB translocates to nuclei and binds to the AQP5 gene promoter, resulting in the suppression of AQP5 expression. We previously documented that epigallocatechin gallate (EGCG), which is a robust antioxidant contained in green tea, ameliorates oxidative stress-induced tissue damage to the salivary glands of MRL/MpJ-lpr/lpr (MRL-Fas(lpr)) mice, which are widely used as a model of Sjögren's syndrome. Reactive oxygen species (ROS) can activate NF-κB and inactivate protein kinase A (PKA), which is a key driver of AQP5 expression. In this study, we examined the effects of administering EGCG to MRL-Fas(lpr) mice with autoimmune sialadenitis on the levels of AQP5, activated NF-κB p65 subunit, activated PKA, activated c-Jun N-terminal kinase (JNK) (an activator of NF-κB), inhibitor κB (IκB) and histone deacetylase 1 (HDAC1) (an inhibitor of NF-κB). In EGCG-treated mice, intense aster-like immunostaining for AQP5 was observed on the apical plasma membranes (APMs) of submandibular gland acinar cells. Likewise, PKA, IκB and HDAC1 were highly expressed in salivary gland tissues, whereas the expression of JNK and NF-κB p65 was negligible. Rank correlation and partial correlation analyses revealed that treatment with EGCG upregulated AQP5 expression on the APM of acinar cells through activation of PKA and inactivation of NF-κB, while IκB and HDAC1 played a pivotal role in the induction of AQP5 expression by PKA. Our study indicates that EGCG may have therapeutic potential for Sjögren's syndrome patients.
Collapse
Affiliation(s)
- Keiichi Saito
- a Liaison Centre for Innovative Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | | | | | | |
Collapse
|
6
|
Xu XL, Huang YJ, Ling DY, Zhang W. Inhibitory effects of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside on angiotensin II-induced proliferation of vascular smooth muscle cells. Chin J Integr Med 2014; 21:204-10. [PMID: 25078359 DOI: 10.1007/s11655-014-1821-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the effect of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the root of Polygonum multiflorum, on angiotensin II (Ang II)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and to identify the potential mechanism. METHODS Cell proliferation and cell cycle were determined by cell counting, 5-bromo-2'-deoxyuridine incorporation assay, proliferating cell nuclear antigen protein expression and flow cytometry. Levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), mitogenic extracellular kinase 1/2 (MEK1/2) and Src in VSMCs were measured by Western blot. The expression of c-fos, c-jun and c-myc mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR). Intracellular reactive oxygen species (ROS) was measured by fluorescence assay. RESULTS TSG significantly inhibited Ang II-induced VSMCs proliferation and arrested cells in the G /S checkpoint (P<0.05 or P<0.01). TSG decreased the levels of phosphorylated ERK1/2, MEK1/2 and Src in VSMCs (P<0.05 or P<0.01). TSG also suppressed c-fos, c-jun and c-myc mRNA expression <0.05 or P<0.01). In addition, the intracellular ROS was reduced by TSG (P<0.01). CONCLUSIONS TSG inhibited Ang II-induced VSMCs proliferation. Its antiproliferative effect might be associated with down-regulation of intracellular ROS, followed by the suppression of the Src-MEK1/2-ERK1/2 signal pathway, and hence, blocking cell cycle progression.
Collapse
Affiliation(s)
- Xiao-le Xu
- Department of Pharmacology, Nantong University Pharmacy College, Nantong, 226001, China
| | | | | | | |
Collapse
|
7
|
Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L. The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 2014; 289:25678-89. [PMID: 25070892 DOI: 10.1074/jbc.m114.595603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (ANG-II) and BK channels play important roles in the regulation of blood pressure. In arterial smooth muscle, ANG-II inhibits BK channels, but the underlying molecular mechanisms are unknown. Here, we first investigated whether ANG-II utilizes its type 1 receptor (AT1R) to modulate BK activity. Pharmacological, biochemical, and molecular evidence supports a role for AT1R. In renal arterial myocytes, the AT1R antagonist losartan (10 μM) abolished the ANG-II (1 μM)-induced reduction of whole cell BK currents, and BK channels and ANG-II receptors were found to co-localize at the cell periphery. We also found that BK inhibition via ANG-II-activated AT1R was independent of G-protein activation (assessed with 500 μM GDPβS). In BK-expressing HEK293T cells, ANG-II (1 μM) also induced a reduction of BK currents, which was contingent on AT1R expression. The molecular mechanisms of AT1R and BK channel coupling were investigated in co-transfected cells. Co-immunoprecipitation showed formation of a macromolecular complex, and live immunolabeling demonstrated that both proteins co-localized at the plasma membrane with high proximity indexes as in arterial myocytes. Consistent with a close association, we discovered that the sole AT1R expression could decrease BK channel voltage sensitivity. Truncated BK proteins revealed that the voltage-sensing conduction cassette is sufficient for BK-AT1R association. Finally, C-terminal yellow and cyan fluorescent fusion proteins, AT1R-YFP and BK-CFP, displayed robust co-localized Förster resonance energy transfer, demonstrating intermolecular interactions at their C termini. Overall, our results strongly suggest that AT1R regulates BK channels through a close protein-protein interaction involving multiple BK regions and independent of G-protein activation.
Collapse
Affiliation(s)
- Zhu Zhang
- From the Departments of Anesthesiology
| | - Min Li
- From the Departments of Anesthesiology
| | - Rong Lu
- From the Departments of Anesthesiology
| | | | - Enrico Stefani
- From the Departments of Anesthesiology, Physiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095
| | - Ligia Toro
- From the Departments of Anesthesiology, the Brain Research Institute, and the Cardiovascular Research Laboratory, University of California, Los Angeles, California 90095 Molecular and Medical Pharmacology, and
| |
Collapse
|
8
|
Alessandria L, Schilirò T, Degan R, Traversi D, Gilli G. Cytotoxic response in human lung epithelial cells and ion characteristics of urban-air particles from Torino, a northern Italian city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5554-64. [PMID: 24407785 DOI: 10.1007/s11356-013-2468-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 12/16/2013] [Indexed: 05/26/2023]
Abstract
Recently, much attention has been devoted to urban air pollution because epidemiological studies have reported health impacts related to particulate matter (PM). PM10 and PM2.5 were collected during different seasons in Torino, a northern Italian city, and were characterised by inorganic chemical species (secondary particulates and bio-available iron). The biological effects of aqueous and organic solvent PM extracts on human epithelial lung A549 were evaluated, and the effects on cell proliferation and lactate dehydrogenase (LDH) release were assayed. The average PM10 concentration during the sampling period was 47.9 ± 18.0 μg/m(3); the secondary particles accounted for 49 % ± 9 % of the PM10 total mass, and the bio-available iron concentration was 0.067 ± 0.045 μg/m(3). The PM2.5/PM10 ratio in Torino ranged from 0.47 to 0.90 and was higher in cold months than in warm months. The PM10 and PM2.5 extracts inhibited cell proliferation and induced LDH release in a dose-dependent manner with a seasonal trend. The PM10 extract had a stronger effect on LDH release, whereas the PM2.5 extract more strongly inhibited cell proliferation. No significant differences were observed in the effects induced by the two extracts, and no significant correlations were found between the biological effects and the PM components evaluated in this study, thus emphasising the importance of the entire mixture in inducing a cytotoxic response.
Collapse
Affiliation(s)
- Luca Alessandria
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia, 94, 10126, Torino, Italy
| | | | | | | | | |
Collapse
|
9
|
Park EJ, Jang HJ, Tsoyi K, Kim YM, Park SW, Kim HJ, Lee JH, Chang KC. The heme oxygenase-1 inducer THI-56 negatively regulates iNOS expression and HMGB1 release in LPS-activated RAW 264.7 cells and CLP-induced septic mice. PLoS One 2013; 8:e76293. [PMID: 24098466 PMCID: PMC3789711 DOI: 10.1371/journal.pone.0076293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 08/23/2013] [Indexed: 01/18/2023] Open
Abstract
The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Hwa Jin Jang
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Konstantin Tsoyi
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Young Min Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Jae Heun Lee
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine Gyeongsang National University and Institute of Health Sciences, Jinju, Korea
| |
Collapse
|
10
|
Hassan N, El-Bassossy HM, Zakaria MNM. Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:217-26. [PMID: 23254361 DOI: 10.1007/s00210-012-0822-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Disturbances in vascular reactivity are important components of diabetes-evoked hypertension. Heme oxygenase-1 (HO-1) is a homeostatic enzyme upregulated in stress. This study aims to investigate the protective effect of HO-1 against diabetes-evoked hypertension. Rats were left 8 weeks after diabetes induction with streptozotocin to induce vascular dysfunction in the diabetic groups. HO-1 inducers, hemin and curcumin, were daily administrated in the last 6 weeks in the treated groups after 2 weeks of induction. Then, at the end of the study (8 weeks), HO-1 protein level was assessed by immunofluorescence; blood pressure (BP) was recorded; isolated aorta reactivity to phenylephrine (PE) and KCl was studied; reactive oxygen species (ROS) generation was determined; and serum level of glucose, advanced glycation end products (AGEs), and tumor necrosis factor alpha (TNF-α) were determined. While not affected by diabetes, HO-1 protein expression was strongly induced by hemin or curcumin administration. Compared with control animals, diabetes increased systolic and pulse BP. Induction of HO-1 by hemin or curcumin significantly reduced elevated systolic BP and abolished elevated pulse BP without affecting the developed hyperglycemia or AGEs level. The possibility that alterations in vascular reactivity contributed to diabetes-HO-1 BP interaction was investigated. Diabetes increased contractile response of the aorta to PE and KCl, while HO-1 induction by curcumin or hemin prevented aorta-exaggerated response to PE and KCl. Furthermore, the competitive HO inhibitor, tin protoporphyrin, abolished the protective effect of hemin. Diabetes was accompanied with elevated level of TNF-α and ROS generation, while HO-1 induction abrogated increased TNF-α and ROS generation. Collectively, induction of HO-1 protects against hypertension associated with diabetes via ameliorating exaggerated vascular contractility by reducing TNF-α and aortic ROS levels.
Collapse
Affiliation(s)
- N Hassan
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | |
Collapse
|
11
|
AVE0991, a Nonpeptide Compound, Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation via Induction of Heme Oxygenase-1 and Downregulation of p-38 MAPK Phosphorylation. Int J Hypertens 2012; 2012:958298. [PMID: 22518299 PMCID: PMC3299313 DOI: 10.1155/2012/958298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 12/21/2022] Open
Abstract
The nonpeptide AVE0991 is an agonist of the angiotensin-(1–7) (Ang-(1–7)) Mas receptor and is expected to be a putative new drug for treatment of cardiovascular disease. However, the mechanisms involved in the antiproliferative effects of AVE0991 are not fully understood. We saw that the compound attenuated proliferation in an angiotensin II-induced rat vascular smooth muscle cells (VSMC) proliferation model. Moreover, treatment with AVE0991 (10−5 mol/L or 10−7 mol/L) significantly attenuated reactive oxygen species (ROS) production, phosphorylation of p38 MAPK, and dose-dependently (10−8 to 10−5 mol/L) inhibited Ang II-induced VSMC proliferation. Meanwhile, heme oxygenase-1 (HO-1) expression increased in the AVE0991 + Ang II group (10−5 mol/L or 10−6 mol/L). However, the beneficial effects of AVE0991 were completely abolished when the VSMC were pretreated with A-779 (10−6 mol/L). Furthermore, treatment with the HO-1 inhibitor ZnPPIX attenuated the inhibitory effect of AVE0991 on Ang II-induced p38MAPK phosphorylation. These results suggest that AVE0991 attenuates Ang II-induced VSMC proliferation in a dose-dependent fashion and that this effect is associated with the Mas/HO-1/p38 MAPK signaling pathway.
Collapse
|
12
|
Tsoyi K, Ha YM, Kim YM, Lee YS, Kim HJ, Kim HJ, Seo HG, Lee JH, Chang KC. Activation of PPAR-gamma by carbon monoxide from CORM-2 leads to the inhibition of iNOS but not COX-2 expression in LPS-stimulated macrophages. Inflammation 2010; 32:364-71. [PMID: 19705266 DOI: 10.1007/s10753-009-9144-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effect of CO on the expression of iNOS and COX-2 was investigated by using a CO-releasing molecule (CORM)-2 in LPS-activated RAW 264.7 cells in vitro. Interestingly, CORM-2 significantly inhibited iNOS (NO) but not COX-2 (PGE(2)) expression. PPAR-gamma activators such as troglitazone, GW1929, and 15-deoxy-Delta12, 14- prostaglandin J(2) showed preferential inhibitory effect on iNOS over COX-2 expression in LPS-activated macrophages. The same effect was shown in lung tissues (iNOS, COX-2) and serum (NO, PGE(2)) when administered of CORM-2 in LPS-induced septic mice, indicating that CO derived from CORM-2 differentially regulates iNOS and COX-2 through PPAR-gamma activation under inflammation state.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- Department of Pharmacology, School of Medicine and Institute of Life Sciences, Biomedical Center (BK21), Gyeongsang National University, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li XC, Tong GX, Zhang Y, Liu SX, Jin QH, Chen HH, Chen P. Neferine inhibits angiotensin II-stimulated proliferation in vascular smooth muscle cells through heme oxygenase-1. Acta Pharmacol Sin 2010; 31:679-86. [PMID: 20523338 DOI: 10.1038/aps.2010.57] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To explore the effect of neferine on angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. METHODS Human umbilical vein smooth muscle cells (HUVSMCs) were used. Cell proliferation was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. Heme oxygenase (HO)-1 protein expression was tested by Western blot analysis. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation was determined by using immunoblotting. RESULTS Pre-incubation of HUVSMCs with neferine (0.1, 0.5, 1.0, and 5.0 micromol/L) significantly inhibited Ang II-induced cell proliferation in a concentration-dependent manner and neferine 5.0 micromol/L increased HO-1 expression by 259% compared with control. The antiproliferative effect of neferine was significantly attenuated by coapplication of zinc protoporphyrin IX (ZnPP IX, an HO-1 inhibitor) with neferine. Ang II-enhanced ERK1/2 phosphorylation was markedly reversed by neferine. By inhibiting HO-1 activity with ZnPP IX, the inhibitive effect of neferine on ERK1/2 phosphorylation was significantly attenuated. Cobalt-protoporphyrin (CoPP), an HO-1 inducer, significantly decreased Ang II-induced ERK1/2 phosphorylation and inhibited Ang II-induced cell proliferation. The ERK1/2 pathway inhibitor PD98059 significantly blocked Ang II-enhanced ERK1/2 phosphorylation and inhibited cell proliferation. CONCLUSION These findings suggest that neferine can inhibit Ang II-induced HUVSMC proliferation by upregulating HO-1, leading to the at least partial downregulation of ERK1/2 phosphorylation.
Collapse
|
14
|
Abdel Aziz MT, Mostafa T, Atta H, Wassef MA, Fouad HH, Rashed LA, Sabry D. Putative role of carbon monoxide signaling pathway in penile erectile function. J Sex Med 2009; 6:49-60. [PMID: 19170836 DOI: 10.1111/j.1743-6109.2008.01050.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Erectile response depends on nitric oxide (NO) generated by NO synthase (NOS) enzyme of the nerves and vascular endothelium in the cavernous tissue. NO activates soluble guanylate cyclase (sGC), leading to the production of cyclic guanosine monophosphate (cGMP). cGMP activates cGMP-dependent protein kinase that activates Ca(2+)/ATPase pump that activates Ca(2+)/K efflux pump extruding Ca(2+) across the plasma membrane with consequent smooth muscle cell relaxation. A role similar to that of NOS/NO signaling has been postulated for carbon monoxide (CO) produced in mammals from heme catabolism by heme oxygenase (HO) enzyme. AIM To assess CO signaling pathway for erectile function by reviewing published studies. METHODS A systematic review of published studies on this affair based on Pubmed and Medical Subject Heading databases, with search for all concerned articles. MAIN OUTCOME MEASURES Documentation of positive as well as negative criteria of CO/HO signaling focused on penile tissue. RESULTS The concept that HO-derived CO could play a role in mediating erectile function acting in synergism with, or as a potentiator for, NOS/NO signaling pathway is gaining momentum. CO/HO signaling pathway has been shown to partially mediate the actions of oral phosphodiesterase type 5 inhibitors. In addition, it was shown that the use of CO releasing molecules potentiated cavernous cGMP levels. However, increased CO production or release was reported to be associated, in some studies, with vasoconstriction. CONCLUSION This review sheds a light on the significance of cavernous tissue CO signaling pathway that may pave the way for creation of therapeutic modalities based on this pathway.
Collapse
|
15
|
NPRA-mediated suppression of AngII-induced ROS production contribute to the antiproliferative effects of B-type natriuretic peptide in VSMC. Mol Cell Biochem 2008; 324:165-72. [PMID: 19104909 DOI: 10.1007/s11010-008-9995-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/11/2008] [Indexed: 12/31/2022]
Abstract
Excessive proliferation of vascular smooth cells (VSMCs) plays a critical role in the pathogenesis of diverse vascular disorders, and inhibition of VSMCs proliferation has been proved to be beneficial to these diseases. In this study, we investigated the antiproliferative effect of B-type natriuretic peptide (BNP), a natriuretic peptide with potent antioxidant capacity, on rat aortic VSMCs, and the possible mechanisms involved. The results indicate that BNP potently inhibited AngiotensinII (AngII)-induced VSMCs proliferation, as evaluated by [(3)H]-thymidine incorporation assay. Consistently, BNP significantly decreased AngII-induced intracellular reactive oxygen species (ROS) and NAD(P)H oxidase activity. 8-Br-cGMP, a cGMP analog, mimicked these effects. To confirm its mechanism, siRNA of natriuretic peptide receptor-A(NRPA) strategy technology was used to block cGMP production in VSMCs, and siNPRA attenuated the inhibitory effects of BNP in VSMCs. Taken together, these results indicate that BNP was capable of inhibiting VSMCs proliferation by NPRA/cGMP pathway, which might be associated with the suppression of ROS production. These results might be related, at least partly, to the anti-oxidant property of BNP.
Collapse
|
16
|
Choi HC, Kim HS, Lee KY, Chang KC, Kang YJ. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1β-stimulated vascular smooth muscle cells by induction of ΗΟ-1. Biochem Biophys Res Commun 2008; 376:753-7. [DOI: 10.1016/j.bbrc.2008.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
|