1
|
Qin W, Qiao D, Ren M, Ye X, Yu G, Chen G, Xing J, Ma W, Yu M, Yuan X, Ouyang K, Tan W, Zhao D. The active mechanical characteristics of arterial smooth muscle during aneurysm remodeling. Front Bioeng Biotechnol 2025; 13:1560193. [PMID: 40206828 PMCID: PMC11978836 DOI: 10.3389/fbioe.2025.1560193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Abdominal Aortic Aneurysm (AAA) is a common vascular disease characterized by progressive expansion and remodeling of the aortic wall. However, with the gradual expansion of blood vessels, the walls of blood vessels cannot withstand the tension and rupture, jeopardizing people's health. Methods The aim of the experiment was to establish an abdominal aortic aneurysm model in rats by applying porcine pancreatic elastase externally, to measure the diameter and thickness of blood vessels as well as hemodynamics using animal ultrasound, to measure the active contraction of blood vessels, the rate of contraction, and the contraction stress using vascular mechanics equipment, and to observe the pathological changes in the process of AAA growth using vascular pathological staining. Results This study revealed that with the escalation of the inflammatory response, there is a breakdown of elastic fibers and collagen fibers, leading to a decrease in the active contraction force of the arteries. However, it was observed that by alleviating the inflammation, there was a notable enhancement in the active contraction force of the arteries. Discussion To describe the development process of AAA from a biomechanical point of view, to reveal the histopathological mechanism, and thus to identify the theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Wenqi Qin
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Dan Qiao
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guanghao Yu
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Guangxin Chen
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jian Xing
- Medical Image College, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Wei Ma
- Basic Medical School, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Miao Yu
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaohuan Yuan
- School of Life Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Kunfu Ouyang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenchang Tan
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, Guangdong, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Dongliang Zhao
- Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Zhang XY, Xia KR, Wang YN, Liu P, Shang EX, Liu CY, Liu YP, Qu D, Li WW, Duan JA, Chen Y, Zhang HQ. Unraveling the pharmacodynamic substances and possible mechanism of Trichosanthis Pericarpium in the treatment of coronary heart disease based on plasma pharmacochemistry, network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117869. [PMID: 38342153 DOI: 10.1016/j.jep.2024.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1β, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1β, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1β, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Kai-Rou Xia
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Ni Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cong-Yan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Yu-Ping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wei-Wen Li
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Huang-Qin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
3
|
Rungsung S, Singh TU, Perumalraja K, Mahobiya A, Sharma M, Lingaraju MC, Parida S, Sahoo M, Kumar D. Luteolin alleviates vascular dysfunctions in CLP-induced polymicrobial sepsis in mice. Pharmacol Rep 2022; 74:1054-1068. [PMID: 35939258 DOI: 10.1007/s43440-022-00399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Luteolin, a naturally occurring flavonoid, is thought to have health-promoting properties as a part of human diet and has been reported to possess a wide range of pharmacological activities. Therefore, the present study was undertaken to evaluate the effect of luteolin pre-treatment on vascular dysfunctions in sepsis induced by caecal ligation and puncture (CLP) in the mouse model. METHODS Mice were divided into four groups: sham, luteolin plus sham, CLP, and luteolin plus CLP. Luteolin was administered (0.2 mg/kg body weight) intraperitoneally one hour (h) before CLP surgery in mice. 20 ± 2 h post CLP surgery, the isolated thoracic aorta of mice was assessed for its vascular reactivity to noradrenaline (NA) and acetylcholine (ACh). To explore the underlying mechanism, aortic mRNA expressions of α1D adrenoceptors, eNOS and iNOS were investigated. RESULTS In mice with CLP-induced sepsis luteolin pre-treatment markedly increased the survival time and attenuated serum lactate level. The CLP group manifested the reduced vascular reactivity to NA and this deficit was restored by luteolin pre-treatment. However, luteolin pre-treatment did not improve α1D adrenoceptors down-regulation observed in septic mice aorta. In the presence of 1400 W, the NA contractile response was significantly restored in CLP mice aortic tissue in comparison with the respective control of septic mice and further enhanced in the presence of luteolin. Luteolin reduced the iNOS mRNA expression and iNOS-derived nitrite production. Pre-treatment with luteolin restored the endothelial dysfunction in septic mice aorta by improving eNOS mRNA expression and enhanced eNOS-derived nitric oxide (NO) production in septic mice aorta and aortic iNOS gene expression and inducible NO production. CONCLUSION The present study suggests that the vasoplegic state to NA in aorta was restored through the iNOS pathway and endothelial dysfunction was reversed via eNOS and NO production pathway.
Collapse
Affiliation(s)
- Soya Rungsung
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Kirthika Perumalraja
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Archana Mahobiya
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meemansha Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
4
|
Queiroz M, Leandro A, Azul L, Figueirinha A, Seiça R, Sena CM. Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats. Int J Mol Sci 2021; 22:13671. [PMID: 34948468 PMCID: PMC8706309 DOI: 10.3390/ijms222413671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. METHODS Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT-) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. RESULTS Endothelial function was impaired in diabetic GK rats (47% (GK - PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK - PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products' levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. CONCLUSIONS Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Carrier Proteins/metabolism
- Chemokine CCL2/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Drug Administration Schedule
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Luteolin/administration & dosage
- Luteolin/pharmacology
- Male
- Oxidative Stress/drug effects
- Rats
- Rats, Wistar
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Adriana Leandro
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Lara Azul
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Farmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Raquel Seiça
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.Q.); (A.L.); (L.A.); (R.S.)
| |
Collapse
|
5
|
Yang W, Li Q, Duncan JW, Bakrania BA, Bradshaw JL, Granger JP, Rana S, Spradley FT. Luteolin-induced vasorelaxation in uterine arteries from normal pregnant rats. Pregnancy Hypertens 2020; 23:11-17. [PMID: 33161224 DOI: 10.1016/j.preghy.2020.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The flavonoid, luteolin, promotes vasorelaxation in various arteries through endothelial-dependent and independent mechanisms. Although there is growing interest in the vasoactive effects of flavonoids on maternal vascular function during pregnancy, it is unknown whether luteolin elicits vasorelaxation in the uterine circulation. We tested the hypothesis that luteolin induces vasorelaxation via endothelial-dependent mechanisms in uterine arteries from normal pregnant rats during late gestation. METHODS Uterine arteries and aortas were isolated from Sprague-Dawley rats at gestational day 19 and prepared for wire myography. RESULTS The potency of luteolin-induced vasorelaxation was examined between uterine arteries and the aortas. By 50 µM of luteolin, there was complete relaxation (100.5 ± 5.2%) in uterine arteries as compared to aortas (27.5 ± 10.0%). Even the highest concentration of 100 µM luteolin produced less than half relaxation (43.6 ± 8.6%) in aortas compared to uterine arteries. We then explored if luteolin-induced vasorelaxation in uterine arteries from pregnant rats was mediated by endothelial-dependent vasorelaxation pathways, including nitric oxide synthase (NOS), cyclooxygenase (COX), or potassium (K+) channels. Blocking these pathways with N(G)-Nitro-l-arginine methyl ester hydrochloride (L-NAME), indomethacin, or tetraethylammonium (TEA)/high potassium chloride (KCl), respectively, did not alter luteolin responses in uterine arteries from pregnant rats. These findings suggested that endothelial factors may not mediate luteolin-induced vasorelaxation in uterine arteries during pregnancy. Indeed, experiments where the endothelium was removed did not alter luteolin-induced vasorelaxation in uterine arteries during pregnancy. CONCLUSIONS Luteolin directly promotes vasorelaxation in the medial smooth muscle layer of uterine arteries during normal pregnancy.
Collapse
Affiliation(s)
- Weiwei Yang
- School of Biosciences, Weifang Medical University, Weifang 261053, China; Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Qinghua Li
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China; Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Jeremy W Duncan
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Bhavisha A Bakrania
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Jessica L Bradshaw
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Joey P Granger
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Sarosh Rana
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, United States.
| | - Frank T Spradley
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216, United States; Department of Surgery, The University of Mississippi Medical Center, Jackson, MS 39216, United States
| |
Collapse
|
6
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
7
|
Apigenin relaxes rat intrarenal arteries, depresses Ca2+-activated Cl− currents and augments voltage-dependent K+ currents of the arterial smooth muscle cells. Biomed Pharmacother 2019; 115:108926. [PMID: 31079004 DOI: 10.1016/j.biopha.2019.108926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
|
8
|
Kamkaew N, Paracha TU, Ingkaninan K, Waranuch N, Chootip K. Vasodilatory Effects and Mechanisms of Action of Bacopa monnieri Active Compounds on Rat Mesenteric Arteries. Molecules 2019; 24:E2243. [PMID: 31208086 PMCID: PMC6630913 DOI: 10.3390/molecules24122243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
B. monnieri extract (BME) is an abundant source of bioactive compounds, including saponins and flavonoids known to produce vasodilation. However, it is unclear which components are the more effective vasodilators. The aim of this research was to investigate the vasorelaxant effects and mechanisms of action of saponins and flavonoids on rat isolated mesenteric arteries using the organ bath technique. The vasorelaxant mechanisms, including endothelial nitric oxide synthase (eNOS) pathway and calcium flux were examined. Saponins (bacoside A and bacopaside I), and flavonoids (luteolin and apigenin) at 0.1-100 µM caused vasorelaxation in a concentration-dependent manner. Luteolin and apigenin produced vasorelaxation in endothelial intact vessels with more efficacy (Emax 99.4 ± 0.7 and 95.3 ± 2.6%) and potency (EC50 4.35 ± 1.31 and 8.93 ± 3.33 µM) than bacoside A and bacopaside I (Emax 83.6 ± 2.9 and 79.9 ± 8.2%; EC50 10.8 ± 5.9 and 14.6 ± 5.4 µM). Pretreatment of endothelial intact rings, with L-NAME (100 µM); an eNOS inhibitor, or removal of the endothelium reduced the relaxant effects of all compounds. In K+-depolarised vessels suspended in Ca2+-free solution, these active compounds inhibited CaCl2-induced contraction in endothelial denuded arterial rings. Moreover, the active compounds attenuated transient contractions induced by 10 µM phenylephrine in Ca2+-free medium containing EGTA (1 mM). Thus, relaxant effects occurred in both endothelial intact and denuded vessels which signify actions through both endothelium and vascular smooth muscle cells. In conclusion, the flavonoids have about twice the potency of saponins as vasodilators. However, in the BME, there is ~20 × the amount of vaso-reactive saponins and thus are more effective.
Collapse
Affiliation(s)
- Natakorn Kamkaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Tamkeen Urooj Paracha
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Center, Department of Pharmaceutical Technology and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
9
|
Gentile D, Fornai M, Pellegrini C, Colucci R, Benvenuti L, Duranti E, Masi S, Carpi S, Nieri P, Nericcio A, Garelli F, Virdis A, Pistelli L, Blandizzi C, Antonioli L. Luteolin Prevents Cardiometabolic Alterations and Vascular Dysfunction in Mice With HFD-Induced Obesity. Front Pharmacol 2018; 9:1094. [PMID: 30319424 PMCID: PMC6167518 DOI: 10.3389/fphar.2018.01094] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose: Luteolin exerts beneficial effects against obesity-associated comorbidities, although its influence on vascular dysfunction remains undetermined. We examined the effects of luteolin on endothelial dysfunction in a mouse model of diet-induced obesity. Methods: Standard diet (SD) or high-fat diet (HFD)-fed mice were treated daily with luteolin intragastrically. After 8 weeks, body and epididymal fat weight, as well as blood cholesterol, glucose, and triglycerides were evaluated. Endothelium-dependent relaxations of resistance mesenteric vessels was assessed by a concentration-response curve to acetylcholine, repeated upon Nw-nitro-L-arginine methylester (L-NAME) or ascorbic acid infusion to investigate the influence of nitric oxide (NO) availability and reactive oxygen species (ROS) on endothelial function, respectively. Intravascular ROS production and TNF levels were measured by dihydroethidium dye and ELISA, respectively. Endothelial NO synthase (eNOS) and superoxide dismutase 1 (SOD1), as well as microRNA-214-3p expression were examined by Western blot and RT-PCR assays, respectively. Results: HFD animals displayed elevated body weight, epididymal fat weight and metabolic indexes. Endothelium-dependent relaxation was resistant to L-NAME and enhanced by ascorbic acid, which restored also the inhibitory effect of L-NAME, suggesting a ROS-dependent reduction of NO availability in HFD vessels. Moreover, media-lumen ratio, intravascular superoxide anion and TNF levels were increased, while vascular eNOS, SOD1, and microRNA-214-3p expression were decreased. In HFD mice, luteolin counteracted the increase in body and epididymal fat weight, and metabolic alterations. Luteolin restored vascular endothelial NO availability, normalized the media-lumen ratio, decreased ROS and TNF levels, and normalized eNOS, SOD1 and microRNA-214-3p expression. Conclusion: Luteolin prevents systemic metabolic alterations and vascular dysfunction associated with obesity, likely through antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Daniela Gentile
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesca Garelli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Potential Antitumor Activity and Apoptosis Induction of Glossostemon bruguieri Root Extract against Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7218562. [PMID: 28421122 PMCID: PMC5380856 DOI: 10.1155/2017/7218562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023]
Abstract
Glossostemon bruguieri (moghat) is used as a nutritive and demulcent drink. This study was performed to investigate the antiproliferative effects of moghat root extract (MRE) and its apoptotic mechanism in hepatocellular carcinoma (HCC) cells, HepG2 and Hep3B. MTT assay, morphological changes, apoptosis enzyme linked immunosorbent assay, caspase and apoptotic activation, flow cytometry, and immunoblot analysis were employed. The IC50 of MRE for HepG2 (910 ± 6 μg/ml) and for Hep3B (1510 ± 5 μg/ml) induced significant growth-inhibitory effects against HCC cells, with no cytotoxic effect on normal hepatocytes. MRE treatment induced apoptotic effects to HepG2 cells in a caspase-dependent manner and via upregulating p53/p21 and PCNA. The upregulation of p21 was controlled by p53 expression in HepG2 but not in Hep3B despite upregulation of Bax protein in both cell lines. Interestingly, p21 may be a remarkable switch to G1 arrest in HepG2 cells, but not in Hep3B cells. In addition, Fas- and mitochondria-mediated pathways were found to be involved in MRE-induced apoptosis in Hep3B cells. The GC-MS analysis of MRE revealed two major constituents of pharmaceutical importance: the flavonoid apigenin (17.04%) and the terpenoid squalene (11.32%). The data presented in this paper introduces G. bruguieri as a promising nontoxic herb with therapeutic potential for HCC. To the authors' knowledge, the present study provides the first report on the anticancer activity of MRE on HCC cells.
Collapse
|
11
|
Salheen SM, Panchapakesan U, Pollock CA, Woodman OL. The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Preserves Endothelial Function in Mesenteric Arteries from Type 1 Diabetic Rats without Decreasing Plasma Glucose. PLoS One 2015; 10:e0143941. [PMID: 26618855 PMCID: PMC4664283 DOI: 10.1371/journal.pone.0143941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to investigate the effect of the DPP-4 inhibitor linagliptin on the mechanism(s) of endothelium-dependent relaxation in mesenteric arteries from STZ-induced diabetic rats. Both normal and diabetic animals received linagliptin (2 mg/kg) daily by oral gavage for a period of 4 weeks. To measure superoxide generation in mesenteric arteries, lucigenin-enhanced chemiluminescence was used. ACh-induced relaxation of mesenteric arteries was assessed using organ bath techniques and Western blotting was used to investigate protein expression. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM L-NNA, 10 μM ODQ) were used to distinguish between NO and EDH-mediated relaxation. Linagliptin did not affect plasma glucose, but did decrease vascular superoxide levels. Diabetes reduced responses to ACh but did not affect endothelium-independent responses to SNP. Linagliptin improved endothelial function indicated by a significant increase in responses to ACh. Diabetes impaired the contribution of both nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) to endothelium-dependent relaxation and linagliptin treatment significantly enhanced the contribution of both relaxing factors. Western blotting demonstrated that diabetes also increased expression of Nox2 and decreased expression and dimerization of endothelial NO synthase, effects that were reversed by linagliptin. These findings demonstrate treatment of type 1 diabetic rats with linagliptin significantly reduced vascular superoxide levels and preserved both NO and EDH-mediated relaxation indicating that linagliptin can improve endothelial function in diabetes independently of any glucose lowering activity.
Collapse
Affiliation(s)
- Salheen M Salheen
- School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Usha Panchapakesan
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, New South Wales, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Tao JH, Wang DG, Yang C, Huang JH, Qiu WQ, Zhao X. Biotransformation of luteoloside by a newly isolated human intestinal bacterium using UHPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 991:1-8. [PMID: 25899973 DOI: 10.1016/j.jchromb.2015.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 01/10/2023]
Abstract
To explore the metabolic pathways and metabolites of luteoloside yielded by the isolated human intestinal bacteria from healthy human feces and characterize the β-d-glucosidase activity of the specific strain which catalyzed the breakdown of luteoloside, a preculture bacterial GAM broth and luteoloside were mixed incubated together for 48h. UHPLC-Q-TOF/MS was used for analysis of the metabolites of luteoloside in the corresponding supernatant fractions from fermentation. Aliquots of the reactive solutions were collected at different times and were measured with a microplate reader at 405nm to evaluate the enzymatic activity. Three metabolites (acetylated luteoloside, luteolin and deoxygenated luteolin) were detected in the fractions isolated from the bacterial samples. The variation of β-d-glucosidase activity inside the bacterium was in coincidence with the changes in luteolin generation or luteoloside degradation in different time periods.
Collapse
Affiliation(s)
- Jin-hua Tao
- Nantong University, Nantong 226001, PR China.
| | | | - Chi Yang
- Nantong University, Nantong 226001, PR China
| | | | | | - Xi Zhao
- Nantong University, Nantong 226001, PR China
| |
Collapse
|
13
|
Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:509-17. [PMID: 25609924 PMCID: PMC4298350 DOI: 10.2147/dddt.s75056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases.
Collapse
Affiliation(s)
- Gunasekaran Baskaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Shamala Salvamani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Parveen Devi Pattiram
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
14
|
Shen XF, Ren LB, Teng Y, Zheng S, Yang XL, Guo XJ, Wang XY, Sha KH, Li N, Xu GY, Tian HW, Wang XY, Liu XK, Li J, Huang N. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation. Food Chem Toxicol 2014; 72:204-11. [PMID: 25051393 DOI: 10.1016/j.fct.2014.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 01/24/2023]
Abstract
Urinary tract infection (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), is one of the most common infectious diseases worldwide. Emerging antibiotic resistance requires novel treatment strategies. Luteolin, a dietary polyphenolic flavonoid, has been confirmed as a potential antimicrobial agent. Here, we evaluated the sub-MICs of luteolin for potential properties to modulate the UPEC infection. We found that luteolin significantly decreased the attachment and invasion of UPEC J96 or CFT073 in human bladder epithelial cell lines T24. Meanwhile, obvious decreased expression of type 1 fimbriae adhesin fimH gene, lower bacterial surface hydrophobicity and swimming motility, were observed in luteolin-pretreated UPEC. Furthermore, luteolin could attenuate UPEC-induced cytotoxicity in T24 cells, which manifested as decreased activity of lactate dehydrogenase (LDH). Simultaneously, the inhibition of luteolin on UPEC-induced cytotoxicity was confirmed by ethidium bromide/acridine orange staining. Finally, the luteolin-pretreated UPEC showed a lower ability of biofilm formation. Collectively, these results indicated that luteolin decreased the attachment and invasion of UPEC in bladder epithelial cells, attenuated UPEC-induced cytotoxicity and biofilm formation via down-regulating the expression of adhesin fimH gene, reducing the bacterial surface hydrophobicity and motility.
Collapse
Affiliation(s)
- Xiao-fei Shen
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lai-bin Ren
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yan Teng
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shuang Zheng
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-long Yang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-juan Guo
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-yuan Wang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kai-hui Sha
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Na Li
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Guang-ya Xu
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Han-wen Tian
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pharmacology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-ying Wang
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-kang Liu
- Department of Pharmacology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Ning Huang
- Research Unit of Infection and Immunity, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China; Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Mijušković A, Oreščanin-Dušić Z, Nikolić-Kokić A, Slavić M, Spasić MB, Spasojević I, Blagojević D. Comparison of the effects of methanethiol and sodium sulphide on uterine contractile activity. Pharmacol Rep 2014; 66:373-9. [DOI: 10.1016/j.pharep.2013.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 11/04/2013] [Accepted: 12/19/2013] [Indexed: 01/13/2023]
|
16
|
Abbasi N, Akhavan MM, Rahbar-Roshandel N, Shafiei M. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: involvement of integrin-linked kinase and cyclooxygenase-2. Phytother Res 2014; 28:1301-7. [PMID: 25201753 DOI: 10.1002/ptr.5128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/04/2014] [Accepted: 01/14/2014] [Indexed: 12/12/2022]
Abstract
Luteolin protects against high glucose (HG)-induced endothelial dysfunction whereas its cytotoxicity has been reported against normal endothelial cells. This study was undertaken to determine luteolin cytoprotective and cytotoxic dose ranges and to elucidate their respective mechanisms. Luteolin prevented HG-induced human umbilical vein endothelial cell (HUVEC) death with an EC50 value of 2.0 ± 0.07 μM. The protective effect of luteolin was associated with decreased intracellular reactive oxygen species (ROS) and Ca(2+) (Cai(2+)) levels and enhanced nitric oxide (NO) production. At high concentrations, luteolin caused HUVEC death in normal glucose (NG) and HG states (LC50 40 ± 2.23 and 38 ± 1.12 μM, respectively), as represented by increased ROS and Cai(2+) and decreased NO. Western blots illustrated that exposure to HG increased cyclooxygenase-2 (COX-2) and integrin-linked kinase (ILK) expression. Luteolin at low concentrations suppressed HG-mediated up-regulation of COX-2 but maintained HG-induced over-expression of ILK while at high concentrations significantly increased COX-2 and decreased ILK expression in both HG and NG states. Our data indicated that cytoprotective action of luteolin was manifested with much lower concentrations, by a factor of approximately 20, compared with cytotoxic activity under both normal or glucotoxic conditions. It appears that luteolin exerts its action, in part, by modulating ILK expression which is associated with regulation of COX-2 expression and NO production in endothelial cells.
Collapse
Affiliation(s)
- Naser Abbasi
- Department of Pharmacology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
17
|
Liu Y, Tian X, Gou L, Sun L, Ling X, Yin X. Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res Bull 2013; 94:23-9. [PMID: 23415807 DOI: 10.1016/j.brainresbull.2013.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/14/2013] [Accepted: 02/06/2013] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus can cause dysfunction of the central nervous system called "diabetic encephalopathy". Although various oral drugs are used to treat diabetes, they do not prevent the development of diabetes-associated cognitive decline in rats, and novel strategies for the prevention and treatment are urgently needed. Luteolin, a flavonoid isolated from Cirsium japonicum, has antioxidant, anti-inflammatory and neuroprotective activities. However, no report is available on influence of luteolin on streptozotocin-induced memory impairment. Therefore, we tested its influence against cognitive dysfunction in streptozotocin-induced diabetic rats using Morris water maze test. Nissl's staining, choline esterase (ChE) activity as marker of cholinergic function and oxidative stress were assessed in the cerebral cortex and hippocampus to evaluate the neuropathological changes and the effects of luteolin on diabetic rats. The results showed that streptozotocin-induced diabetes produced obvious neuron damage and cognitive dysfunction coupling with markedly increased oxidative stress and ChE activity in the brain. In contrast, chronic treatment with luteolin (50 and 100mg/kg) improved neuronal injury and cognitive performance by attenuating oxidative stress and ChE activity in diabetic rats. In conclusion, the present study suggested that oral supplementation of luteolin might be a potential therapeutic strategy for the treatment and/or prevention of diabetic encephalopathy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacy, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China.
| | | | | | | | | | | |
Collapse
|
18
|
Sindler AL, Reyes R, Chen B, Ghosh P, Gurovich AN, Kang LS, Cardounel AJ, Delp MD, Muller-Delp JM. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles. J Appl Physiol (1985) 2013; 114:681-93. [PMID: 23288555 DOI: 10.1152/japplphysiol.00341.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats. Young (3 mo) and old (22 mo) male rats were either exercise trained or remained sedentary for 10 wk. To determine the impact of ROS signaling on endothelium-dependent vasodilation, responses to acetylcholine were studied under control conditions and during the scavenging of superoxide and/or hydrogen peroxide. To determine the impact of NADPH oxidase-derived ROS, endothelium-dependent vasodilation was determined following NADPH oxidase inhibition. Reactivity to superoxide and hydrogen peroxide was also determined. Tempol, a scavenger of superoxide, and inhibitors of NADPH oxidase reduced endothelium-dependent vasodilation in all groups. Similarly, treatment with catalase and simultaneous treatment with tempol and catalase reduced endothelium-dependent vasodilation in all groups. Decomposition of peroxynitrite also reduced endothelium-dependent vasodilation. Aging had no effect on arteriolar protein content of SOD-1, catalase, or glutathione peroxidase-1; however, exercise training increased protein content of SOD-1 in young and old rats, catalase in young rats, and glutathione peroxidase-1 in old rats. These data indicate that ROS signaling is necessary for endothelium-dependent vasodilation in soleus muscle arterioles, and that exercise training-induced enhancement of endothelial function occurs, in part, through an increase in ROS signaling.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Physiology and Pharmacology, and the Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Qian LB, Fu JY, Cai X, Xia ML. Betulinic acid inhibits superoxide anion-mediated impairment of endothelium-dependent relaxation in rat aortas. Indian J Pharmacol 2012; 44:588-592. [PMID: 23112419 PMCID: PMC3480790 DOI: 10.4103/0253-7613.100382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 07/04/2012] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the protective effect of betulinic acid (BA) on endothelium-dependent relaxation (EDR) in rat aortas exposed to pyrogallol-produced superoxide anion and its underlying mechanism. MATERIALS AND METHODS The thoracic aorta of male Sprague-Dawley rats was isolated to mount in the organ bath system and the effect of BA on acetylcholine (ACh)-induced EDR, nitric oxide (NO) level, reactive oxygen species (ROS) level, nitric oxide synthase (NOS) activity, and superoxide dismutase (SOD) activity of aortic rings exposed to pyrogallol (500 μM) for 15 min were measured. RESULTS BA evoked a concentration-dependent EDR in aortas, and pretreatment with EC(50) (2.0 μM) concentration of BA markedly enhanced ACh-induced EDR of aortas exposed to pyrogallol-produced superoxide anion (E(max) rose from 23.91 ± 5.41% to 42.45 ± 9.99%), which was markedly reversed by both N(w) -nitro-L-arginine methyl ester hydrochloride (L-NAME) and methylene blue, but not by indomethacin. Moreover, BA significantly inhibited the increase of ROS level, as well as the decrease of NO level, the endothelial NOS (eNOS) activity, and the SOD activity in aortas induced by pyrogallol-derived superoxide anion. CONCLUSION These results indicate that BA reduces the impairment of EDR in rat aortas exposed to exogenous superoxide anion, which may closely relate to the reduction of oxidative stress and activation of eNOS-NO pathway.
Collapse
Affiliation(s)
- Ling-Bo Qian
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Yin Fu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing, China
| | - Xin Cai
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing, China
| | - Man-Li Xia
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing, China
| |
Collapse
|
20
|
He D, Ma X, Chen Y, Cai Y, Ru X, Bruce IC, Xia Q, Shi G, Jin J. Luteolin inhibits pyrogallol-induced apoptosis through the extracellular signal-regulated kinase signaling pathway. FEBS J 2012; 279:1834-43. [DOI: 10.1111/j.1742-4658.2012.08558.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
He D, Ru X, Wen L, Wen Y, Jiang H, Bruce IC, Jin J, Ma X, Xia Q. Total flavonoids of Flos Chrysanthemi protect arterial endothelial cells against oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:68-73. [PMID: 22108681 DOI: 10.1016/j.jep.2011.10.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/16/2011] [Accepted: 10/08/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Total flavonoids of Flos Chrysanthemi (TFFC) are known to modulate vascular functions, but their effect on endothelial cells injured by oxidative stress is unknown. Our objective was to investigate the vasoprotective effect and mechanism of action of TFFC on rat mesenteric artery exposed to superoxide anions produced by pyrogallol. MATERIALS AND METHODS The vasoprotective effect and mechanism of action of TFFC on primary cultured rat mesenteric arterial endothelial cells and small mesenteric arteries was investigated using small-vessel myography, fluorescent Ca(2+) measurement, fluorescent membrane potential measurement and oxidative fluorescent studies. RESULTS Experiments using small-vessel myography of third-order rat mesenteric arterial rings showed that pretreatment with pyrogallol (10-1000μM), an auto-oxidizing source of superoxide anions, dose-dependently decreased ACh-induced endothelium-dependent relaxation. TFFC (2.5-320mg/L) evoked a concentration-dependent dilation (pD(2): 29.6±0.276mg/L), which was weakened by ChTX plus apamin. TFFC markedly attenuated the inhibition of vasorelaxation induced by pyrogallol (E(max) elevated from 50.4±7.36% to 86.2±3.61%, and pD(2) increased from 6.74±0.06 to 7.28±0.12). Furthermore, in primary cultured endothelial cells, fluorescent Ca(2+) measurement, fluorescent membrane potential measurement and oxidative fluorescent studies demonstrated that ACh-induced endothelial Ca(2+) influx and hyperpolarization were significantly weakened by the increased basal superoxide level induced by pyrogallol. When the endothelial cells were concurrently exposed to TFFC, the impairment effect of oxidative stress on ACh-induced Ca(2+) influx, hyperpolarization and vasorelaxation were attenuated due to its superoxide-lowering activity. CONCLUSION This study shows that oxidative stress has a pronounced deleterious effect on EDHF-mediated vasorelaxation to ACh in rat mesenteric artery. TFFC has vasodilating effect and protects EDHF-mediated vasodilator reactivity from oxidative stress. Thus, our experiments suggest that TFFC is potentially useful for the development of therapeutic treatments for cardiovascular diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Dongxu He
- Department of Cellular and Molecular Pharmacology, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dong X, Wang Y, Liu T, Wu P, Gao J, Xu J, Yang B, Hu Y. Flavonoids as vasorelaxant agents: synthesis, biological evaluation and quantitative structure activities relationship (QSAR) studies. Molecules 2011; 16:8257-72. [PMID: 21959298 PMCID: PMC6264760 DOI: 10.3390/molecules16108257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 12/19/2022] Open
Abstract
A series of 2-(2-diethylamino)-ethoxychalcone and 6-prenyl(or its isomers)-flavanones 10a,b and 11a–g were synthesized and evaluated for their vasorelaxant activities against rat aorta rings pretreated with 1 μM phenylephrine (PE). Several compounds showed potent vasorelaxant activities. Compound 10a (EC50 = 7.6 μM, Emax = 93.1%), the most potent one, would be a promising structural template for development of novel and more efficient vasodilators. Further, 2D-QSAR analysis of compounds 10a,b and 11c-e as well as thirty previously synthesized flavonoids 1-3 and 12-38 using Enhanced Replacement Method-Multiple Linear Regression (ERM-MLR) was further performed based on an optimal set of molecular descriptors (H5m, SIC2, DISPe, Mor03u and L3m), leading to a reliable model with good predictive ability (Rtrain2 = 0.839, Qloo2 = 0.733 and Rtest2 = 0.804). The results provide good insights into the structure- activity relationships of the target compounds.
Collapse
Affiliation(s)
- Xiaowu Dong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanming Wang
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peng Wu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiadi Gao
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianchao Xu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-571-88208460
| |
Collapse
|
23
|
3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries. PLoS One 2011; 6:e20813. [PMID: 21673968 PMCID: PMC3108977 DOI: 10.1371/journal.pone.0020813] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022] Open
Abstract
Background 3',4'-Dihydroxyflavonol (DiOHF) is an effective antioxidant that acutely preserves nitric oxide (NO) activity in the presence of elevated reactive oxygen species (ROS). We hypothesized that DiOHF treatment (7 days, 1 mg/kg per day s.c.) would improve relaxation in mesenteric arteries from diabetic rats where endothelial dysfunction is associated with elevated oxidant stress. Methodology/Principal Findings In mesenteric arteries from diabetic rats there was an increase in ROS, measured by L-012 and 2',7'-dichlorodihydrofluorescein diacetate fluorescence. NADPH oxidase-derived superoxide levels, assayed by lucigenin chemiluminescence, were also significantly increased in diabetic mesenteric arteries (diabetes, 4892±946 counts/mg versus normal 2486±344 counts/mg, n = 7–10, p<0.01) associated with an increase in Nox2 expression but DiOHF (2094±300 counts/mg, n = 10, p<0.001) reversed that effect. Acetylcholine (ACh)-induced relaxation of mesenteric arteries was assessed using wire myography (pEC50 = 7.94±0.13 n = 12). Diabetes significantly reduced the sensitivity to ACh and treatment with DiOHF prevented endothelial dysfunction (pEC50, diabetic 6.86±0.12 versus diabetic+DiOHF, 7.49±0.13, n = 11, p<0.01). The contribution of NO versus endothelium-derived hyperpolarizing factor (EDHF) to ACh-induced relaxation was assessed by evaluating responses in the presence of TRAM-34+apamin+iberiotoxin or N-nitro-L-arginine+ODQ respectively. Diabetes impaired the contribution of both NO (maximum relaxation, Rmax diabetic 24±7 versus normal, 68±10, n = 9–10, p<0.01) and EDHF (pEC50, diabetic 6.63±0.15 versus normal, 7.14±0.12, n = 10–11, p<0.01) to endothelium-dependent relaxation. DiOHF treatment did not significantly affect the EDHF contribution but enhanced NO-mediated relaxation (Rmax 69±6, n = 11, p<0.01). Western blotting demonstrated that diabetes also decreased expression and increased uncoupling of endothelial NO synthase (eNOS). Treatment of the diabetic rats with DiOHF significantly reduced vascular ROS and restored NO-mediated endothelium-dependent relaxation. Treatment of the diabetic rats with DiOHF also increased eNOS expression, both in total and as a dimer. Conclusions/Significance DiOHF improves NO activity in diabetes by reducing Nox2-dependent superoxide production and preventing eNOS uncoupling to improve endothelial function.
Collapse
|
24
|
Leo CH, Hart JL, Woodman OL. 3′,4′-Dihydroxyflavonol restores endothelium-dependent relaxation in small mesenteric artery from rats with type 1 and type 2 diabetes. Eur J Pharmacol 2011; 659:193-8. [DOI: 10.1016/j.ejphar.2011.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/22/2011] [Accepted: 03/15/2011] [Indexed: 02/07/2023]
|
25
|
Omar MH, Mullen W, Crozier A. Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea , a malaysian herbal tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1363-1369. [PMID: 21261251 DOI: 10.1021/jf1032729] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phenolic compounds in an aqueous infusion of leaves of Ficus deltoidea (Moraceae), a well-known herbal tea in Malaysia, were analyzed by HPLC coupled to photodiode array and fluorescence detectors and an electrospray ionization tandem mass spectrometer. Following chromatography of extracts on a reversed phase C(12) column, 25 flavonoids were characterized and/or tentatively identified with the main constituents being flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. The proanthocyanidins were dimers and trimers comprising (epi)catechin and (epi)afzelechin units. No higher molecular weight proanthocyanidin polymers were detected. The antioxidant activity of F. deltoidea extract was analyzed using HPLC with online antioxidant detection. This revealed that 85% of the total antioxidant activity of the aqueous F. deltoidea infusion was attributable to the flavan-3-ol monomers and the proanthocyanidins.
Collapse
Affiliation(s)
- Maizatul Hasyima Omar
- Plant Products and Human Nutrition Group, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | | | | |
Collapse
|
26
|
Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 2010; 140:946-53. [PMID: 20335636 DOI: 10.3945/jn.109.117812] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Olive oil, an important component of the Mediterranean diet, produces cardioprotective effects, probably due to both oleic acid and the polyphenols such as oleuropein and hydroxytyrosol. Our aim in this study was to assess whether a polyphenol-enriched extract from the leaves of Olea europaea L. with oleuropein as the major component attenuated the cardiovascular, hepatic, and metabolic signs of a high-carbohydrate, high-fat (HCHF) diet (carbohydrate, 52%; fat, 24%, 25% fructose in drinking water) in rats. Male Wistar rats were fed either a cornstarch diet (CS) or a HCHF diet for a total of 16 wk. Diets of the treatment groups [CS+olive leaf extract (OLE) and HCHF+OLE] were supplemented with 3% OLE after 8 wk of being fed their respective CS or HCHF diets for a further 8 wk. After 16 wk, HCHF rats developed signs of metabolic syndrome, including elevated abdominal and hepatic fat deposition, collagen deposition in heart and liver, cardiac stiffness, and oxidative stress markers (plasma malondialdehyde and uric acid concentrations), with diminished aortic ring reactivity, abnormal plasma lipid profile, impaired glucose tolerance, and hypertension. Compared with HCHF rats, those in the HCHF+OLE group had improved or normalized cardiovascular, hepatic, and metabolic signs with the exception of elevated blood pressure. These results strongly suggest that an OLE containing polyphenols such as oleuropein and hydroxytyrosol reverses the chronic inflammation and oxidative stress that induces the cardiovascular, hepatic, and metabolic symptoms in this rat model of diet-induced obesity and diabetes without changing blood pressure.
Collapse
Affiliation(s)
- Hemant Poudyal
- School of Biomedical Sciences; 5School of Veterinary Sciences, The University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
27
|
Qian LB, Wang HP, Chen Y, Chen FX, Ma YY, Bruce IC, Xia Q. Luteolin reduces high glucose-mediated impairment of endothelium-dependent relaxation in rat aorta by reducing oxidative stress. Pharmacol Res 2010; 61:281-287. [PMID: 19892019 DOI: 10.1016/j.phrs.2009.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 12/12/2022]
Abstract
While luteolin, a flavone rich in many plants, has some cardiovascular activity, it is not clear whether luteolin has beneficial effects on the vascular endothelial impairment in hyperglycemia/high glucose. Here, we reveal the protective effect of luteolin on endothelium-dependent relaxation in isolated rat aortic rings exposed to high glucose. The thoracic aorta of male Sprague-Dawley rats was rapidly dissected out and the effect of luteolin on the tension of aortic rings pretreated with high glucose (44mM) for 4h was measured in an organ bath system. The levels of nitric oxide (NO), hydroxy radical (OH(-)) and reactive oxygen species (ROS), and the activity of superoxide dismutase (SOD) and nitric oxide synthase (NOS) were measured in aortas. The vasorelaxation after treatment with luteolin for 8 weeks in aortic rings from diabetic rats was also determined. We found that exposure to high glucose decreased acetylcholine-induced endothelium-dependent relaxation. However, high mannitol had no effect on vasorelaxation. Luteolin evoked a concentration-dependent relaxation in aortic rings previously contracted by phenylephrine, and the pD(2) value was 5.24+/-0.04. The EC(50) of luteolin markedly attenuated the inhibition of relaxation induced by high glucose, which was significantly weakened by pretreatment with l-NAME (0.1mM), but not by indomethacin (0.01mM). Luteolin significantly inhibited the increase of ROS level and OH(-) formation, and the decrease of NO level, NOS and SOD activity caused by high glucose. The improving effect of luteolin on endothelium-dependent vasorelaxation in diabetic rat aortic rings was reversed by pretreatment with l-NAME or methylene blue. The results indicate that the decrease of endothelium-dependent relaxation in rat aortic rings exposed to high glucose is markedly attenuated by luteolin, which may be mediated by reducing oxidative stress and enhancing activity in the NOS-NO pathway.
Collapse
Affiliation(s)
- Ling-Bo Qian
- Department of Physiology, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|