1
|
Yao Y, Zhang W, Li S, Xie H, Zhang Z, Jia B, Huang S, Li W, Ma L, Gao Y, Song J, Wang R. Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. J Med Chem 2023; 66:6617-6630. [PMID: 36893465 DOI: 10.1021/acs.jmedchem.2c02021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wound healing is a complex process that can be delayed in some pathological conditions, such as infection and diabetes. Following skin injury, the neuropeptide substance P (SP) is released from peripheral neurons to promote wound healing by multiple mechanisms. Human hemokinin-1 (hHK-1) has been identified as an SP-like tachykinin peptide. Surprisingly, hHK-1 shares similar structural features with antimicrobial peptides (AMPs), but it does not display efficient antimicrobial activity. Therefore, a series of hHK-1 analogues were designed and synthesized. Among these analogues, AH-4 was found to display the greatest antimicrobial activity against a broad spectrum of bacteria. Furthermore, AH-4 rapidly killed bacteria by membrane disruption, similar to most AMPs. More importantly, AH-4 showed favorable healing activity in all tested mouse full-thickness excisional wound models. Overall, this study suggests that the neuropeptide hHK-1 can be used as a desirable template for developing promising therapeutics with multiple functions for wound healing.
Collapse
Affiliation(s)
- Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengzheng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenyuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yuxuan Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Zhu Z, Yao Y, Huang S, Ma L, Song J, Zhang W. Antimicrobial and anti-inflammatory activities of the neuropeptide antagonist SPA. J Pept Sci 2022; 28:e3402. [PMID: 34994038 DOI: 10.1002/psc.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/08/2022]
Abstract
Antimicrobial peptides have received increased attention due to the increasing prevalence of antibiotic-resistant bacteria. However, the development of antimicrobial peptides for clinical applications remains a huge challenge. SPA ([D-rg1 , D-Trp5,7,9 , Leu11 ]SP), an analog of substance P, is a broad-spectrum neuropeptide antagonist. In this study, we found that SPA could efficiently kill Gram-positive and Gram-negative bacteria by membrane disruption, similar to antimicrobial peptides. In addition, SPA showed high killing activity toward bacteria rather than mammalian cells. Our results also demonstrated that SPA could significantly decrease the expression of proinflammatory cytokines and rescue mice from lethal septic shock induced by LPS. The impressive therapeutic potential of SPA, as indicated in this study, makes it a good template for developing effective antibiotics. Meanwhile, our study provides a new idea for developing multifunctional therapeutic agents to combat bacterial infections.
Collapse
Affiliation(s)
- Zhongwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yufan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sujie Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ling Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Raju SV, Sarkar P, Pasupuleti M, Abbasi AM, Al-Farraj DA, Elshikh MS, Elumalai P, Harikrishnan R, Rahman MA, Arockiaraj J. Antibacterial Activity of RM12, a Tachykinin Derivative, Against Pseudomonas aeruginosa. Int J Pept Res Ther 2021; 27:2571-2581. [DOI: 10.1007/s10989-021-10274-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/31/2022]
|
4
|
Diniz LCL, Alves FL, Miranda A, da Silva Junior PI. Two Tachykinin-Related Peptides with Antimicrobial Activity Isolated from Triatoma infestans Hemolymph. Microbiol Insights 2020; 13:1178636120933635. [PMID: 32843839 PMCID: PMC7416138 DOI: 10.1177/1178636120933635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides and proteins (AMPs) are molecules that can interact with
microbial cells and lead to membrane disruption or intracellular molecule
interactions and death. Several molecules with antimicrobial effects also
present other biological activities. One such protein group representing the
duplicity of activities is the tachykinin family. Tachykinins (TKs) form a
family of neuropeptides in vertebrates with a consensus C-terminal region
(F-X-G-Y-R-NH2). Invertebrate TKs and TK-related peptides (TKRPs) are
subfamilies found in invertebrates that present high homology with TKs and have
similar biological effects. Several of these molecules have already been
described but reports of TKRP in Hemiptera species are limited. By analyzing the
Triatoma infestans hemolymph by reversed-phase
high-performance liquid chromatography, biological assays, and mass
spectrometry, two antimicrobial molecules were isolated and identified as TKRPs,
which we named as TRP1-TINF and TRP2-TINF (tachykinin-related peptides I and II
from T. infestans). TRP1-TINF is a random secondary structure
peptide with 9 amino acid residues. It is susceptible to aminopeptidases
degradation and is active mainly against Micrococcus luteus (32
μM). TRP2-TINF is a 10-amino acid peptide with a 310 helix secondary structure
and is susceptible to carboxypeptidases degradation. It has major antimicrobial
activity against both Pseudomonas aeruginosa and
Escherichia coli (45 μM). Neither molecule is toxic to
human erythrocytes and both present minor toxicity toward Vero cells at a
concentration of 1000 μM. As the first description of TKRPs with antimicrobial
activity in T. infestans, this work contributes to the wider
comprehension of the insects’ physiology and describes pharmacological relevant
molecules.
Collapse
Affiliation(s)
- Laura Cristina Lima Diniz
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| | | | | | - Pedro Ismael da Silva Junior
- Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID, LAboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.,Postgraduate Program Interunits in Biotechnology, Department of Biomedical Sciences, USP/IPT/IBU, São Paulo, Brazil
| |
Collapse
|
5
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
6
|
Augustyniak D, Nowak J, Lundy FT. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr Protein Pept Sci 2013; 13:723-38. [PMID: 23305360 PMCID: PMC3601409 DOI: 10.2174/138920312804871139] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/07/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
Abstract
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|