1
|
Oguchi Y, Rolle M, Mai D, Tsai-Brown C, Rott KH, Caviedes-Vidal E, Karasov WH. Macronutrient signals for adaptive modulation of intestinal digestive enzymes in two omnivorous Galliformes. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111243. [PMID: 35609804 DOI: 10.1016/j.cbpa.2022.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
According to the adaptive modulation hypothesis, digestive enzyme activities are matched to their respective dietary substrate level so that ingested nutrients are not wasted in excreta due to insufficient digestive capacity, and so membrane space or expenditures building/maintaining the intestinal hydrolytic machinery are not wasted when substrate levels are low. We tested predictions in juvenile northern bobwhites (Colinus virginianus) and juvenile and adult domestic chickens (Gallus gallus domesticus) by feeding them on diets varying in starch, protein, and lipid composition for 7-9 d (bobwhites) or 15 d (chickens). Birds were euthanized, intestinal tissue harvested, and enzyme activities measured in tissue homogenates from proximal, medial and distal small intestine. We found that (1) α-glucosidase (AG; maltase and sucrase) activities were induced by dietary starch in both juvenile and adult chickens but not in northern bobwhites; (2) aminopeptidase-N (APN) activities were induced by dietary protein in both bobwhites and juvenile but not adult chickens; (3) AG activities were suppressed by an increase in dietary lipid in both bobwhites and juvenile but not adult chickens; and (4) APN activities were not suppressed by high dietary lipid in any birds. We review findings from 35 analogous trials in 16 avian species. 100% of avian omnivores modulate at least one enzyme in response to change in dietary substrate level. AG induction by dietary carbohydrate occurs in more members of Galloanserae than in Neoaves, and all omnivorous members of Neoaves tested so far increase APN activity on high dietary protein, whereas fewer of the Galloanserae do.
Collapse
Affiliation(s)
- Y Oguchi
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States.
| | - M Rolle
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States.
| | - D Mai
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States.
| | - C Tsai-Brown
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States
| | - K H Rott
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States
| | - E Caviedes-Vidal
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, 5700 San Luis, Argentina; Universidad de San Luis, Departamento de Biología, San Luis, 5700 San Luis, Argentina
| | - W H Karasov
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Hasek LY, Avery SE, Chacko SK, Fraley JK, Vohra FA, Quezada-Calvillo R, Nichols BL, Hamaker BR. Conditioning with slowly digestible starch diets in mice reduces jejunal α-glucosidase activity and glucogenesis from a digestible starch feeding. Nutrition 2020; 78:110857. [PMID: 32599415 DOI: 10.1016/j.nut.2020.110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) are mucosal α-glucosidases required for the digestion of starch to glucose. We hypothesized that a dietary approach to reduce Mgam and Si activities can reduce glucose generation and absorption, and improve glucose control. METHODS Rice starch was entrapped in alginate microspheres to moderate in vitro digestion properties. Three groups of 8-wk old mice (n = 8) were conditioned for 7 d with low 13C-starch-based materials differing in digestion rates (fast, slow, and slower), and then given a digestible 13C-labeled cornstarch test feeding to determine its digestion to glucose. RESULTS Conditioning of the small intestine with the slowly digestible starches for 7 d reduced jejunal α-glucosidase and sucrase activities, as well as glucose absorption for the slowly digestible starch slower group (P < 0.01). A correlative relationship was found between glucose absorption from a cornstarch test feeding given at d 7 and jejunal α-glucosidase and sucrase activities (R2 = 0.64; 0.67). However, total prandial glucose levels during the 2-h feeding period did not differ. CONCLUSIONS Decreased glucogenesis from a digestible starch feeding was found in mice conditioned on slowly digestible starch diets, suggesting that a dietary approach incorporating slowly digestible starches may change α-glucosidase activities to moderate glucose absorption rate.
Collapse
Affiliation(s)
- Like Y Hasek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Stephen E Avery
- USDA, Agricultural Research Service, Children's Nutrition Research Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Shaji K Chacko
- USDA, Agricultural Research Service, Children's Nutrition Research Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - J Kenneth Fraley
- USDA, Agricultural Research Service, Children's Nutrition Research Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Firoz A Vohra
- USDA, Agricultural Research Service, Children's Nutrition Research Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | | | - Buford L Nichols
- USDA, Agricultural Research Service, Children's Nutrition Research Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
3
|
Wang L, Caviedes-Vidal E, Karasov WH. Diet composition modulates intestinal hydrolytic enzymes in white-footed mice (Peromyscus leucopus). J Mammal 2019. [DOI: 10.1093/jmammal/gyz110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We tested whether white-footed mice (Peromyscus leucopus) modulate the activity of three key intestinal digestive enzymes (maltase, sucrase, and aminopeptidase-N [APN]) based on diet composition. To test the adaptive modulation hypothesis (AMH), we fed mice either of three kinds of synthetic diet, high starch (HS, 50% carbohydrate), high protein (HP, 60% protein), and high lipid (HL, 25% lipid), and determined their digestive responses. First, there was no effect of either diet itself, or time eating the diet, on body mass, or mass and length of small intestine. Second, the activity of both disaccharidases summed over the entire small intestine was highest on the HS diet, which was higher than on the HP diet by about 45% and higher than on the HL diet by 400%. This was consistent with our prediction that starch induces disaccharidase activity, and demonstrated induction of disaccharidase activities by high dietary carbohydrate in a wild mammal. Third, both summed and mass-specific activity of maltase and sucrase of HL mice were lower than those of HP mice, even though their diets had the same content of starch, which suggests that lipid in the HL diet inhibited disaccharidase activity. Finally, the summed activity of APN was highest on the HP diet, which was higher than on the HS diet or HL diet by ~100%, consistent with our prediction that high protein content induces peptidase activity. Taken together, our results support the AMH, though they also illustrate that high lipid content in the diet can confound some predicted patterns. Flexibility of digestive enzyme activity is likely important in allowing white-footed mice to cope with fluctuations in the environmental availability of different food types.
Probamos si el ratón de patas blancas (Peromyscus leucopus) modula las actividades de tres enzimas digestivas intestinales claves – maltasa, sacarasa y N-aminopeptidasa- al modificarse la composición de la dieta. Para someter a prueba la hipótesis de la modulación adaptativa, se alimentaron paralelamente ratones con tres tipos de dietas semi-sintéticas, una alta en almidón (HS, 50% carbohidratos), otra alta en proteína (HP, 60% proteínas), y una alta en lípidos (HL, 25% lípidos), y se determinaron sus respuestas digestivas. No se observó un efecto de la dieta o del tiempo que la consumieron sobre la masa corporal o la masa y el largo del intestino delgado (SI). La sumatoria de las actividades de cada una de las disacaridasas a lo largo de todo el intestino delgado fue más alta con la dieta HS que con las dietas HP y HL, un 45% y un 400% mayor, respectivamente. Esto fue consistente con nuestra predicción acerca de que el almidón induce la actividad disacaridásica, constituyendo el primer estudio que demuestra inequívocamente en un animal silvestre, que la inducción de las actividades de las disacaridasas intestinales es mediada por un incremento de los carbohidratos en la dieta. Las actividades hidrolíticas totales y masa-específicas de la maltasa y sacarasa de los ratones HL fueron más bajas que las de los alimentados con dieta HP, aun cuando sus dietas tenían el mismo contenido de almidón, lo que sugiere que los lípidos en la dieta HL inhiben la actividad de las disacaridasas. La actividad hidrolítica total de la N-aminopeptidasa fue mayor con la dieta HP, ~100% más alta que para las dietas HS y HL, de manera consistente con la predicción que propone que la presencia de mayor cantidad de proteína en la dieta induce la actividad peptidásica. En conjunto nuestros resultados dan soporte a la hipótesis de la modulación adaptativa, además de ilustrar que los lípidos en las dietas pueden confundir la predicción de patrones de procesamiento de alimentos. La flexibilidad de la actividad de las enzimas digestivas es probablemente importante para los ratones de patas blancas, ya que les permite adecuarse a las fluctuaciones ambientales de disponibilidad de diferentes tipos de recursos.
Collapse
Affiliation(s)
- Luping Wang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Enrique Caviedes-Vidal
- Departamento de Bioquimica y Ciencias Biologicas, Universidad Nacional de San Luis and Instituto Multidisciplinario de Investigaciones Biologicas de San Luis, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Song G, Wang Y, Chen X, Pang S, Miao H, Li A, Wang W. Influences of ratio of macro-nutrients intake to human and animals: an overview. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1561832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ge Song
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Yong Wang
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Xi Chen
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Shaojie Pang
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Haijiang Miao
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Aike Li
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| | - Weiwei Wang
- Academy of State Administration of Grain, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Brzęk PR, Kohl KD, Caviedes-Vidal E, Karasov WH. Activity of intestinal carbohydrases responds to multiple dietary signals in nestling House sparrows. J Exp Biol 2013; 216:3981-7. [DOI: 10.1242/jeb.086041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
"Adaptive modulation hypothesis" predicts that activity of digestive enzymes should match the amount of their substrates in diet. Interestingly, many passerine birds do not adjust the activity of intestinal carbohydrases to dietary carbohydrate content. It is difficult to assess the generality of this rule, because in some studies passerines fed on low-carbohydrate and high-lipid diet showed reduced activity of intestinal carbohydrases. However, as carbohydrase activity may be inhibited by high dietary lipid content, it is unclear if observed effects reflected lack of induction by the low carbohydrate levels or suppression by the high lipid. Here, we isolated the specific effects of dietary carbohydrate and lipid on carbohydrases. We hand-fed House sparrow nestlings on diets with 25% of starch and 8% lipid (diet HS), no starch and 20% lipid (HL), or 25% starch and 20% lipid (HSL). Our results show that activity of intestinal carbohydrases is simultaneously induced by dietary carbohydrates and decreased by dietary lipid, although the latter effect seems stronger. Activities of maltase and sucrase summed over the total intestine decreased in order HS>HSL>HL. We observed a complex interaction between diet composition and intestinal position for mass-specific activity of these enzymes, suggesting site-specific responses to changes in digesta composition along the intestines caused by digestion and absorption. We re-interpret results of earlier studies and conclude that there is no unequivocal example of adaptive modulation of intestinal carbohydrases by dietary carbohydrate in adult passerine birds whereas the present experiment confirms that nestlings of at least some species possess such capacity.
Collapse
|
6
|
Inoue S, Mochizuki K, Goda T. Jejunal induction of SI and SGLT1 genes in rats by high-starch/low-fat diet is associated with histone acetylation and binding of GCN5 on the genes. J Nutr Sci Vitaminol (Tokyo) 2011; 57:162-9. [PMID: 21697636 DOI: 10.3177/jnsv.57.162] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The intestinal expression of genes involved in carbohydrate digestion and absorption, such as sucrase-isomaltase (SI) and sodium-dependent glucose cotransporter (SGLT1), is higher in rodents fed a high-starch/low-fat (HS) diet than in those fed a low-starch/high-fat (LS) diet. In the present study, we investigated whether the HS diet-induced induction of SI and SGLT1 in the rat jejunum is coordinately regulated by nuclear transcription factors, histone acetylation, or histone acetyltransferases. HS diet intake induced jejunal expression of a histone acetyltransferase, general control of amino acid synthesis (GCN5), concurrently with the SI and SGLT1 genes; however, gene expression of nuclear transcription factors such as hepatocyte nuclear factor-1, caudal type homeobox-2, and GATA-binding protein-4 was unaffected by the HS diet. Acetylation of histones H3/H4 and binding of acetyltransferase GCN5 on the promoter/enhancer and transcribed regions of SI and SGLT1 genes were significantly higher in HS diet-fed rats than in LS diet-fed rats, but transcription factor binding was not affected by the HS diet. Our results suggest that the concomitant induction of SI and SGLT1 genes in the jejunum by the HS diet is closely associated with the binding of GCN5 and acetylation of histones H3/H4 on these genes.
Collapse
Affiliation(s)
- Seiya Inoue
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences and Global COE, The University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | | | | |
Collapse
|
7
|
Jones K, Sim L, Mohan S, Kumarasamy J, Liu H, Avery S, Naim HY, Quezada-Calvillo R, Nichols BL, Mario Pinto B, Rose DR. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Bioorg Med Chem 2011; 19:3929-34. [DOI: 10.1016/j.bmc.2011.05.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/12/2011] [Accepted: 05/18/2011] [Indexed: 01/05/2023]
|
8
|
Karasov WH, Martínez del Rio C, Caviedes-Vidal E. Ecological physiology of diet and digestive systems. Annu Rev Physiol 2011; 73:69-93. [PMID: 21314432 DOI: 10.1146/annurev-physiol-012110-142152] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The morphological and functional design of gastrointestinal tracts of many vertebrates and invertebrates can be explained largely by the interaction between diet chemical constituents and principles of economic design, both of which are embodied in chemical reactor models of gut function. Natural selection seems to have led to the expression of digestive features that approximately match digestive capacities with dietary loads while exhibiting relatively modest excess. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. In many animals, both transcriptional adjustment and posttranscriptional adjustment mediate phenotypic flexibility in the expression of intestinal hydrolases and transporters in response to dietary signals. Digestive performance of animals depends also on their gastrointestinal microbiome. The microbiome seems to be characterized by large beta diversity among hosts and by a common core metagenome and seems to differ flexibly among animals with different diets.
Collapse
Affiliation(s)
- William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, 53706, USA.
| | | | | |
Collapse
|