1
|
Burghardt KJ, Burghardt PR, Howlett BH, Dass SE, Zahn B, Imam AA, Mallisho A, Msallaty Z, Seyoum B, Yi Z. Alterations in Skeletal Muscle Insulin Signaling DNA Methylation: A Pilot Randomized Controlled Trial of Olanzapine in Healthy Volunteers. Biomedicines 2024; 12:1057. [PMID: 38791018 PMCID: PMC11117943 DOI: 10.3390/biomedicines12051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Antipsychotics are associated with severe metabolic side effects including insulin resistance; however, the mechanisms underlying this side effect are not fully understood. The skeletal muscle plays a critical role in insulin-stimulated glucose uptake, and changes in skeletal muscle DNA methylation by antipsychotics may play a role in the development of insulin resistance. A double-blind, placebo-controlled trial of olanzapine was performed in healthy volunteers. Twelve healthy volunteers were randomized to receive 10 mg/day of olanzapine for 7 days. Participants underwent skeletal muscle biopsies to analyze DNA methylation changes using a candidate gene approach for the insulin signaling pathway. Ninety-seven methylation sites were statistically significant (false discovery rate < 0.05 and beta difference between the groups of ≥10%). Fifty-five sites had increased methylation in the skeletal muscle of olanzapine-treated participants while 42 were decreased. The largest methylation change occurred at a site in the Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha (PPARGC1A) gene, which had 52% lower methylation in the olanzapine group. Antipsychotic treatment in healthy volunteers causes significant changes in skeletal muscle DNA methylation in the insulin signaling pathway. Future work will need to expand on these findings with expression analyses.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Paul R. Burghardt
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Bradley H. Howlett
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Sabrina E. Dass
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (B.H.H.); (S.E.D.)
| | - Brent Zahn
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ahmad A. Imam
- Internal Medicine Department, College of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Abdullah Mallisho
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Zaher Msallaty
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Berhane Seyoum
- Division of Endocrinology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (A.M.); (Z.M.); (B.S.)
| | - Zhengping Yi
- Department of Pharmaceutical Science, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
2
|
Fehsel K, Bouvier ML. Sex-Specific Effects of Long-Term Antipsychotic Drug Treatment on Adipocyte Tissue and the Crosstalk to Liver and Brain in Rats. Int J Mol Sci 2024; 25:2188. [PMID: 38396865 PMCID: PMC10889281 DOI: 10.3390/ijms25042188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629 Düsseldorf, Germany;
| | | |
Collapse
|
3
|
Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019; 8:cells8111336. [PMID: 31671770 PMCID: PMC6912706 DOI: 10.3390/cells8111336] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the cornerstone of treatment for schizophrenia because of their high clinical efficacy. However, SGA treatment is associated with severe metabolic alterations and body weight gain, which can increase the risk of type 2 diabetes and cardiovascular disease, and greatly accelerate mortality. Several underlying mechanisms have been proposed for antipsychotic-induced weight gain (AIWG), but some studies suggest that metabolic changes in insulin-sensitive tissues can be triggered before the onset of AIWG. In this review, we give an outlook on current research about the metabolic disturbances provoked by SGAs, with a particular focus on whole-body glucose homeostasis disturbances induced independently of AIWG, lipid dysregulation or adipose tissue disturbances. Specifically, we discuss the mechanistic insights gleamed from cellular and preclinical animal studies that have reported on the impact of SGAs on insulin signaling, endogenous glucose production, glucose uptake and insulin secretion in the liver, skeletal muscle and the endocrine pancreas. Finally, we discuss some of the genetic and epigenetic changes that might explain the different susceptibilities of SGA-treated patients to the metabolic side-effects of antipsychotics.
Collapse
|
4
|
Kim SH, Park S, Yu HS, Ko KH, Park HG, Kim YS. The antipsychotic agent clozapine induces autophagy via the AMPK-ULK1-Beclin1 signaling pathway in the rat frontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:96-104. [PMID: 29079139 DOI: 10.1016/j.pnpbp.2017.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Clozapine, a representative atypical antipsychotic, has superior efficacy compared to other antipsychotic agents and is used for the treatment of severe psychotic disorders. Therefore, studies on its mechanisms of action are important for understanding the mechanisms of therapeutic approaches to psychosis. Adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase that plays a major role in maintaining metabolic homeostasis. Unc-51-like kinase 1 (ULK1) and Beclin1 are downstream substrates of AMPK and activate the autophagic process. In this study, we examined the effects of clozapine on the AMPK-ULK1-Beclin1 signaling pathway and autophagy in the frontal cortex of the rat. Clozapine (10mg/kg) administration increased the immunoreactivity of p-Thr172-AMPKα in the rat frontal cortex at 1, 2, and 4h after injection, as we previously reported. The immunoreactivity of p-Ser317-ULK1 and p-Ser93-Beclin1 was also increased at 2 and 4h after clozapine injection. At the same time, the immunoreactivity of LC3-II and the Atg5-Atg12 conjugate, which indicate activation of autophagy, was increased. Transmission electron microscopy clearly showed an increase in autophagosome number in the rat frontal cortex at 2h after clozapine injection. To investigate the role of AMPK in clozapine-induced autophagy, the effects of intracerebroventricular injection of compound C, an AMPK inhibitor, were examined. Administration of compound C attenuated the clozapine-induced increase in ULK1 and Beclin1 phosphorylation, as well the protein levels of LC3-II and the Atg5-Atg12 conjugate in the frontal cortex. In summary, the results showed that clozapine activates autophagy through the AMPK-ULK1-Beclin1 signaling pathway in the frontal cortex of the rat.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soyoung Park
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Sook Yu
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung Hee Ko
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hong Geun Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Neuropsychiatry, Dongguk University International Hospital, Dongguk University Medical School, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Wang MM, Hao LY, Guo F, Zhong B, Zhong XM, Yuan J, Hao YF, Zhao S, Sun XF, Lei M, Jiao GY. Decreased intracellular [Ca 2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis. Muscle Nerve 2017; 56:1128-1136. [PMID: 28044347 DOI: 10.1002/mus.25554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. METHODS We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. RESULTS Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca2+ ] were significantly decreased in the rat sepsis model compared with controls. DISCUSSION Decreased intracellular [Ca2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Bin Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, People's Republic of China
| | - Xiao-Mei Zhong
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Jing Yuan
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Yi-Fei Hao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuang Zhao
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| | - Xue-Fei Sun
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ming Lei
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Guang-Yu Jiao
- Department of Respiratory and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Postal Code 110004, People's Republic of China
| |
Collapse
|
6
|
Lee JO, Kim N, Lee HJ, Moon JW, Lee SK, Kim SJ, Kim JK, Park SH, Kim HS. [6]-Gingerol Affects Glucose Metabolism by Dual Regulation via the AMPKα2-Mediated AS160-Rab5 Pathway and AMPK-Mediated Insulin Sensitizing Effects. J Cell Biochem 2016; 116:1401-10. [PMID: 25694332 DOI: 10.1002/jcb.25100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/23/2015] [Indexed: 12/24/2022]
Abstract
[6]-Gingerol has been used to control diabetes and dyslipidemia; however, its metabolic role is poorly understood. In this study, [6]-gingerol increased adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation in mouse skeletal muscle C2C12 cells. Stimulation of glucose uptake by [6]-gingerol was dependent on AMPKα2. Moreover, both Inhibition and knockdown of AMPKα2 blocked [6]-gingerol-induced glucose uptake. [6]-Gingerol significantly decreased the activity of protein phosphatase 2A (PP2A). Inhibition of PP2A activity with okadaic acid enhanced the phosphorylation of AMPKα2. Moreover, the interaction between AMPKα2 and PP2A was increased by [6]-gingerol, suggesting that PP2A mediates the effect of [6]-gingerol on AMPK phosphorylation. In addition, [6]-gingerol increased the phosphorylation of Akt-substrate 160 (AS160), which is a Rab GTPase-activating protein. Inhibition of AMPKα2 blocked [6]-gingerol-induced AS160 phosphorylation. [6]-gingerol increased the Rab5, and AMPKα2 knockdown blocked [6]-gingerol-induced expression of Rab5, indicating AMPK play as an upstream of Rab5. It also increased glucose transporter 4 (GLUT4) mRNA and protein expression and stimulated GLUT4 translocation. Furthermore, insulin-mediated glucose uptake and Akt phosphorylation were further potentiated by [6]-gingerol treatment. This potentiation was not observed in the presence of AMPK inhibitor compound C. In summary, our results suggest that [6]-gingerol plays an important role in glucose metabolism via the AMPKα2-mediated AS160-Rab5 pathway and through potentiation of insulin-mediated glucose regulation.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Nami Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Hye Jeong Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Soo Kyung Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Joong Kwan Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Sun Hwa Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Ko SC, Kim JI, Park SJ, Jung WK, Jeon YJ. Antihypertensive peptide purified from Styela clava flesh tissue stimulates glucose uptake through AMP-activated protein kinase (AMPK) activation in skeletal muscle cells. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2526-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Kao ACC, Müller DJ. Genetics of antipsychotic-induced weight gain: update and current perspectives. Pharmacogenomics 2014; 14:2067-83. [PMID: 24279860 DOI: 10.2217/pgs.13.207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antipsychotic medications are used to effectively treat various symptoms for different psychiatric conditions. Unfortunately, antipsychotic-induced weight gain (AIWG) is a common side effect that frequently results in obesity and secondary medical conditions. Twin and sibling studies have indicated that genetic factors are likely to be highly involved in AIWG. Over recent years, there has been considerable progress in this area, with several consistently replicated findings, as well as the identification of new genes and implicated pathways. Here, we will review the most recent genetic studies related to AIWG using the Medline database (PubMed) and Google Scholar. Among the steadiest findings associated with AIWG are serotonin 2C receptors (HTR2C) and leptin promoter gene variants, with more recent studies implicating MTHFR and, in particular, MC4R genes. Additional support was reported for the HRH1, BDNF, NPY, CNR1, GHRL, FTO and AMPK genes. Notably, some of the reported variants appear to have relatively large effect sizes. These findings have provided insights into the mechanisms involved in AIWG and will help to develop predictive genetic tests in the near future.
Collapse
Affiliation(s)
- Amy C C Kao
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
9
|
Brandl EJ, Tiwari AK, Lett TA, Shaikh SA, Lieberman JA, Meltzer HY, Kennedy JL, Müller DJ. Exploratory study on association of genetic variation in TBC1D1 with antipsychotic-induced weight gain. Hum Psychopharmacol 2013; 28:183-7. [PMID: 23364847 DOI: 10.1002/hup.2288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous studies have shown that antipsychotics with high propensity for antipsychotic-induced weight gain (AIWG) influence glucose transporter type 4 (GLUT4) mediated glucose intake. Variation in the gene encoding TBC1 domain family member 1 (TBC1D1), a Rab-GTPase activating protein regulating GLUT4 trafficking, has been associated with obesity. Therefore, we investigated the impact of TBC1D1 polymorphisms on AIWG. METHODS We analyzed rs9852 and rs35859249 in TBC1D1 in 195 schizophrenia subjects treated mostly with clozapine or olanzapine for up to 14 weeks. Association was tested using analysis of variance and analysis of covariance with change (%) from baseline weight as the dependent variable. RESULTS Analysis of covariance showed a non-significant trend for lower weight gain in carriers of the T-allele of rs9852 than in C-allele homozygotes (p = 0.063). This effect was more pronounced in the subgroup of patients treated with clozapine or olanzapine (p = 0.024). For rs35859249, no significant association with AIWG could be detected. CONCLUSIONS This is the first study examining the association between TBC1D1 and AIWG. The moderate association of rs9852, located in the 3'UTR near a miRNA binding site, indicates an influence of TBC1D1 on AIWG. Further investigations remain necessary to elucidate the role of this gene in AIWG.
Collapse
Affiliation(s)
- Eva J Brandl
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Clozapine is an antipsychotic drug that has a greater efficacy than other medications in some contexts, especially for the treatment of treatment-resistant schizophrenia. However, clozapine induces more metabolic side-effects involving abnormality in lipid metabolism compared to other antipsychotics. AMP-activated protein kinase (AMPK) plays a central role in controlling lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT1) pathway. In this study, we investigated the effect of a single intraperitoneal injection of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex, which has been implicated as a target site for this antipsychotic drug. At 2 h after injection, the clinically relevant dose of clozapine had activated AMPK, with increased phosphorylation of AMPKα at Thr(172), and had inactivated ACC, with increased phosphorylation of ACC at Ser(79). In addition, clozapine activated the brain-specific isoform of CPT1, CPT1c, whose activity is inhibited by unphosphorylated ACC, in the rat frontal cortex. Immunohistochemistry and immunofluorescence analysis showed that clozapine induced an increase in number of p-AMPKα (Thr(172))- and p-ACC (Ser(79))-positive cells among the neurons of the rat frontal cortex. Taken together, these results show that clozapine activated the AMPK-ACC-CPT1 pathway in the neurons of the rat frontal cortex. These findings indicate that the antipsychotic agent clozapine affects the lipid regulatory system of neurons in the brain.
Collapse
|
11
|
Sawada K, Kawabata K, Yamashita T, Kawasaki K, Yamamoto N, Ashida H. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells. Lipids Health Dis 2012; 11:36. [PMID: 22409911 PMCID: PMC3342115 DOI: 10.1186/1476-511x-11-36] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/12/2012] [Indexed: 01/09/2023] Open
Abstract
Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG) uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | |
Collapse
|