1
|
Wu Y, Han C, Luo R, Cai W, Xia Q, Jiang R, Ferdek PE, Liu T, Huang W. Molecular mechanisms of pain in acute pancreatitis: recent basic research advances and therapeutic implications. Front Mol Neurosci 2023; 16:1331438. [PMID: 38188196 PMCID: PMC10771850 DOI: 10.3389/fnmol.2023.1331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.
Collapse
Affiliation(s)
- Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pawel E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics and Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
3
|
Matsui K, Terada Y, Tsubota M, Sekiguchi F, Kawabata A. Tacrolimus, a calcineurin inhibitor, promotes capsaicin-induced colonic pain in mice. J Pharmacol Sci 2020; 143:60-63. [DOI: 10.1016/j.jphs.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 11/27/2022] Open
|
4
|
Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: Involvement of TRPV1 and T-type Ca 2+ channels. J Pharmacol Sci 2017; 136:46-49. [PMID: 29289470 DOI: 10.1016/j.jphs.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/16/2023] Open
Abstract
We studied the pronociceptive role of proteinase-activated receptor-2 (PAR2) in mouse bladder. In female mice, intravesical infusion of the PAR2-activating peptide, SLIGRL-amide (SL), caused delayed mechanical hypersensitivity in the lower abdomen, namely 'referred hyperalgesia', 6-24 h after the administration. The PAR2-triggered referred hyperalgesia was prevented by indomethacin or a selective TRPV1 blocker, and restored by a T-type Ca2+ channel blocker. In human urothelial T24 cells, SL caused delayed prostaglandin E2 production and COX-2 upregulation. Our data suggest that luminal PAR2 stimulation in the bladder causes prostanoid-dependent referred hyperalgesia in mice, which involves the activation of TRPV1 and T-type Ca2+ channels.
Collapse
|
5
|
Terada Y, Tsubota M, Sugo H, Wakitani K, Sekiguchi F, Wada K, Takada M, Oita A, Kawabata A. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. Pharmacology 2017; 99:281-285. [PMID: 28253495 DOI: 10.1159/000454816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023]
Abstract
Transient receptor potential vanilloid-1 (TRPV1) expressed in nociceptors is directly phosphorylated and activated by protein kinase C, and involved in the signaling of pancreatic pain. On the other hand, Cav3.2 T-type Ca2+ channels expressed in nociceptors are functionally upregulated by phosphorylation with protein kinase A and also play a role in pancreatitis-related pain. Calcineurin, a phosphatase, negatively regulates various channel functions including TRPV1, and calcineurin inhibitor-induced pain syndrome by tacrolimus, a calcineurin inhibitor, used as an immunosuppressant, has been a clinical problem. We thus examined the effect of tacrolimus on pancreatitis-related pain in mice. Repeated treatment with cerulein caused referred hyperalgesia accompanying acute pancreatitis, which was unaffected by tacrolimus. Pancreatitis-related symptoms disappeared in 24 h, whereas the referred hyperalgesia recurred following the administration of tacrolimus, which was abolished by the blockers of TRPV1 but not T-type Ca2+ channels. Thus, tacrolimus appears to cause the TRPV1-dependent relapse of pancreatitis-related pain, suggesting the involvement of calcineurin in the termination of pancreatic pain.
Collapse
Affiliation(s)
- Yuka Terada
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bao Y, Gao Y, Yang L, Kong X, Zheng H, Hou W, Hua B. New insights into protease-activated receptor 4 signaling pathways in the pathogenesis of inflammation and neuropathic pain: a literature review. Channels (Austin) 2015; 9:5-13. [PMID: 25664811 DOI: 10.4161/19336950.2014.995001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience that is commonly associated with actual or potential tissue damage. Despite decades of pain research, many patients continue to suffer from chronic pain that is refractory to current treatments. Accumulating evidence has indicated an important role of protease-activated receptor 4 (PAR4) in the pathogenesis of inflammation and neuropathic pain. Here we reviewed PAR4 expression and activation via intracellular signaling pathways and the role of PAR4 signaling pathways in the development and maintenance of pain. Understanding PAR4 and its corresponding signaling pathways will provide insight to further explore the molecular basis of pain, which will also help to identify new targets for pharmacological intervention for pain relief.
Collapse
Affiliation(s)
- Yanju Bao
- a Department of Oncology ; Guang'anmen Hospital ; China Academy of Chinese Medical Sciences; Beixiange 5 ; Xicheng District , Beijing , P. R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
Atsawarungruangkit A, Pongprasobchai S. Current understanding of the neuropathophysiology of pain in chronic pancreatitis. World J Gastrointest Pathophysiol 2015; 6:193-202. [PMID: 26600977 PMCID: PMC4644883 DOI: 10.4291/wjgp.v6.i4.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory disease of the pancreas. The main symptom of patients with CP is chronic and severe abdominal pain. However, the pathophysiology of pain in CP remains obscure. Traditionally, researchers believed that the pain was caused by anatomical changes in pancreatic structure. However, treatment outcomes based on such beliefs are considered unsatisfactory. The emerging explanations of pain in CP are trending toward neurobiological theories. This article aims to review current evidence regarding the neuropathophysiology of pain in CP and its potential implications for the development of new treatments for pain in CP.
Collapse
|
8
|
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 2015; 67:36-73. [PMID: 25361914 DOI: 10.1124/pr.114.009555] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Sensory nerves are equipped with receptors and ion channels that allow them to detect and respond to diverse chemical, mechanical, and thermal stimuli. These sensory proteins include G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) ion channels. A subclass of peptidergic sensory nerves express GPCRs and TRP channels that detect noxious, irritant, and inflammatory stimuli. Activation of these nerves triggers protective mechanisms that lead to withdrawal from danger (pain), removal of irritants (itch, cough), and resolution of infection (neurogenic inflammation). The GPCR-TRP axis is central to these mechanisms. Signals that emanate from the GPCR superfamily converge on the small TRP family, leading to channel sensitization and activation, which amplify pain, itch, cough, and neurogenic inflammation. Herein we discuss how GPCRs and TRP channels function independently and synergistically to excite sensory nerves that mediate noxious and irritant responses and inflammation in the skin and the gastrointestinal and respiratory systems. We discuss the signaling mechanisms that underlie the GPCR-TRP axis and evaluate how new information about the structure of GPCRs and TRP channels provides insights into their functional interactions. We propose that a deeper understanding of the GPCR-TRP axis may facilitate the development of more selective and effective therapies to treat dysregulated processes that underlie chronic pain, itch, cough, and inflammation.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Megan Grace
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Peter McIntyre
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (N.A.V., D.P.P., N.W.B); Departments of Genetics (N.A.V.), Anatomy and Neuroscience (D.P.P.), and Pharmacology (N.W.B.), The University of Melbourne, Melbourne, Victoria, Australia; School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia (M.G., P.M.); and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia (N.W.B.)
| |
Collapse
|
9
|
Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Kawabata A. Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis. J Neurosci Res 2014; 93:361-9. [PMID: 25267397 DOI: 10.1002/jnr.23490] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/05/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H(2)S), formed by multiple enzymes, including cystathionine-γ-lyase (CSE), targets Ca(v)3.2 T-type Ca(2+) channels (T channels) and transient receptor potential ankyrin-1 (TRPA1), facilitating somatic pain. Pancreatitis-related pain also appears to involve activation of T channels by H(2)S formed by the upregulated CSE. Therefore, this study investigates the roles of the Ca(v)3.2 isoform and/or TRPA1 in pancreatic nociception in the absence and presence of pancreatitis. In anesthetized mice, AP18, a TRPA1 inhibitor, abolished the Fos expression in the spinal dorsal horn caused by injection of a TRPA1 agonist into the pancreatic duct. As did mibefradil, a T-channel inhibitor, in our previous report, AP18 prevented the Fos expression following ductal NaHS, an H(2)S donor. In the mice with cerulein-induced acute pancreatitis, the referred hyperalgesia was suppressed by NNC 55-0396 (NNC), a selective T-channel inhibitor; zinc chloride; or ascorbic acid, known to inhibit Ca(v)3.2 selectively among three T-channel isoforms; and knockdown of Ca(v)3.2. In contrast, AP18 and knockdown of TRPA1 had no significant effect on the cerulein-induced referred hyperalgesia, although they significantly potentiated the antihyperalgesic effect of NNC at a subeffective dose. TRPA1 but not Ca(v)3.2 in the dorsal root ganglia was downregulated at a protein level in mice with cerulein-induced pancreatitis. The data indicate that TRPA1 and Ca(v)3.2 mediate the exogenous H(2)S-induced pancreatic nociception in naïve mice and suggest that, in the mice with pancreatitis, Ca(v)3.2 targeted by H(2)S primarily participates in the pancreatic pain, whereas TRPA1 is downregulated and plays a secondary role in pancreatic nociceptive signaling.
Collapse
Affiliation(s)
- Yuka Terada
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
11
|
Liu S, Liu YP, Yue DM, Liu GJ. Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain 2013; 18:326-37. [PMID: 23893658 DOI: 10.1002/j.1532-2149.2013.00372.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Treating bone cancer pain continues to be a major clinical challenge, and the underlying mechanisms of bone cancer pain remain elusive. Protease-activated receptor 2 (PAR2) has been reported to be involved in neurogenic inflammation, nociceptive pain and hyperalgesia. Here, we investigated the role of PAR2 in bone cancer pain development. METHORDS Expression of PAR2, mechanical allodynia, thermal hyperalgesia and neurochemical alterations induced by bone cancer pain were analysed in male, adult C3H/HeJ mice with tumour cell implantation (TCI). To investigate the contribution of PAR2 to bone cancer pain, PAR2 antagonist peptide and PAR2 knockout mice were used. RESULTS TCI produced bone cancer-related pain behaviours. Production and persistence of these pain behaviours were well correlated with TCI-induced up-regulation of PAR2 in sciatic nerve and dorsal root ganglia (DRG). PAR2 knockout and spinal administration of PAR2 antagonist peptide prevented and/or reversed bone cancer-related pain behaviours and associated neurochemical changes in DRG and dorsal horn (DH). TCI also induced proteases release in tumour-bearing tibia, sciatic nerve and DRG. Plantar injection of supernatant from sarcoma cells induced PAR2 up-regulation and intracellular calcium [Ca(2+) ]i increase in DRG, and calcitonin gene-related peptide accumulation in DH, as well as significant thermal and mechanical hyperalgesia, which were all in PAR2-dependent manners. CONCLUSION These findings suggest that PAR2 may be a key mediator for peripheral sensitization of bone cancer pain. Inhibiting PAR2 activation, especially during the early phase, may be a new therapy for preventing/suppressing development of bone cancer pain.
Collapse
Affiliation(s)
- S Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, China; Department of Neurobiology, Parker University, Dallas, USA
| | | | | | | |
Collapse
|
12
|
Chen D, Wang Z, Zhang Z, Zhang R, Yu L. Capsaicin up-regulates protease-activated receptor-4 mRNA and protein in primary cultured dorsal root ganglion neurons. Cell Mol Neurobiol 2013; 33:337-46. [PMID: 23274964 PMCID: PMC11497916 DOI: 10.1007/s10571-012-9899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/07/2012] [Indexed: 01/22/2023]
Abstract
Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.
Collapse
Affiliation(s)
- Dan Chen
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Zhaojin Wang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Zaifeng Zhang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Rui Zhang
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| | - Lianfeng Yu
- Department of Anatomy, Taishan Medical University, Taian, 271000 Shandong Province China
| |
Collapse
|
13
|
Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A. Contribution of TRPA1 as a Downstream Signal of Proteinase-Activated Receptor-2 to Pancreatic Pain. J Pharmacol Sci 2013; 123:284-7. [DOI: 10.1254/jphs.13128sc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
14
|
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 2011; 34:133-49. [PMID: 21971685 DOI: 10.1007/s00281-011-0289-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
15
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Key Words
- chemesthesis
- chemosensation
- gastrointestinal cancer
- gastrointestinal motility
- hypersensitivity
- hyperalgesia
- inflammation
- inflammatory bowel disease
- mechanosensation
- pain
- taste
- transducers
- trpa1
- trpc4
- trpc6
- trpm5
- trpm6
- trpv1
- trpv4
- trpv6
- aitc, allyl isothiocyanate
- cck, cholecystokinin
- cgrp, calcitonin gene-related peptide
- drg, dorsal root ganglion
- dss, dextran sulfate sodium
- gi, gastrointestinal
- gpcr, g protein-coupled receptor
- 5-ht, 5-hydroxytryptamine
- icc, interstitial cell of cajal
- mrna, messenger ribonucleic acid
- par, protease-activated receptor
- pkd, polycystic kidney disease
- rna, ribonucleic acid
- sirna, small interfering ribonucleic acid
- tnbs, trinitrobenzene sulfonic acid
- trp, transient receptor potential
- trpa, transient receptor potential ankyrin
- trpc, transient receptor potential canonical (or classical)
- trpm, transient receptor potential melastatin
- trpp, transient receptor potential polycystin
- trpv, transient receptor potential vanilloid
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|