1
|
Leipnitz G, da Rosa JS, Wajner M. The Role of Excitotoxicity, Oxidative Stress and Bioenergetics Disruption in the Neuropathology of Nonketotic Hyperglycinemia. Neurotox Res 2024; 42:32. [PMID: 38949693 DOI: 10.1007/s12640-024-00711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Jaqueline Santana da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, 90035-903, RS, Brazil
| |
Collapse
|
2
|
Li L, Huang J. Rapamycin Pretreatment Alleviates Cerebral Ischemia/Reperfusion Injury in Dose-Response Manner Through Inhibition of the Autophagy and NFκB Pathways in Rats. Dose Response 2020; 18:1559325820946194. [PMID: 32874166 PMCID: PMC7436792 DOI: 10.1177/1559325820946194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
Although rapamycin can attenuate cerebral ischemia/reperfusion (I/R) injury, the potential roles of rapamycin on cerebral I/R injury remain largely controversial. The present work aims to evaluate underlying molecular mechanisms of rapamycin pretreatment on I/R injury. In total, 34 Sprague-Dawley rats were randomly grouped to 3 groups: sham group (n = 2), vehicle group (n = 16), and rapamycin-pretreatment group (n = 16). Before the focal cerebral ischemia was induced, those rats in the pretreatment group were intraperitoneally injected rapamycin (1 mg/kg body) for 20 hours, while rats in the vehicle group received same-volume saline. Then, rats in these 2 groups received focal cerebral ischemia for 3 and 6 hours, respectively (n = 8 in each group), which was followed by the application of reperfusion for 4, 24, 72 hours, and 1 week (n = 2 in each group). The results showed that the rapamycin pretreatment improved the memory functions of rats after I/R injury, which was evaluated using a Y-maze test. Rapamycin pretreatment significantly reduced the size of triphenyltetrazolium chloride infarction and decreased the expression of I/R injury markers. Moreover, the expression of LC-3 and NFκB was also significantly reduced after rapamycin pretreatment. Taken together, rapamycin pretreatment may alleviate cerebral I/R injury partly through inhibiting autophagic activities and NFκB pathways in rats.
Collapse
Affiliation(s)
- Liru Li
- Department of emergency medicine, Fengxian District Central Hospital, Shanghai, China
| | - Jie Huang
- Department of Chinese and Western Medicine, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
3
|
Wang J, Maimaitili Y, Zheng H, Yu J, Guo H, Ma HP, Chen CL. The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes. Arch Med Sci 2017; 13:947-955. [PMID: 28721162 PMCID: PMC5507107 DOI: 10.5114/aoms.2016.59712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The purpose of this study was to examine the effects of rapamycin on the cardioprotective effect of hypoxic preconditioning (HPC) and on the mammalian target of rapamycin (mTOR)-mediated hypoxia-inducible factor 1 (HIF-1) signaling pathway. MATERIAL AND METHODS Primary cardiomyocytes were isolated from rat pups and underwent rapamycin and/or HPC, followed by hypoxia/re-oxygenation (H/R) injury. Cell viability and cell injury were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and qRT-PCR was used to measure HIF-1α and mTOR mRNA expression. A Langendorff heart perfusion model was conducted to observe the effect of rapamycin. RESULTS Rapamycin treatment nearly abolished the cardioprotective effect of HPC in cardiomyocytes, reduced cell viability (p = 0.007) and increased cell damage (p = 0.032). HIF-1α and mTOR mRNA expression increased in cardiomyocytes undergoing I/R injury within 2 h after HPC. After rapamycin treatment, mTOR mRNA expression and HPC-induced HIF-1α mRNA expression were both reduced (p < 0.001). A Langendorff heart perfusion model in rat hearts showed that rapamycin greatly attenuated the cardioprotective effect of HPC in terms of heart rate, LVDP, and dp/dtmax (all, p < 0.029). CONCLUSIONS Rapamycin, through inhibition of mTOR, reduces the elevated HIF-1α expression at an early stage of HPC, and attenuates the early cardioprotective effect of HPC.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - YiLiyaer Maimaitili
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hong Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Yu
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai Guo
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Ping Ma
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chun-Ling Chen
- Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Na+/Ca2+ exchanger 1 inhibition abolishes ischemic tolerance induced by ischemic preconditioning in different cardiac models. Eur J Pharmacol 2017; 794:246-256. [DOI: 10.1016/j.ejphar.2016.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/22/2023]
|
5
|
Singh AK, Singh S, Garg G, Rizvi SI. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes. Biochem Cell Biol 2016; 94:471-479. [DOI: 10.1139/bcb-2016-0048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An imbalanced cellular redox system promotes the production of reactive oxygen species (ROS) that may lead to oxidative stress-mediated cell death. Erythrocytes are the best-studied model of antioxidant defense mechanism. The present study was undertaken to investigate the effect of the immunosuppressant drug rapamycin, an inducer of autophagy, on redox balance of erythrocytes and blood plasma of oxidatively challenged rats. Male Wistar rats were oxidatively challenged with HgCl2 (5 mg/kg body mass (b.m.)). A significant (p < 0.05) induction in ROS production, plasma membrane redox system (PMRS), intracellular Ca2+ influx, lipid peroxidation (LPO), osmotic fragility, plasma protein carbonyl (PCO) content, and plasma advanced oxidation protein products (AOPP) and simultaneously significant reduction in glutathione (GSH) level and ferric reducing ability of plasma (FRAP) were observed in rats exposed to HgCl2. Furthermore, rapamycin (0.5 mg/kg b.m.) provided significant protection against HgCl2-induced alterations in rat erythrocytes and plasma by reducing ROS production, PMRS activity, intracellular Ca2+ influx, LPO, osmotic fragility, PCO content, and AOPP and also restored the level of antioxidant GSH and FRAP. Our observations provide evidence that rapamycin improves redox status and attenuates oxidative stress in oxidatively challenged rats. Our data also demonstrate that rapamycin is a comparatively safe immunosuppressant drug.
Collapse
Affiliation(s)
- Abhishek Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
- Department of Biochemistry, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
6
|
Adler D, Fixler D, Scheinowitz M, Shainberg A, Katz A. Weak electromagnetic fields alter Ca(2+) handling and protect against hypoxia-mediated damage in primary newborn rat myotube cultures. Pflugers Arch 2016; 468:1459-65. [PMID: 27194243 DOI: 10.1007/s00424-016-1837-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Weak electromagnetic fields (WEF) enhance Ca(2+) entry into cells via voltage-gated Ca(2+) channels and affect various aspects of metabolism, structure, and function. However, little information is available on the effect of WEF on skeletal muscle, which depends primarily on intracellular Ca(2+) stores for function and metabolism. Here, we examine the effects of 30 min exposure of rat primary myotube cultures to WEF (1.75 μT, 16 Hz) on Ca(2+) handling and creatine kinase (CK) release. Free myoplasmic Ca(2+) concentration ([Ca(2+) i]) was measured with the ratiometric dye indo-1. WEF did not affect basal [Ca(2+)]i but decreased the twitch [Ca(2+)]i transient in a time-dependent manner, and the twitch amplitude was decreased to ∼30 % after 30 min. WEF completely abolished the increase in [Ca(2+)]i induced by potassium chloride (∼60 mM) but had no effect on the increase induced by caffeine (∼6 mM). Hypoxia (2 h exposure to 100 % argon) resulted in a marked loss of CK into the medium (400 % of normoxic value), as well as a rapid (within 20 min) and sustained increase in basal [Ca(2+)]i (∼20 % above baseline). However, during exposure to WEF, basal [Ca(2+)]i remained constant during the initial 60 min of hypoxia and, thereafter, increased to levels similar to those observed in the absence of WEF. Finally, WEF blocked about 80 % of hypoxia-mediated CK release (P < 0.05). These data demonstrate that WEF inhibits increases in [Ca(2+)]i by interfering with muscle excitation and protects against muscle damage induced by hypoxia. Thus, WEF may have therapeutic/protective effects on skeletal muscle.
Collapse
Affiliation(s)
- Dana Adler
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, 40700, Israel
| | - Dror Fixler
- School of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Mickey Scheinowitz
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Asher Shainberg
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Abram Katz
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
7
|
Ding T, Zhu C, Yin JB, Zhang T, Lu YC, Ren J, Li YQ. Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. Life Sci 2015; 122:92-9. [DOI: 10.1016/j.lfs.2014.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 01/28/2023]
|
8
|
El-Ani D, Philipchik I, Stav H, Levi M, Zerbib J, Shainberg A. Tumor necrosis factor alpha protects heart cultures against hypoxic damage via activation of PKA and phospholamban to prevent calcium overload. Can J Physiol Pharmacol 2014; 92:917-25. [PMID: 25349921 DOI: 10.1139/cjpp-2014-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aims to elucidate the mechanisms by which tumor necrosis factor alpha (TNFα) provides protection from hypoxic damage to neonatal rat cardiomyocyte cultures. We show that when intracellular Ca(2+) ([Ca(2+)]i) levels are elevated by extracellular Ca(2+) ([Ca(2+)]o) or by hypoxia, then TNFα decreased [Ca(2+)]i in individual cardiomyocytes. However, TNFα did not reduce [Ca(2+)]i after its increase by thapsigargin, (a SERCA2a inhibitor), indicating that TNFα attenuates Ca(2+) overload through Ca(2+) uptake by SERCA2a. TNFα did not reduce [Ca(2+)]i, following its elevation when [Ca(2+)]o levels were elevated in TNFα receptor knock-out mice. H-89, a protein kinase A (PKA) inhibitor, attenuated the protective effect of TNFα when the cardiomyoctyes were subjected to hypoxia, as determined by lactate dehydrogenase (LDH) and creatine kinase (CK) released and from the cardiomyocytes. Moreover, when the levels of [Ca(2+)]i were increased by hypoxia, H-89, but not KN93, (a calmodulin kinase II inhibitor), prevented the reduction in [Ca(2+)]i by TNFα. TNFα increased the phosphorylation of PKA in normoxic and hypoxic cardiomyoctes, indicating that the cardioprotective effect of TNFα against hypoxic damage was via PKA activation. Hypoxia decreased phosphorylated phospholamban levels; however, TNFα attenuated this decrease following hypoxia. It is suggested that TNFα activates phospholamban phosphorylation in hypoxic heart cultures via PKA to stimulate SERCA2a activity to limit Ca(2+) overload.
Collapse
Affiliation(s)
- Dalia El-Ani
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A. Sirtuin 6 protects the heart from hypoxic damage. Exp Cell Res 2014; 330:81-90. [PMID: 25066211 DOI: 10.1016/j.yexcr.2014.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/01/2022]
Abstract
Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension.
Collapse
Affiliation(s)
- Anna Maksin-Matveev
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yariv Kanfi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Edith Hochhauser
- The Laboratory of the Department of Cardiothoracic Surgery, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Ahuva Isak
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Haim Y Cohen
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Asher Shainberg
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
10
|
Yano T, Ferlito M, Aponte A, Kuno A, Miura T, Murphy E, Steenbergen C. Pivotal role of mTORC2 and involvement of ribosomal protein S6 in cardioprotective signaling. Circ Res 2014; 114:1268-80. [PMID: 24557881 DOI: 10.1161/circresaha.114.303562] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE There is tight coupling between Akt activation and suppression of cell death. Full Akt activation requires mammalian target of rapamycin complex 2 (mTORC2), but the regulation of mTORC2 is unclear. OBJECTIVE To gain new insights into mechanisms of mTORC2/Akt signaling. METHODS AND RESULTS The role of mTORC2 in cardioprotection was examined. In perfused mouse hearts, ischemic preconditioning increased mTORC2 activity, leading to phosphorylation of Akt on Ser473. The protective effect of ischemic preconditioning was lost by pretreatment with dual mTORC inhibitors but not with rapamycin, an mTORC1 inhibitor, which indicates the fundamental role of mTORC2 activation in cardioprotection. Next, the regulation and downstream targets of mTORC2/Akt signaling were explored. We have found that ischemic preconditioning and other Akt activators (insulin and opioids) result in phosphorylation of ribosomal protein S6 (Rps6) at Ser235/236 in mouse hearts and neonatal rat ventricular myocytes. Rps6 interacts with components of mTORC2, and siRNA-mediated knockdown of Rps6 attenuates insulin-induced mTORC2 activation and Akt-Ser473 phosphorylation. On the other hand, Rps6 overexpression enhanced Akt-Ser473 phosphorylation, indicating that Rps6 activation amplifies mTORC2/Akt signaling. Disruption of the Rps6/mTORC2 pathway by knockdown of Rps6 or rictor abrogated insulin-induced cytoprotection against oxidative stress. Although rapamycin blocks Rps6-dependent mTORC2 activation, mTORC2 is still activated by an alternative signaling pathway, demonstrating the redundancy in cardioprotective signaling. CONCLUSIONS Activation of mTORC2 plays a pivotal role in cardioprotection, and Rps6 is a convergence point of cardioprotective signaling, providing positive feedback regulation of mTORC2/Akt signaling.
Collapse
Affiliation(s)
- Toshiyuki Yano
- From the Department of Pathology (T.Y., C.S.) and Division of Cardiology, Department of Medicine (M.F.), Johns Hopkins University, Baltimore, MD; Proteomics Core (A.A.) and Systems Biology Center (E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Departments of Cardiovascular, Renal, and Metabolic Medicine (T.Y., A.K., T.M.) and Pharmacology (A.K.), Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Tan R, Li J, Peng X, Zhu L, Cai L, Wang T, Su Y, Irani K, Hu Q. GAPDH is critical for superior efficacy of female bone marrow-derived mesenchymal stem cells on pulmonary hypertension. Cardiovasc Res 2013; 100:19-27. [PMID: 23801767 DOI: 10.1093/cvr/cvt165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AIMS Pulmonary arterial hypertension, a chronic lung disease, remains an unacceptable prognosis despite significant advances in conventional therapies. Stem cell therapy represents a novel and effective modality. This study was aimed to add new insight in gender differences of bone marrow-derived mesenchymal stem cells on therapy against pulmonary arterial hypertension and the underlying mechanism. METHODS AND RESULTS By in vivo experiments, we showed for the first time female bone marrow-derived mesenchymal stem cells possessed a better therapeutic potential against monocrotaline-induced pulmonary arterial hypertension in C57BL/6J mice compared with male counterparts. In vitro experiments demonstrated superior function of female bone marrow-derived mesenchymal stem cells in cell proliferation, migration and [Ca(2+)]i kinetics. Moreover, we unexpectedly found that, compared with male ones, female bone marrow-derived mesenchymal stem cells had a higher expression level of glyceraldehyde-3-phosphate dehydrogenase and manipulations of its expression in female or male bone marrow-derived mesenchymal stem cells profoundly affected their cellular behaviours and therapeutic efficacies against pulmonary arterial hypertension. CONCLUSION Our results suggest that glyceraldehyde-3-phosphate dehydrogenase plays a critical role in determining the superior functions of female bone marrow-derived mesenchymal stem cells in cell therapy against pulmonary arterial hypertension by regulating [Ca(2+)]i signal-associated cellular behaviours.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The Na+/Ca2+ exchanger (NCX) is an important electrogenic transporter in maintaining Na+ and Ca2+ homeostasis in a variety of mammalian organs, and is involved in the physiological and pathophysiological regulation of Ca2+ concentration in the myocardium. It can affect cardial structure, electrophysiology and contractile properties. The role of the NCX in heart cells following ischemia/reperfusion (IR) has been investigated using a number of in vitro and in vivo models. During ischemia, ionic disturbances favor Ca2+-influx mode activity as excess Na+ is extruded in exchange for Ca2+, giving rise to increased intracellular Ca2+ levels (Cai). This rise in Cai contributes to reversible cellular dysfunction upon reperfusion, such as myocardial necrosis, arrhythmia, systolic dysfunction and heart failure. We have reviewed the major in vivo and in vitro cardiac IR-related NCX studies in an attempt to clarify the functions of NCX in IR and conclude that recent studies suggest blockage of NCX has potential therapeutic applications. Although the use of different IR models, application of NCX stimulators and inhibitors, and development of NCX transgenic animals do help elucidate the role of this ion exchanger in heart cells, related mechanisms are not completely understood and clinically effective specific NCX inhibitors need further research.
Collapse
Affiliation(s)
- Sai Chen
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China
| | | |
Collapse
|
13
|
Qian C, Ma J, Zhang P, Luo A, Wang C, Ren Z, Kong L, Zhang S, Wang X, Wu Y. Resveratrol attenuates the Na(+)-dependent intracellular Ca(2+) overload by inhibiting H(2)O(2)-induced increase in late sodium current in ventricular myocytes. PLoS One 2012; 7:e51358. [PMID: 23272101 PMCID: PMC3521760 DOI: 10.1371/journal.pone.0051358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022] Open
Abstract
Background/Aims Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H2O2)-induced increase in late sodium current (INa.L) which augmented the reverse Na+-Ca2+ exchanger current (INCX), and the diastolic intracellular Ca2+ concentration in ventricular myocytes. Methods INa.L, INCX, L-type Ca2+ current (ICa.L) and intracellular Ca2+ properties were determined using whole-cell patch-clamp techniques and dual-excitation fluorescence photomultiplier system (IonOptix), respectively, in rabbit ventricular myocytes. Results Resveratrol (10, 20, 40 and 80 µM) decreased INa.L in myocytes both in the absence and presence of H2O2 (300 µM) in a concentration dependent manner. Ranolazine (3–9 µM) and tetrodotoxin (TTX, 4 µM), INa.L inhibitors, decreased INa.L in cardiomyocytes in the presence of 300 µM H2O2. H2O2 (300 µM) increased the reverse INCX and this increase was significantly attenuated by either 20 µM resveratrol or 4 µM ranolazine or 4 µM TTX. In addition, 10 µM resveratrol and 2 µM TTX significantly depressed the increase by 150 µM H2O2 of the diastolic intracellular Ca2+ fura-2 fluorescence intensity (FFI), fura-fluorescence intensity change (△FFI), maximal velocity of intracellular Ca2+ transient rise and decay. As expected, 2 µM TTX had no effect on ICa.L. Conclusion Resveratrol protects the cardiomyocytes by inhibiting the H2O2-induced augmentation of INa.L.and may contribute to the reduction of ischemia-induced lethal arrhythmias.
Collapse
Affiliation(s)
- Chunping Qian
- Cardio-Electrophysiological Research Laboratory, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao SH, Gao HQ, Ji X, Wang Y, Liu XJ, You BA, Cui XP, Qiu J. Effect of ouabain on myocardial ultrastructure and cytoskeleton during the development of ventricular hypertrophy. Heart Vessels 2012; 28:101-13. [PMID: 22241736 DOI: 10.1007/s00380-011-0219-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/08/2011] [Indexed: 02/03/2023]
Abstract
The aim of this work is to study cytoskeletal impairment during the development of ouabain-induced ventricular hypertrophy. Male Sprague-Dawley rats were treated with either ouabain or saline. Systolic blood pressure (SBP) was recorded weekly. At the end of the 3rd and 6th week, the rats were killed and cardiac mass index were measured. Hematoxylin-eosin and Sirius red staining were carried out and cardiac ultrastructure were studied using transmission electron microscopy. The mRNA level of Profilin-1, Desmin, PCNA, TGF-β(1) and ET-1 in the left ventricle were measured using real-time quantitative PCR while their protein levels were examined by Western blot or immunohistochemistry. After 3 weeks, there was no significant difference in the mean SBP, cardiac mass index, mRNA and protein expression of PCNA, TGF-β(1) and ET-1 between the two groups. However, ouabain-treated rats showed disorganized cardiac cytoskeleton with abnormal expression of Profilin-1 and Desmin. After 6 weeks, the cardiac mass index remained the same in the two groups while PCNA, TGF-β(1), and ET-1 have been upregulated in ouabain-treated rats. The cardiac cytoskeletal impairment was more severe in ouabain-treated rats with further changes of Profilin-1 and Desmin. Cytoskeletal abnormality is an ultra-early change during ouabain-induced ventricular hypertrophy, before the release of hypertrophic factors. Therapy for prevention of ouabain-induced hypertrophy should start at the early stage by preventing the cytoskeleton from disorganization.
Collapse
Affiliation(s)
- Shao-hua Zhao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chauhan A, Sharma U, Jagannathan N, Reeta K, Gupta YK. Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res 2011; 225:603-9. [DOI: 10.1016/j.bbr.2011.08.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/21/2011] [Accepted: 08/24/2011] [Indexed: 11/28/2022]
|