1
|
Truong LD, Trostel J, Roncal C, Cara-Fuentes G, Miyazaki M, Miyazaki-Anzai S, Andres-Hernando A, Sasai F, Lanaspa M, Johnson RJ, Garcia GE. Production of Acetylcholine by Podocytes and its Protection from Kidney Injury in GN. J Am Soc Nephrol 2025; 36:205-218. [PMID: 39302734 PMCID: PMC11801748 DOI: 10.1681/asn.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points Our study demonstrated the sole enzyme responsible for acetylcholine production, choline acetyltransferase, was expressed in podocytes. Acetylcholine decreased glomerular injury in GN by reducing inflammation and protecting endothelium. Choline acetyltransferase/acetylcholine production was induced in podocytes with drugs already available. Background One of the most important factors modulating endothelial health is acetylcholine; and while it is associated as a cholinergic neurotransmitter, it is also expressed by non-neuronal cells. However, its role in the kidney, which does not receive cholinergic innervation, remains unknown. Methods To determine whether acetylcholine is produced in the kidney, we used choline acetyltransferase (ChAT) (BAC)–enhanced green fluorescent protein (ChAT mice) transgenic mice in which enhanced green fluorescent protein is expressed under the control of the endogenous ChAT transcriptional regulatory elements. We then investigated the role of acetylcholine in kidney disease by inducing antiglomerular basement membrane GN (anti-GBM GN) in ChAT transgenic mice. Results We demonstrate ChAT, the sole enzyme responsible for acetylcholine production, was expressed in glomerular podocytes and produced acetylcholine. We also show during anti-GBM GN in ChAT transgenic mice, ChAT expression was induced in the glomeruli, mainly in podocytes, and protects mice from kidney injury with marked reduction of glomerular proliferation/fibrinoid necrosis (by 71%), crescent formation (by 98%), and tubular injury (by 78%). By contrast, specific knockout of podocyte ChAT worsened the severity of the disease. The mechanism of protection included reduction of inflammation, attenuation of angiogenic factors reduction, and increase of endothelial nitric oxide synthase expression. In vitro and in vivo studies demonstrated available drugs such as cholinesterase inhibitors and ChAT inducers increased the expression of podocyte-ChAT and acetylcholine production. Conclusions These findings suggest de novo synthesis of acetylcholine by podocytes protected against inflammation and glomerular endothelium damage in anti-GBM GN. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_12_05_ASN0000000000000492.mp3
Collapse
Affiliation(s)
- Luan D. Truong
- Department of Pathology, Baylor College of Medicine, The Houston Methodist Hospital, Houston, Texas
| | - Jessica Trostel
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Zhan B, Zhou T, Tong D, Xu Z, Liang X, Ma A, Lü S. Expression of the non-neuronal cholinergic system components in Malpighian tubules of Mythimna separata and evidence for non-neuronal acetylcholine synthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104047. [PMID: 38072082 DOI: 10.1016/j.ibmb.2023.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
The non-neuronal cholinergic system, widely distributed in nature, is an ancient system that has not been well studied in insects. This study aims to investigate the key components of the cholinergic system and to identify the non-neuronal acetylcholine (ACh)-producing cells and the acting sites of ACh in the Malpighian tubules (MTs) of Mythimna separata. We found that non-neuronal ACh in MTs is synthesized by carnitine acetyltransferase (CarAT), rather than choline acetyltransferase (ChAT), as confirmed by using enzyme inhibitors and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Fluorescence in situ hybridization revealed the presence of CarAT mRNA within MTs, specifically localized in the principal cells. Immunohistochemistry showed strong staining for A-mAChR, a muscarinic acetylcholine receptor, in the principal cells. Pharmacological analysis further demonstrated that ACh acts through A-mAChR in the principal cells to increase the intracellular Ca2+ concentration. These findings provide compelling evidence for the existence of a non-neuronal cholinergic system in the MTs of M. separata, and the principal cells play a crucial role in ACh synthesis via CarAT.
Collapse
Affiliation(s)
- Baolei Zhan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Di Tong
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zile Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyu Liang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Anqi Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shumin Lü
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Skelly PJ, Da'dara AA. A novel, non-neuronal acetylcholinesterase of schistosome parasites is essential for definitive host infection. Front Immunol 2023; 14:1056469. [PMID: 36798133 PMCID: PMC9927205 DOI: 10.3389/fimmu.2023.1056469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Schistosomes are long-lived parasitic worms that infect >200 million people globally. The intravascular life stages are known to display acetylcholinesterase (AChE) activity internally as well as, somewhat surprisingly, on external tegumental membranes. Originally it was hypothesized that a single gene (SmAChE1 in Schistosoma mansoni) encoded both forms of the enzyme. Here, we demonstrate that a second gene, designated "S. mansoni tegumental acetylcholinesterase, SmTAChE", is responsible for surface, non-neuronal AChE activity. The SmTAChE protein is GPI-anchored and contains all essential amino acids necessary for function. AChE surface activity is significantly diminished following SmTAChE gene suppression using RNAi, but not following SmAChE1 gene suppression. Suppressing SmTAChE significantly impairs the ability of parasites to establish infection in mice, showing that SmTAChE performs an essential function for the worms in vivo. Living S. haematobium and S. japonicum parasites also display strong surface AChE activity, and we have cloned SmTAChE homologs from these two species. This work helps to clarify longstanding confusion regarding schistosome AChEs and paves the way for novel therapeutics for schistosomiasis.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| |
Collapse
|
4
|
Cheng X, Zhang Y, Chen R, Qian S, Lv H, Liu X, Zeng S. Anatomical Evidence for Parasympathetic Innervation of the Renal Vasculature and Pelvis. J Am Soc Nephrol 2022; 33:2194-2210. [PMID: 36253054 PMCID: PMC9731635 DOI: 10.1681/asn.2021111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/08/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The kidneys critically contribute to body homeostasis under the control of the autonomic nerves, which enter the kidney along the renal vasculature. Although the renal sympathetic and sensory nerves have long been confirmed, no significant anatomic evidence exists for renal parasympathetic innervation. METHODS We identified cholinergic nerve varicosities associated with the renal vasculature and pelvis using various anatomic research methods, including a genetically modified mouse model and immunostaining. Single-cell RNA sequencing (scRNA-Seq) was used to analyze the expression of AChRs in the renal artery and its segmental branches. To assess the origins of parasympathetic projecting nerves of the kidney, we performed retrograde tracing using recombinant adeno-associated virus (AAV) and pseudorabies virus (PRV), followed by imaging of whole brains, spinal cords, and ganglia. RESULTS We found that cholinergic axons supply the main renal artery, segmental renal artery, and renal pelvis. On the renal artery, the newly discovered cholinergic nerve fibers are separated not only from the sympathetic nerves but also from the sensory nerves. We also found cholinergic ganglion cells within the renal nerve plexus. Moreover, the scRNA-Seq analysis suggested that acetylcholine receptors (AChRs) are expressed in the renal artery and its segmental branches. In addition, retrograde tracing suggested vagus afferents conduct the renal sensory pathway to the nucleus of the solitary tract (NTS), and vagus efferents project to the kidney. CONCLUSIONS Cholinergic nerves supply renal vasculature and renal pelvis, and a vagal brain-kidney axis is involved in renal innervation.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yongsheng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ruixi Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shenghui Qian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haijun Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Ministry of Education Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Erukainure OL, Rademan S, Erhabor JO, Chukwuma CI, Nde AL, Matsabisa MG. Cannabis sativa L. protects against oxidative injury in kidney (vero) cells by mitigating perturbed metabolic activities linked to chronic kidney diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115312. [PMID: 35476933 DOI: 10.1016/j.jep.2022.115312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. is among numerous medicinal plants widely used in traditional medicine in treating various ailments including kidney diseases. AIMS The protective effect of C. sativa on oxidative stress, cholinergic and purinergic dysfunctions, and dysregulated glucogenic activities were investigated in oxidative injured kidney (Vero) cell lines. METHODS Fixed Vero cells were treated with sequential extracts (hexane, dichloromethane [DCM] and ethanol) of C. sativa leaves for 48 h before subjecting to MTT assay. Vero cells were further incubated with FeSO4 for 30 min, following pretreatment with C. sativa extracts for 25 min. Normal control consisted of Vero cells not treated with the extracts and/or FeSO4, while untreated (negative) control consisted of cells treated with only FeSO4. RESULTS MTT assay revealed the extracts were slightly cytotoxic at the highest concentrations (250 μg/mL). There was a significant depletion in glutathione level and catalase activity on induction of oxidative stress, with significant elevation in malondialdehyde level, acetylcholinesterase, ATPase, ENTPDase, fructose-1,6-biphosphatase, glucose 6-phosphatase and glycogen phosphorylase activities. These activities and levels were significantly reversed following pretreatment with C. sativa extracts. CONCLUSION These results portray the protective potentials of C. sativa against iron-mediated oxidative renal injury as depicted by the ability of its extracts to mitigate redox imbalance and suppress acetylcholinestererase activity, while concomitantly modulating purinergic and glucogenic enzymes activities in Vero cells.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sunelle Rademan
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Joseph O Erhabor
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa; Phytomedicine Unit, Department of Plant Biology and Biotechnology, University of Benin, Benin City, Nigeria
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| |
Collapse
|
6
|
Horsager J, Okkels N, Van Den Berge N, Jacobsen J, Schact A, Munk OL, Vang K, Bender D, Brooks DJ, Borghammer P. In vivo vesicular acetylcholine transporter density in human peripheral organs: an [ 18F]FEOBV PET/CT study. EJNMMI Res 2022; 12:17. [PMID: 35362761 PMCID: PMC8975951 DOI: 10.1186/s13550-022-00889-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background The autonomic nervous system is frequently affected in some neurodegenerative diseases, including Parkinson’s disease and Dementia with Lewy bodies. In vivo imaging methods to visualize and quantify the peripheral cholinergic nervous system are lacking. By using [18F]FEOBV PET, we here describe the peripheral distribution of the specific cholinergic marker, vesicular acetylcholine transporters (VAChT), in human subjects. We included 15 healthy subjects aged 53–86 years for 70 min dynamic PET protocol of peripheral organs. We performed kinetic modelling of the adrenal gland, pancreas, myocardium, renal cortex, spleen, colon, and muscle using an image-derived input function from the aorta. A metabolite correction model was generated from venous blood samples. Three non-linear compartment models were tested. Additional time-activity curves from 6 to 70 min post injection were generated for prostate, thyroid, submandibular-, parotid-, and lacrimal glands. Results A one-tissue compartment model generated the most robust fits to the data. Total volume-of-distribution rank order was: adrenal gland > pancreas > myocardium > spleen > renal cortex > muscle > colon. We found significant linear correlations between total volumes-of-distribution and standard uptake values in most organs. Conclusion High [18F]FEOBV PET signal was found in structures with known cholinergic activity. We conclude that [18F]FEOBV PET is a valid tool for estimating VAChT density in human peripheral organs. Simple static images may replace kinetic modeling in some organs and significantly shorten scan duration. Clinical Trial Registration Trial registration: NCT, NCT03554551. Registered 31 May 2018. https://clinicaltrials.gov/ct2/show/NCT03554551?term=NCT03554551&draw=2&rank=1. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00889-9.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nathalie Van Den Berge
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Anna Schact
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Institute of Translational and Clinical Research, University of Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus N, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Oe H, Yoshiki H, Zha X, Kobayashi H, Aoki Y, Ito H, Yokoyama O. Urinary reabsorption in the rat kidney by anticholinergics. Sci Rep 2021; 11:9191. [PMID: 33911165 PMCID: PMC8080556 DOI: 10.1038/s41598-021-88738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Anticholinergics, therapeutic agents for overactive bladder, are clinically suggested to reduce urine output. We investigated whether this effect is due to bladder or kidney urine reabsorption. Various solutions were injected into the bladder of urethane-anesthetized SD rats. The absorption rate for 2 h was examined following the intravenous administration of the anticholinergics imidafenacin (IM), atropine (AT), and tolterodine (TO). The bilateral ureter was then canulated and saline was administered to obtain a diuretic state. Anticholinergics or 1-deamino-[8-D-arginine]-vasopressin (dDAVP) were intravenously administered. After the IM and dDAVP administrations, the rat kidneys were immunostained with AQP2 antibody, and intracellular cAMP was measured. The absorption rate was ~ 10% of the saline injected into the bladder and constant even when anticholinergics were administered. The renal urine among peaked 2 h after the saline administration. Each of the anticholinergics significantly suppressed the urine production in a dose-dependent manner, as did dDAVP. IM and dDAVP increased the intracellular cAMP levels and caused the AQP2 molecule to localize to the collecting duct cells' luminal side. The urinary reabsorption mechanism through the bladder epithelium was not activated by anticholinergic administration. Thus, anticholinergics suppress urine production via an increase in urine reabsorption in the kidneys' collecting duct cells via AQP2.
Collapse
Affiliation(s)
- Hideki Oe
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Hatsumi Yoshiki
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Xinmin Zha
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hisato Kobayashi
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshitaka Aoki
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Hideaki Ito
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Osamu Yokoyama
- Department of Urology, Faculty of Medical Science, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
8
|
Inoue T. Neuroimmune system-mediated renal protection mechanisms. Clin Exp Nephrol 2021; 25:915-924. [PMID: 33877485 PMCID: PMC8357774 DOI: 10.1007/s10157-021-02062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The autonomic nervous system plays an important role in maintaining homeostasis in organisms. Recent studies have shown that it also controls inflammation by directly altering the function of the immune system. The cholinergic anti-inflammatory pathway (CAP) is one of the neural circuits operating through the vagus nerve. Acetylcholine released from the terminal of the vagus nerve, which is a parasympathetic nerve, acts on the α7 nicotinic acetylcholine receptor of macrophages and reduces inflammation in the body. Previous animal studies demonstrated that vagus nerve stimulation reduced renal ischemia-reperfusion injury. Furthermore, restraint stress and pulsed ultrasound had similar protective effects against kidney injury, which were mainly thought to be mediated by the CAP. Using optogenetics, which can stimulate specific nerves, it was also revealed that activation of the CAP by restraint stress was mediated by C1 neurons in the medulla oblongata. Nevertheless, there still remain many unclear points regarding the role of the nervous and immune systems in controlling renal diseases, and further research is needed.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
9
|
Abstract
Recent studies have clarified the interaction between nervous systems and immunity regarding the manner in which local inflammation is regulated and systemic homeostasis is maintained. The cholinergic anti-inflammatory pathway (CAP) is a neuroimmune pathway activated by vagus nerve stimulation. Following afferent vagus nerve stimulation, signals are transmitted to immune cells in the spleen, including β2-adrenergic receptor-positive CD4-positive T cells and α7 nicotinic acetylcholine receptor-expressing macrophages. These immune cells release the neurotransmitters norepinephrine and acetylcholine, inducing a series of reactions that reduce proinflammatory cytokines, relieving inflammation. CAP contributes to various inflammatory diseases such as endotoxemia, rheumatoid arthritis, and inflammatory bowel disease. Moreover, emerging studies have revealed that vagus nerve stimulation ameliorates kidney damage in an animal model of acute kidney injury. These studies suggest that the link between the nervous system and kidneys is associated with the pathophysiology of kidney injury. Here, we review the current knowledge of the neuroimmune circuit and kidney disease, as well as potential for therapeutic strategies based on this knowledge for treating kidney disease in clinical settings.
Collapse
Affiliation(s)
- Yasuna Nakamura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Shimizu S, Akiyama T, Kawada T, Sata Y, Turner MJ, Fukumitsu M, Yamamoto H, Kamiya A, Shishido T, Sugimachi M. Sodium ion transport participates in non-neuronal acetylcholine release in the renal cortex of anesthetized rabbits. J Physiol Sci 2017; 67:587-593. [PMID: 27660058 PMCID: PMC10717196 DOI: 10.1007/s12576-016-0489-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022]
Abstract
This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na+/K+-ATPase inhibitor (ouabain), or an epithelial Na+ channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.
Collapse
Affiliation(s)
- Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan.
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Yusuke Sata
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Michael James Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Hiromi Yamamoto
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Kindai University, Osaka, 589-8511, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Toshiaki Shishido
- Department of Research Promotion, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
11
|
Dunant Y, Gisiger V. Ultrafast and Slow Cholinergic Transmission. Different Involvement of Acetylcholinesterase Molecular Forms. Molecules 2017; 22:E1300. [PMID: 28777299 PMCID: PMC6152031 DOI: 10.3390/molecules22081300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine (ACh), an ubiquitous mediator substance broadly expressed in nature, acts as neurotransmitter in cholinergic synapses, generating specific communications with different time-courses. (1) Ultrafast transmission. Vertebrate neuromuscular junctions (NMJs) and nerve-electroplaque junctions (NEJs) are the fastest cholinergic synapses; able to transmit brief impulses (1-4 ms) at high frequencies. The collagen-tailed A12 acetylcholinesterase is concentrated in the synaptic cleft of NMJs and NEJs, were it curtails the postsynaptic response by ultrafast ACh hydrolysis. Here, additional processes contribute to make transmission so rapid. (2) Rapid transmission. At peripheral and central cholinergic neuro-neuronal synapses, transmission involves an initial, relatively rapid (10-50 ms) nicotinic response, followed by various muscarinic or nicotinic effects. Acetylcholinesterase (AChE) being not concentrated within these synapses, it does not curtail the initial rapid response. In contrast, the late responses are controlled by a globular form of AChE (mainly G4-AChE), which is membrane-bound and/or secreted. (3) SlowAChsignalling. In non-neuronal systems, in muscarinic domains, and in most regions of the central nervous system (CNS), many ACh-releasing structures (cells, axon terminals, varicosities, boutons) do not form true synaptic contacts, most muscarinic and also part of nicotinic receptors are extra-synaptic, often situated relatively far from ACh releasing spots. A12-AChE being virtually absent in CNS, G4-AChE is the most abundant form, whose function appears to modulate the "volume" transmission, keeping ACh concentration within limits in time and space.
Collapse
Affiliation(s)
- Yves Dunant
- Département des Neurosciences Fondamentales, Faculté de Médecine, Université de Genève, CH-1211-Genève 4, Switzerland.
| | - Victor Gisiger
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal QC H3C 3J7, Canada.
| |
Collapse
|
12
|
YAJIMA M, KARAKI SI, TSURUTA T, KIMURA S, NIO-KOBAYASHI J, KUWAHARA A, YAJIMA T. Diversity of the intestinal microbiota differently affects non-neuronal and atropine-sensitive ileal contractile responses to short-chain fatty acids in mice . Biomed Res 2016; 37:319-328. [DOI: 10.2220/biomedres.37.319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masako YAJIMA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
| | - Shin-Ichiro KARAKI
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
| | - Takeshi TSURUTA
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | - Shunsuke KIMURA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Junko NIO-KOBAYASHI
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Atsukazu KUWAHARA
- Laboratory of Physiology, Institute for Environmental Science, University of Shizuoka
| | - Takaji YAJIMA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
- Meiji Dairies Research Chair, Creative Research Institution, Hokkaido University
| |
Collapse
|
13
|
Roy A, Guatimosim S, Prado VF, Gros R, Prado MAM. Cholinergic activity as a new target in diseases of the heart. Mol Med 2015; 20:527-37. [PMID: 25222914 DOI: 10.2119/molmed.2014.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure.
Collapse
Affiliation(s)
- Ashbeel Roy
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Jun JG, Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Expression of adrenergic and cholinergic receptors in murine renal intercalated cells. J Vet Med Sci 2014; 76:1493-500. [PMID: 25069412 PMCID: PMC4272982 DOI: 10.1292/jvms.14-0315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons influence renal function and help to regulate fluid homeostasis, blood
pressure and ion excretion. Intercalated cells (ICCs) are distributed throughout the renal
collecting ducts and help regulate acid/base equilibration. Because ICCs are located among
principal cells, it has been difficult to determine the effects that efferent nerve fibers
have on this cell population. In this study, we examined the expression of
neurotransmitter receptors on the murine renal epithelial M-1 cell line. We found that M-1
cells express a2 and b2 adrenergic receptor mRNA and the b2 receptor protein. Further, b2
receptor-positive cells in the murine cortical collecting ducts also express AQP6,
indicating that these cells are ICCs. M-1 cells were found to express m1, m4 and m5
muscarinic receptor mRNAs and the m1 receptor protein. Cells in the collecting ducts also
express the m1 receptor protein, and some m1-positive cells express AQP6.
Acetylcholinesterase was detected in cortical collecting duct cells. Interestingly,
acetylcholinesterase-positive cells neighbored AQP6-positive cells, suggesting that
principal cells may regulate the availability of acetylcholine. In conclusion, our data
suggest that ICCs in murine renal collecting ducts may be regulated by the adrenergic and
cholinergic systems.
Collapse
Affiliation(s)
- Jin-Gon Jun
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogowa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Origin of efferent fibers of the renal plexus in the rat autonomic nervous system. J Vet Med Sci 2014; 76:763-5. [PMID: 24430660 PMCID: PMC4073349 DOI: 10.1292/jvms.13-0617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the origin of efferent nerves containing renal plexus, the
retrograde neuronal tracing was utilized with a new exact closed injection system with
microcapsules. The microcapsule was positioned in the rat left renal plexus, and the
capsule was filled with fluoro-gold. Retrograde labeled cells were observed in the
ipsilateral sympathetic trunk, especially T12 and T13, and the ipsilateral suprarenal
ganglia (SrG). There were no labeled cells in the parasympathetic nuclei in medulla
oblongata and sacral cords. These results indicated that the origins of efferent nerves in
the rat renal plexus are almost all sympathetic ganglia, such as sympathetic trunk and
SrG, and cells in other ganglia may be secondary or accessory innervations.
Collapse
Affiliation(s)
- Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | |
Collapse
|
16
|
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The non-neuronal cholinergic system: Basic science, therapeutic implications and new perspectives. Life Sci 2012; 91:969-72. [DOI: 10.1016/j.lfs.2012.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|