1
|
Yang R, Zhang Y, Kang J, Zhang C, Ning B. Chondroitin Sulfate Proteoglycans Revisited: Its Mechanism of Generation and Action for Spinal Cord Injury. Aging Dis 2024; 15:153-168. [PMID: 37307832 PMCID: PMC10796098 DOI: 10.14336/ad.2023.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Reactive astrocytes (RAs) produce chondroitin sulfate proteoglycans (CSPGs) in large quantities after spinal cord injury (SCI) and inhibit axon regeneration through the Rho-associated protein kinase (ROCK) pathway. However, the mechanism of producing CSPGs by RAs and their roles in other aspects are often overlooked. In recent years, novel generation mechanisms and functions of CSPGs have gradually emerged. Extracellular traps (ETs), a new recently discovered phenomenon in SCI, can promote secondary injury. ETs are released by neutrophils and microglia, which activate astrocytes to produce CSPGs after SCI. CSPGs inhibit axon regeneration and play an important role in regulating inflammation as well as cell migration and differentiation; some of these regulations are beneficial. The current review summarized the process of ET-activated RAs to generate CSPGs at the cellular signaling pathway level. Moreover, the roles of CSPGs in inhibiting axon regeneration, regulating inflammation, and regulating cell migration and differentiation were discussed. Finally, based on the above process, novel potential therapeutic targets were proposed to eliminate the adverse effects of CSPGs.
Collapse
Affiliation(s)
- Rui Yang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Lin YL, Liao JW, Wang S, Sridharan B, Lee HJ, Li A, Chang KM, Wu CY, Huang S, Chang KT, Agrawal DC, Chen CJ, Lee MJ. Andrographolide Relieves Post-Operative Wound Pain but Affects Local Angiogenesis. Pharmaceuticals (Basel) 2022; 15:ph15121586. [PMID: 36559037 PMCID: PMC9785486 DOI: 10.3390/ph15121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Andrographolide (Andro), the major constituent of Andrographis paniculata Nees (Acanthaceae), is was known to reduces inflammatory reaction. In the current study, the ability of Andro to reduce pain sensation in a rat post-operative wound model was explored. The hind paws of 18 Sprague-Dawley rats (SD) bearing post-operative wounds received the following three treatments: Saline, Andro via direct injection into the paw (Andro-injected) and Tablet containing Andro + poly (lactic-co-glycolic acid) (PLGA) (Andro-tablet). Von Frey tests assessed mechanical allodynia at 1, 3, 5 h and 1-, 2-, 3-, 4-, and 5-days post-operation. Behavioral analyses were performed to measure reaction threshold and reaction frequencies. Immunoreactivity of p-ERK and GluR1 was examined in the dorsal horn of the spinal cord. Histopathological and immunostaining studies were conducted on paw epidermis to observe the gross morphology and angiogenesis. The threshold for inducing allodynia increased and the reaction frequency reduced in the Andro-injected group compared to the saline-group, at 3 h post-surgery and the effect lasted between 3-4 days. The threshold for inducing pain and reaction frequency for the Andro-tablet group did not differ from the saline-treated group. The levels of p-ERK and GluR1 in the dorsal horn were reduced after Andro treatment. No significant difference in wound healing index was observed between saline and Andro-injected groups, but CD-31 staining showed less angiogenesis in the Andro-injected group. Andro significantly reduced mechanical allodynia compared to saline treatment, both in shorter and longer time frames. Furthermore, Andro influenced the expression of p-ERK and GluR1 in the dorsal horn, and the angiogenesis process in the wound healing area.
Collapse
Affiliation(s)
- Yi-Lo Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Shunching Wang
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Badrinathan Sridharan
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Hsin-Ju Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Ai Li
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Kai-Ming Chang
- Department of Moleculer Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 112019, Taiwan
| | - Ching-Yang Wu
- Department of Thoracic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33302, Taiwan
| | - Siendong Huang
- Department of Applied Mathematics, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan
| | - Kai-Ting Chang
- Department of Basic Research, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan
| | - Dinesh Chandra Agrawal
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
| | - Ching-Jung Chen
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung 41349, Taiwan
- Correspondence:
| |
Collapse
|
3
|
Neuroprotection of Andrographolide Against Microglia-Mediated Inflammatory Injury and Oxidative Damage in PC12 Neurons. Neurochem Res 2019; 44:2619-2630. [PMID: 31562575 DOI: 10.1007/s11064-019-02883-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
Abstract
Andrographolide from leaves of Andrographis paniculata has been known to possess various bioactivities. In the present study, we aimed to explore the neuroprotection of andrographolide against inflammation-mediated injury and oxidative damage. In initial studies, our findings showed that pretreatment with andrographolide could effectively reduce neuronal cell death caused by LPS-induced conditioned supernatants. The further results indicated that this neuroprotective effect may be mainly due to the inhibition on the production of NO, TNF-α, IL-6, ROS, iNOS and enhancement of expression of anti-inflammatory marker CD206. Moreover, mechanism study revealed that the anti-inflammatory activity of andrographolide may be related to the suppression of nuclear translocation of NF-κB as well as the activation of Nrf2 and HO-1. Our study also showed that andrographolide could scavenge ROS and protect PC12 cells against H2O2- and 6-OHDA-mediated oxidative damage. In addition, several derivatives of andrographolide were prepared for evaluating the role of 3, 14, 19-hydroxy group on anti-inflammatory effect and cytoprotection of andrographolide. In conclusion, andrographolide protected neurons against inflammation-mediated injury via NF-κB inhibition and Nrf2/HO-1 activation and resisted oxidative damage via inhibiting ROS production. Our results will contribute to further exploration of the therapeutic potential of andrographolide in relation to neuroinflammation and neurodegenerative diseases.
Collapse
|
4
|
Wang HC, Tsay HS, Shih HN, Chen YA, Chang KM, Agrawal DC, Huang S, Lin YL, Lee MJ. Andrographolide relieved pathological pain generated by spared nerve injury model in mice. PHARMACEUTICAL BIOLOGY 2018; 56:124-131. [PMID: 29385888 PMCID: PMC6130553 DOI: 10.1080/13880209.2018.1426614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 09/27/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Andrographolide (Andro), found in large quantities in Andrographis paniculata Nees (Acanthaceae), is anti-inflammatory, especially in the central nervous system (CNS) glia. OBJECTIVE The objective of this study is to test Andro's ability to reduce allodynia in a spared nerve injury model. MATERIAL AND METHODS Male 30 g BalbC mice were divided into four groups: (1) Sham-operated control (Sham-group); (2) nerve injured and treated with saline (Saline-group); (3) nerve injured and treated with Andro (Andro-group); (4) nerve injured and treated with non-steroidal anti-inflammatory drugs (NSAIDS) (NSAIDS-group). Andro or NSAIDS (diclofenac salt) were injected intraperitoneally at 5 mg/kg body weight daily. Mechanical allodynia was assessed by von Frey tests at 3, 7, and 14 d. For immunohistochemical analysis, samples were collected at 7 d. RESULTS The threshold for inducing allodynia increased and the response percentage reduced in the Andro-group when compared with the Saline-group, as well as when compared with NSAIDS groups throughout 3-14 d. The ratio of threshold for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS groups was 20.42 and 11.67 at 14 d, respectively. The ratio of response percentage for OP-Andro/OP-saline and for OP-Andro/OP-NSAIDS was 0.32 and 0.39 at 14 d, respectively. Interleukin-1 (IL-1) immunostaining in the spinal cord was reduced in the Andro-group. Astrocytic activities were not significantly reduced in the Andro-group compared with the Saline-group at 7 d post-operation (PO) Conclusions: Andro reduced mechanical allodynia more than NSAIDS at the same concentration, and the observed behaviour was associated with a reduction in inflammatory cytokine produced in the spinal cord.
Collapse
Affiliation(s)
- Huang-Chi Wang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Hsin-Sheng Tsay
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Hui-Nung Shih
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Yi-An Chen
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Kai-Ming Chang
- Department of Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, ROC
| | - Dinesh Chandra Agrawal
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| | - Siendong Huang
- Department of Applied Mathematics, National Dong Hwa University, Hualien, Taiwan, ROC
| | - Yi-Lo Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, ROC
| |
Collapse
|
5
|
Gu L, Yu Q, Li Q, Zhang L, Lu H, Zhang X. Andrographolide Protects PC12 Cells Against β-Amyloid-Induced Autophagy-Associated Cell Death Through Activation of the Nrf2-Mediated p62 Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092844. [PMID: 30235892 PMCID: PMC6165383 DOI: 10.3390/ijms19092844] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 01/04/2023] Open
Abstract
Recent studies mentioned that Andrographolide (Andro), the main bioactive component of traditional Chinese medicine Andrographis paniculata, may be a potential natural product for treating Alzheimer's disease, but the underlining mechanism remains to be discovered. In this study, we investigated whether Andro regulates the nuclear factor E2-related factor 2 (Nrf2)/Sequestosome 1 (p62) signaling pathway and activates autophagy to protect neuronal PC12 cells from the toxicity of the β-amyloid (Aβ) peptide. Our results revealed that Andro protected and rescued PC12 cells from Aβ1–42-induced cell death and restored abnormal changes in nuclear morphology, lactate dehydrogenase, malondialdehyde, intracellular reactive oxygen species, and mitochondrial membrane potential. RT-PCR and Western blotting analysis demonstrated that Andro activated autophagy-related genes and proteins (Beclin-1 and LC3); meanwhile, it also augmented the Nrf2 and p62 expression in mRNA and protein levels, and reduced p-tau and p21 protein expression in Aβ1–42-stimulated cells. Then, further study showed that the pre-transfection of cells with Nrf2 small interfering RNA (siRNA) resulted in the downregulation of p62, Beclin-1, and LC3 proteins expression, as well as the upregulation of p21. Furthermore, the pre-transfection of cells with p62 siRNA didn’t block the Nrf2 protein expression, accompanying with an elevated p21. Taken together, these results showed that Andro significantly ameliorated cell death due to Aβ1–42 insult through the activation of autophagy and the Nrf2-mediated p62 signaling pathway.
Collapse
Affiliation(s)
- Lili Gu
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Qingqing Yu
- Zhejiang Chinese Medical University, College of Pharmaceutical science, Hangzhou 310053, China.
| | - Qin Li
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Lingxi Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| | - Hong Lu
- Zhejiang Chinese Medical University, College of Pharmaceutical science, Hangzhou 310053, China.
| | - Xinyue Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
6
|
Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw S, Khan IN, Saravi SSS, Ahmad S, Rehman S, Gupta VK, Găman MA, Găman AM, Yele S, Das AK, de Castro E Sousa JM, de Moura Dantas SMM, Rolim HML, de Carvalho Melo-Cavalcante AA, Mubarak MS, Yarla NS, Shilpi JA, Mishra SK, Atanasov AG, Kamal MA. Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett 2018; 420:129-145. [PMID: 29408515 DOI: 10.1016/j.canlet.2018.01.074] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The diterpene lactone andrographolide, isolated from Andrographis paniculata, has been proven to possess several important protective biological activities, including antioxidant, anti-inflammatory, immunomodulatory, antiseptic, antimicrobial, cytotoxic, hypolipidemic, cardioprotective, hepatoprotective, and neuroprotective effects. In addition, it has been reported to play a therapeutic role in the treatment of major human diseases, such as Parkinson's disease, rheumatoid arthritis, and colitis. This systematic review aims to highlight andrographolide as a promising agent in cancer treatment. To this purpose, a number of databases were used to search for the cytotoxic/anticancer effects of andrographolide in pre-clinical and clinical studies. Among 1703 identified literature articles, 139 were included in this review; 109 were investigated as non-clinical, whereas 24, 3, and 3 were pre-clinical, clinical, and non-pre-clinical trials, respectively. Among the model systems, cultured cell lines appeared as the most frequently (79.14%) used, followed by in vivo models using rodents, among others. Furthermore, andrographolide was found to exert cytotoxic/anticancer effects on almost all types of cell lines with the underlying mechanisms involving oxidative stress, cell cycle arrest, anti-inflammatory and immune system mediated effects, apoptosis, necrosis, autophagy, inhibition of cell adhesion, proliferation, migration, invasion, anti-angiogenic activity, and other miscellaneous actions. After careful consideration of the relevant evidence, we suggest that andrographolide can be one of the potential agents in the treatment of cancer in the near future.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Eunüs S Ali
- Gaco Pharmaceuticals and Research Laboratory, Dhaka, 1000, Bangladesh; College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Md Amirul Islam
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Subrata Shaw
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Seyed Soheil Saeedi Saravi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, USA; Department of Toxicology-Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Shahnawaz Rehman
- Department of Bio-Sciences, Integral University, Lucknow, U.P., 226026, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Facoltà di Medicina e Chirurgia, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Amelia Maria Găman
- Department of Pathophysiology, Research Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy of Craiova, Romania; Department of Haematology, Filantropia City Hospital of Craiova, Craiova, Romania
| | - Santosh Yele
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, India
| | - Asish Kumar Das
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | | | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems (NANOSFAR), Postgraduate Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500003, T.N., India
| | - Jamil A Shilpi
- Pharmacy Discipline, School of Life Sciences, Khulna University, Khulna, 9208, Bangladesh
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University, Sagar, 470003, M.P., India
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria.
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
7
|
In vivo inhibitory activity of andrographolide derivative ADN-9 against liver cancer and its mechanisms involved in inhibition of tumor angiogenesis. Toxicol Appl Pharmacol 2017; 327:1-12. [DOI: 10.1016/j.taap.2017.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
|
8
|
Tan WSD, Liao W, Zhou S, Wong WSF. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem Pharmacol 2017; 139:71-81. [PMID: 28377280 DOI: 10.1016/j.bcp.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022]
Abstract
Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/prevention & control
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/prevention & control
- Dermatitis/drug therapy
- Dermatitis/immunology
- Dermatitis/metabolism
- Dermatitis/prevention & control
- Diterpenes/adverse effects
- Diterpenes/chemistry
- Diterpenes/pharmacology
- Diterpenes/therapeutic use
- Drug Design
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Hepatitis/drug therapy
- Hepatitis/immunology
- Hepatitis/metabolism
- Hepatitis/prevention & control
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/immunology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/prevention & control
- Models, Biological
- NF-E2-Related Factor 2/agonists
- NF-E2-Related Factor 2/metabolism
- NF-kappa B p50 Subunit/antagonists & inhibitors
- NF-kappa B p50 Subunit/chemistry
- NF-kappa B p50 Subunit/metabolism
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/prevention & control
- Oxidative Stress/drug effects
- Pneumonia/drug therapy
- Pneumonia/immunology
- Pneumonia/metabolism
- Protective Agents/chemistry
- Protective Agents/metabolism
- Protective Agents/therapeutic use
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, Singapore 117600, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, Singapore 117600, Singapore
| | - Shuo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, Singapore 117600, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, Singapore 117600, Singapore; Immunology Program, Life Science Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
9
|
Wong SY, Tan MGK, Banks WA, Wong WSF, Wong PTH, Lai MKP. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes. J Neuroinflammation 2016; 13:34. [PMID: 26860080 PMCID: PMC4748554 DOI: 10.1186/s12974-016-0498-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/01/2016] [Indexed: 01/04/2023] Open
Abstract
Background Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide’s potential utility as an anti-neuroinflammatory therapeutic. Methods The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Results Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. Conclusions These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0498-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siew Ying Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| | - Michelle G K Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore. .,Department of Clinical Research, Singapore General Hospital, Outram, Singapore.
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. .,Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore. .,Immunology Program, Life Science Institute, National University of Singapore, Kent Ridge, Singapore.
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Kent Ridge, 117600, Singapore.
| |
Collapse
|
10
|
Xiong WB, Shao ZJ, Xiong Y, Chen J, Sun Y, Zhu L, Zhou LM. Dehydroandrographolide enhances innate immunity of intestinal tract through up-regulation the expression of hBD-2. ACTA ACUST UNITED AC 2015. [PMID: 26223251 PMCID: PMC4520058 DOI: 10.1186/s40199-015-0119-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Dehydroandrographolide (DA) is one of major active components in the well-known oriental herbal medicine Andrographis paniculata (Burm.f) Nees which belongs to the Acanthaceae family. DA is used for the treatment of infections in China. However, DA has not been found to significantly inhibit bacterial and viral growth directly. The current study investigates the effect of DA on the expression of human β –defensin-2 (hBD-2) in human intestinal epithelial cells and the possible signaling pathways. Methods Human intestinal epithelial HCT-116 cells were incubated with 1–100 μM DA for 2–24 h. RT–PCR and Western blot were used to assess the expression of hBD-2. The specific inhibitors were used and the levels of phosphorylation of signaling molecules were detected for dissecting the signaling pathways leading to the induction of hBD-2. Results MTT assay showed there was no obvious cytotoxicity for HCT-116 cells by 1–100 μM DA treatment. RT-PCR and Western blot assays showed that DA (1–100 μM) could up-regulate the expression of hBD-2, and the effect lasted longer than 24 h. By using SB203580 and SB202190 (inhibitors of p38), the enhancement of hBD-2 expression were significantly attenuated. However, inhibitor of ERK and inhibitor of JNK could not block the effect of DA. Furthermore, Western blot found activation of p38 but not ERK and JNK in DA-treated HCT-116 cells. Conclusion The results suggested that DA enhanced innate immunity of intestinal tract by up-regulating the expression of hBD-2 through the p38 MAPK pathways.
Collapse
Affiliation(s)
- Wen-Bi Xiong
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China.
| | - Zhen-Jun Shao
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China
| | - Yao Xiong
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China
| | - Jian Chen
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China
| | - Yun Sun
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China
| | - Ling Zhu
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China.
| | - Li-Ming Zhou
- Department of Pharmacology, West China Medical Center, Preclinical and Forensic Medical College, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
11
|
Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, Sagineedu SR. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees. PLoS One 2014; 9:e87034. [PMID: 24586262 PMCID: PMC3934858 DOI: 10.1371/journal.pone.0087034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA) for all the andrographolides.
Collapse
Affiliation(s)
- Alireza Valdiani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
- * E-mail:
| | - Daryush Talei
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
- Medicinal Plant Research Centre, Shahed University, Tehran, Iran
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mihdzar Abdul Kadir
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mahmood Maziah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Mohd Yusop Rafii
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor DE, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|