1
|
Cai K, Chen X, Cao Y, Ran L, Bu Q, Hu D, Feng Z, Cao M. Antidepressant effect of Radix bupleuri - Radix paeoniae alba herb pair on chronic unpredictable mild stress rats based on cortical metabolomics. BMC Complement Med Ther 2025; 25:168. [PMID: 40348996 PMCID: PMC12065362 DOI: 10.1186/s12906-025-04898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVE Depression is a serious mental disorder, and its incidence rate has increased rapidly. Radix Bupleuri (root of Bupleurum chinensis DC. BR)-Radix Paeoniae Alba (root of Paeonia lactiflora Pall. PRA) herb pair has been historically used for treating depression in Traditional Chinese Medicine (TCM) while the mechanisms need to be fully revealed. METHODS The effects of the BR-PRA herb pair were investigated using a rat model of chronic unpredictable mild stress (CUMS). First, the depressive-like behavior of rats was evaluated by open field test (OFT), elevated plus-maze test (EMP), and forced swimming test (FST). Secondly, histomorphological changes in the CA1 and CA3 regions of the hippocampus were analyzed by hematoxylin-eosin, nissl, and Golgi staining. Ultra high-performance liquid chromatograph tandem quadrupole mass spectrometry (UHPLC-QTRAP-MS/MS) was performed to reveal potential antidepressant mechanisms. RESULTS Following CUMS exposure, rats displayed depressive-like behavior, and neuronal death in the hippocampal region was observed. Consequently, these abnormal changes were reversed by BR-PRA herb-pair intervention. A total of 26 different metabolites related to depression were identified by metabolomics, mainly involving eleven metabolic pathways of pentose phosphate pathway, purine metabolism, and amino sugar and nucleotide sugar metabolism. BR-PRA herb-pair improved four metabolites, including homocitrulline, N-acetyllysine, corticosterone, and N-acetylglutamate. It also may affect the development of depression by interfering with the hypothalamus-pituitary-adrenal axis (HPA axis), amino acid metabolism related to lysine and glutamate, and modulation of oxidative stress. CONCLUSION BR-PRA herb-pair alleviated depressive-like behavior in CUMS rats, recovered hippocampus damage, and regulated cerebral cortex metabolism, which may be related to the HPA axis, amino acid metabolism related to lysine and glutamate, and modulation of oxidative stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Kanglin Cai
- The Second People's Hospital Affiliated to Three Gorges University, Yichang Second People's Hospital, Yichang, Hubei, 443000, China
- College of Medicine and Health Science of China Three Gorges University, Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Three Gorges University, Yichang, Hubei, 443002, China
| | - Xinyu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Neurology, Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Yongkai Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Liangdi Ran
- The Second People's Hospital Affiliated to Three Gorges University, Yichang Second People's Hospital, Yichang, Hubei, 443000, China
| | - Qinpeng Bu
- College of Medicine and Health Science of China Three Gorges University, Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Three Gorges University, Yichang, Hubei, 443002, China
| | - Dajun Hu
- The Second People's Hospital Affiliated to Three Gorges University, Yichang Second People's Hospital, Yichang, Hubei, 443000, China
| | - Zhitao Feng
- College of Medicine and Health Science of China Three Gorges University, Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Three Gorges University, Yichang, Hubei, 443002, China.
| | - Meiqun Cao
- Department of Neurology, Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China.
- Department of Integrated Traditional Chinese and Western Medicine, Shenzhen Institute of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
2
|
Mohammadi L, Baluchnejadmojarad T, Goudarzi M, Khodashenas V, Khoshravesh R, Roghani M. Promising protective potential of MiR-103a-3p against polystyrene microplastic neurotoxicity in rats. FRONTIERS IN TOXICOLOGY 2025; 7:1560980. [PMID: 40236806 PMCID: PMC11996803 DOI: 10.3389/ftox.2025.1560980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction: Microplastics are ubiquitous environmental pollutants with potential neurotoxic effects that can impair learning and memory. MicroRNAs are essential regulators of a number of physiological and pathological processes, but detailed information on the impact of miRNAs on the neurotoxic effects of microplastics is lacking. Methods: In the present study, polystyrene microplastics (PS-MPs) were administered orally and miR-103a-3p was injected intracerebroventricularly as a treatment for PS-MPs-induced neurotoxicity. Results and Discussion: Performance in the novel object discrimination Y-maze and Barnes maze tests indicated that miR-103a-3p mitigates the deleterious effects of PS-MPs on learning and memory. Oxidative stress, pyroptosis, apoptosis and inflammation induced by PS-MPs were modulated after miR- 103a-3p injection by reducing malondialdehyde, protein carbonyl, nitrite, caspase 3, caspase 1, TNFα, and NLRP3 levels in hippocampal tissue. Our results also showed that miR-103a-3p can reverse the impact of PS-MPs on astrocytic reaction and SIRT1 and BDNF levels. MiR-103a-3p alleviated PS-MPs-induced endoplasmic reticulum (ER) stress through reducing the levels of PERK, CHOP and GRP78. These findings imply that miR-103a-3p exerts a neuroprotective influence against cognitive deficits induced by exposure to PS-MPs. This is achieved by reducing inflammation, oxidative stress, apoptosis and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mina Goudarzi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Khodashenas
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Khoshravesh
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Braun AC, Oliveira TC, Thomazini LCD, Argenti G, Kotzian BJ, Machado V, Conte JHM, Zanfir C, Souto ACA, Ulian B, Vidart J, Wajner SM. Induced Types 2 and 3 Deiodinase in Non-Thyroidal Illness Syndrome and the Implications to Critical Illness-Induced Myopathy-A Prospective Cohort Study. Int J Mol Sci 2025; 26:2410. [PMID: 40141055 PMCID: PMC11941936 DOI: 10.3390/ijms26062410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Loss of muscle mass and strength is a common condition associated with adverse outcomes in critically ill patients. Here, we determined the correlation between non-thyroidal illness (NTIS) and molecular alterations in the muscle of critically ill individuals. We evaluated deiodinase expression, intramuscular triiodothyronine (T3) levels, and mitochondria and sarcoplasmic reticulum components. The cellular colocalization of the enzymes and its influence on myocytes and genes regulated by T3 were shown, including those of mitochondria. A prospective cohort of 96 patients. Blood and muscular samples were collected on admission to the intensive care unit (ICU), as well as clinical data and ultrasonographic measurements. Patients with NTIS showed increased oxidative stress markers associated with critical illness in muscle biopsy, such as carbonyl content and low sulfhydryl and GSH. The distribution pattern of deiodinases in muscle and its biochemical properties showed significant pathophysiological linkage between NTIS and muscle loss, as type 3-deiodinase (D3) was highly expressed in stem cells, preventing their differentiation in mature myocytes. Despite the high type 2-deiodinase (D2) expression in muscle tissue in the acute phase of critical illness, T3 was unmeasurable in the samples. In this scenario, we also demonstrated impaired expression of glucose transporters GLUT4, IRS1, and 2, which are involved in muscle illness. Here, we provide evidence that altered thyroid hormone metabolism contributes to stem cell dysfunction and further explain the mechanisms underlying critical illness-induced myopathy.
Collapse
Affiliation(s)
- André Cardoso Braun
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Thaliane Carvalho Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Ludmilla C. D. Thomazini
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Gustavo Argenti
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Bruno Jaskulski Kotzian
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Valentina Machado
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - João Henrique M. Conte
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Carolina Zanfir
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Amanda C. A. Souto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Bruna Ulian
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Josi Vidart
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil; (A.C.B.)
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Hay A, Aucher W, Pigeault R, Bertaux J, Crépin A, Remaury QB, Héchard Y, Samba-Louaka A, Villéger R. Legionella pneumophila subverts the antioxidant defenses of its amoeba host Acanthamoeba castellanii. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100338. [PMID: 39877885 PMCID: PMC11772960 DOI: 10.1016/j.crmicr.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, Acanthamoeba castellanii is a natural host in water networks and a model commonly used to study the interaction between L. pneumophila and its host. However, certain crucial aspects of this interaction remain unclear. One such aspect is the role of oxidative stress, with studies focusing on reactive oxygen species (ROS) production by the host and putting less emphasis on the involvement of the host's antioxidant defenses during the infectious process. In this study, we propose to examine the consequences of infection with L. pneumophila wild-type or with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly, on A. castellanii. For this purpose, we looked at the host ROS levels, host antioxidant defense transcripts, and metabolites linked to the amoeba's antioxidant defenses. It is known that L. pneumophila WT can block the activation of NADPH oxidase as soon as it enters the macrophage and suppress ROS production compared to ΔdotA mutant strain. In addition, it has been shown in macrophages that L. pneumophila WT decreases ROS at 24 h p.i.; here we confirm this result in amoebae and suggest that this decrease could be partly explained by L. pneumophila differentially regulated host antioxidant defense transcripts at 6 h p.i.. We also explored the metabolome of A. castellanii infected or not with L. pneumophila. Among the 617 metabolites identified, four with reduced abundances during infection may be involved in antioxidant responses. This study suggests that L. pneumophila could hijack the host's antioxidant defenses during its replication to maintain a reduced level of ROS.
Collapse
Affiliation(s)
- Alban Hay
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Willy Aucher
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Romain Pigeault
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Joanne Bertaux
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Quentin Blancart Remaury
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers, France
| | - Yann Héchard
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Ascel Samba-Louaka
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France
| |
Collapse
|
5
|
Longo L, Marschner RA, de Freitas LBR, de Bona LR, Behrens L, Pereira MHM, de Souza VEG, Leonhard LC, Zanettini G, Pinzon CE, Lima GJSP, Schmidt Cerski CT, Uribe-Cruz C, Wajner SM, Álvares-da-Silva MR. Redefining the Role of Ornithine Aspartate and Vitamin E in Metabolic-Dysfunction-Associated Steatotic Liver Disease through Its Biochemical Properties. Int J Mol Sci 2024; 25:6839. [PMID: 38999949 PMCID: PMC11241397 DOI: 10.3390/ijms25136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
It is known that the inflammation process leading to oxidative stress and thyroid hormone metabolism dysfunction is highly altered in metabolic dysfunction associated with steatotic liver disease (MASLD). This study aims to address the effect of ornithine aspartate (LOLA) and vitamin E (VitE) in improving these processes. Adult Sprague-Dawley rats were assigned to five groups and treated for 28 weeks: controls (n = 10) received a standard diet (for 28 weeks) plus gavage with distilled water (DW) from weeks 16 to 28. MASLD groups received a high-fat and choline-deficient diet for 28 weeks (MASLD group) and daily gavage with 200 mg/kg/day of LOLA, or twice a week with 150 mg of VitE from weeks 16-28. LOLA diminished collagen deposition (p = 0.006). The same treatment diminished carbonyl, TBARS, and sulfhydryl levels and GPx activity (p < 0.001). Type 3 deiodinase increased in the MASLD group, downregulating T3-controlled genes, which was corrected in the presence of LOLA. LOLA also promoted a near-normalization of complex II, SDH, and GDH activities (p < 0.001) and improved reticulum stress, with a reduction in GRP78 and HSPA9/GRP75 protein levels (p < 0.05). The enhanced energy production and metabolism of thyroid hormones, probably because of GSH replenishment provided by the L-glutamate portion of LOLA, opens a new therapeutic approach for MASLD.
Collapse
Affiliation(s)
- Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Rafael Aguiar Marschner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Laura Bainy Rodrigues de Freitas
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Laura Renata de Bona
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Luiza Behrens
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Matheus Henrique Mariano Pereira
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Luiza Cecília Leonhard
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Giulianna Zanettini
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Pinzon
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Guilherme Jorge Semmelmann Pereira Lima
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Schmidt Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Facultad de Ciencias de la Salud, Universidad Católica de las Misiones, Posadas 3300, Misiones, Argentina
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Rio Grande do Sul, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Marschner RA, Roginski AC, Ribeiro RT, Longo L, Álvares-da-Silva MR, Wajner SM. Uncovering Actions of Type 3 Deiodinase in the Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Cells 2023; 12:cells12071022. [PMID: 37048095 PMCID: PMC10093729 DOI: 10.3390/cells12071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has gained worldwide attention as a public health problem. Nonetheless, lack of enough mechanistic knowledge restrains effective treatments. It is known that thyroid hormone triiodothyronine (T3) regulates hepatic lipid metabolism, and mitochondrial function. Liver dysfunction of type 3 deiodinase (D3) contributes to MAFLD, but its role is not fully understood. Objective: To evaluate the role of D3 in the progression of MAFLD in an animal model. Methodology: Male/adult Sprague Dawley rats (n = 20) were allocated to a control group (2.93 kcal/g) and high-fat diet group (4.3 kcal/g). Euthanasia took place on the 28th week. D3 activity and expression, Uncoupling Protein 2 (UCP2) and type 1 deiodinase (D1) expression, oxidative stress status, mitochondrial, Krebs cycle and endoplasmic reticulum homeostasis in liver tissue were measured. Results: We observed an increase in D3 activity/expression (p < 0.001) related to increased thiobarbituric acid reactive substances (TBARS) and carbonyls and diminished reduced glutathione (GSH) in the MAFLD group (p < 0.05). There was a D3-dependent decrease in UCP2 expression (p = 0.01), mitochondrial capacity, respiratory activity with increased endoplasmic reticulum stress in the MAFLD group (p < 0.001). Surprisingly, in an environment with lower T3 levels due to high D3 activity, we observed an augmented alpha-ketoglutarate dehydrogenase (KGDH) and glutamate dehydrogenase (GDH) enzymes activity (p < 0.05). Conclusion: Induced D3, triggered by changes in the REDOX state, decreases T3 availability and hepatic mitochondrial capacity. The Krebs cycle enzymes were altered as well as endoplasmic reticulum stress. Taken together, these results shed new light on the role of D3 metabolism in MAFLD.
Collapse
Affiliation(s)
- Rafael Aguiar Marschner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Ana Cristina Roginski
- Post-Graduate Program in Biochemestry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Post-Graduate Program in Biochemestry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Simone Magagnin Wajner
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
- Correspondence:
| |
Collapse
|
7
|
Lopes FF, Lamberty Faverzani J, Hammerschmidt T, Aguilar Delgado C, Ferreira de Oliveira J, Wajner M, Regla Vargas C. Evaluation of oxidative damage to biomolecules and inflammation in patients with urea cycle disorders. Arch Biochem Biophys 2023; 736:109526. [PMID: 36702451 DOI: 10.1016/j.abb.2023.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Urea cycle disorders (UCD) are inborn errors of metabolism that occur due to a loss of function in enzymes and transporters involved in the urea cycle, causing an intoxication by hyperammonemia and accumulation of metabolites. Patients can develop hepatic encephalopathy (HE), severe neurological and motor disabilities, and often death. The mechanisms involved in the pathophysiology of UCD are many and complex, but there are strong indications that oxidative stress and inflammation are present, being responsible for at least part of the cellular damage that occurs in these diseases. The aim of this study was to evaluate oxidative and nitrosative damage and inflammation in UCD, to better understand the pathophysiology mechanisms of these diseases. We evaluated the nitrite and nitrate content, thiobarbituric acid-reactive substances (TBARS), carbonyl protein content and a panel of cytokines in plasma sample of 14 patients. The UCD patients group consisted of individuals affected with ornithine transcarbamylase deficiency (n = 8), carbamoyl phosphate synthetase deficiency (n = 2), argininosuccinate synthetase deficiency (n = 2); arginase 1 deficiency (n = 1) and argininosuccinate lyase deficiency (n = 1). Patients mean age at diagnosis was 5.25 ± 9.86 years-old and mean concentrations were compared with healthy individuals of matched age and gender. We found a significant reduction in nitrogen reactive species in patients when compared to controls. TBARS was increased in patients, indicating lipid peroxidation. To evaluate protein oxidative damage in UCD, the carbonyl content was measured, and the results also demonstrated an increase in this biomarker. Finally, we found that UCD patients have enhanced concentrations of cytokines, with pro-inflammatory interleukins IL-6, IL-8, interferon-γ and TNF-α, and anti-inflammatory IL-10 being increased when compared to the control group. In conclusion, our results demonstrate that oxidative stress and inflammation occurs in UCD and probably contribute to the severe brain damage present in patients.
Collapse
Affiliation(s)
- Franciele Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tatiane Hammerschmidt
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia Ferreira de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Relationship among Low T3 Levels, Type 3 Deiodinase, Oxidative Stress, and Mortality in Sepsis and Septic Shock: Defining Patient Outcomes. Int J Mol Sci 2023; 24:ijms24043935. [PMID: 36835345 PMCID: PMC9962461 DOI: 10.3390/ijms24043935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
Low T3 syndrome occurs frequently in patients with sepsis. Type 3 deiodinase (DIO3) is present in immune cells, but there is no description of its presence in patients with sepsis. Here, we aimed to determine the prognostic impact of thyroid hormones levels (TH), measured on ICU admission, on mortality and evolution to chronic critical illness (CCI) and the presence of DIO3 in white cells. We used a prospective cohort study with a follow-up for 28 days or deceased. Low T3 levels at admission were present in 86.5% of the patients. DIO3 was induced by 55% of blood immune cells. The cutoff value of 60 pg/mL for T3 displayed a sensitivity of 81% and specificity of 64% for predicting death, with an odds ratio of 4.89. Lower T3 yielded an area under the receiver operating characteristic curve of 0.76 for mortality and 0.75 for evolution to CCI, thus displaying better performance than commonly used prognostic scores. The high expression of DIO3 in white cells provides a novel mechanism to explain the reduction in T3 levels in sepsis patients. Further, low T3 levels independently predict progression to CCI and mortality within 28 days for sepsis and septic shock patients.
Collapse
|
9
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood-brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain's pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
| |
Collapse
|
10
|
Individuals with controlled hypertension show endothelial integrity following a bout of moderate-intensity exercise: randomized clinical trial. Sci Rep 2021; 11:8528. [PMID: 33879820 PMCID: PMC8058090 DOI: 10.1038/s41598-021-87990-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/07/2021] [Indexed: 01/30/2023] Open
Abstract
To examine the acute effects of aerobic exercise (AE), resistance exercise (RE) or combined exercise (CE) on flow-mediated dilation (FMD), progenitor cells (PCs), endothelial progenitor cells (EPCs), oxidative stress markers and endothelial-cell derived microvesicles (EMVs) in patients with hypertension. This is a randomized, parallel-group clinical trial involving an intervention of one session of three different modalities of exercise. Thirty-three males (43 ± 2y) were randomly divided into three groups: a session of AE (n = 11, 40 min, cycle ergometer, 60% HRR); a session of RE (n = 11, 40 min, 4 × 12 lower limb repetitions, 60% 1-RM); or a session of CE (n = 11, 20-min RE + 20-min AE). FMD was assessed 10 min before and 10, 40 and 70 min post-intervention. Blood samples were collected at the same time points (except 40 min). FMD were similar in all groups and from baseline (within each group) after a single exercise bout (AE, RE or CE). At 70 min, RE group showed higher levels of PCs compared to the AE (81%) and CE group (60%). PC levels were reduced from baseline in all groups (AE: 32%, p = 0.037; RE: 15%, p = 0.003; CE: 17%, p = 0.048). The levels of EPCs, EMVs and oxidative stress were unchanged. There were no acute effects of moderate-intensity exercise on FMD, EPCs, EMVs and oxidative stress, but PCs decreased regardless of the exercise modality. Individuals with controlled hypertension do not seem to have impaired vascular function in response to a single exercise bout.
Collapse
|
11
|
Sex-dependent metabolic effects of pregestational exercise on prenatally stressed mice. J Dev Orig Health Dis 2020; 12:271-279. [PMID: 32406352 DOI: 10.1017/s2040174420000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stressful events during the prenatal period have been related to hyperactive hypothalamic-pituitary-adrenal (HPA) axis responses as well as metabolic changes in adult life. Moreover, regular exercise may contribute to the improvement of the symptoms associated with stress and stress-related chronic diseases. Therefore, this study aims to investigate the effects of exercise, before the gestation period, on the metabolic changes induced by prenatal stress in adult mice. Female Balb/c mice were divided into three groups: control (CON), prenatal restraint stress (PNS) and exercise before the gestational period plus PNS (EX + PNS). When adults, the plasmatic biochemical analysis, oxidative stress, gene expression of metabolic-related receptors and sex differences were assessed in the offspring. Prenatal stress decreased neonatal and adult body weight when compared to the pregestational exercise group. Moreover, prenatal stress was associated with reduced body weight in adult males. PNS and EX + PNS females showed decreased hepatic catalase. Pregestational exercise prevented the stress-induced cholesterol increase in females but did not prevent the liver mRNA expression reduction on the peroxisome proliferator-activated receptors (PPARs) α and γ in PNS females. Conversely, PNS and EX + PNS males showed an increased PPARα mRNA expression. In conclusion, pregestational exercise prevented some effects of prenatal stress on metabolic markers in a sex-specific manner.
Collapse
|
12
|
Marschner RA, Banda P, Wajner SM, Markoski MM, Schaun M, Lehnen AM. Short-term exercise training improves cardiac function associated to a better antioxidant response and lower type 3 iodothyronine deiodinase activity after myocardial infarction. PLoS One 2019; 14:e0222334. [PMID: 31513640 PMCID: PMC6742396 DOI: 10.1371/journal.pone.0222334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Aims We assessed the effects of a short-term exercise training on cardiac function, oxidative stress markers, and type 3 iodothyronine deiodinase (D3) activity in cardiac tissue of spontaneously hypertensive rats (SHR) following experimental myocardial infarction (MI). Methods Twenty-four SHR (aged 3 months) were allocated to 4 groups: sham+sedentary, sham+trained, MI+sedentary and MI+trained. MI was performed by permanent ligation of the coronary artery. Exercise training (treadmill) started 96 hours after MI and lasted for 4 weeks (~60% maximum effort, 4x/week and 40 min/day). Cardiac function (echocardiography), thioredoxin reductase (TRx), total carbonyl levels, among other oxidative stress markers and D3 activity were measured. A Generalized Estimating Equation was used, followed by Bonferroni’s test (p<0.05). Results MI resulted in an increase in left ventricular mass (p = 0.002) with decreased cardiac output (~22.0%, p = 0.047) and decreased ejection fraction (~41%, p = 0.008) as well as an increase in the carbonyl levels (p = 0.001) and D3 activity (~33%, p<0.001). Exercise training resulted in a decrease in left ventricular mass, restored cardiac output (~34%, p = 0.048) and ejection fraction (~20%, p = 0.040), increased TRx (~85%, p = 0.007) and reduced carbonyl levels (p<0.001) and D3 activity (p<0.001). Conclusions Our short-term exercise training helped reverse the effects of MI on cardiac function. These benefits seem to derive from a more efficient antioxidant response and lower D3 activity in cardiac tissue.
Collapse
Affiliation(s)
- Rafael Aguiar Marschner
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil
- Thyroid Division, Endocrinology Service, Hospital de Clínicas de Porto Alegre/Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Banda
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid Division, Endocrinology Service, Hospital de Clínicas de Porto Alegre/Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Maximiliano Schaun
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Machado Lehnen
- Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
13
|
Panza E, Martinelli D, Magini P, Dionisi Vici C, Seri M. Hereditary Spastic Paraplegia Is a Common Phenotypic Finding in ARG1 Deficiency, P5CS Deficiency and HHH Syndrome: Three Inborn Errors of Metabolism Caused by Alteration of an Interconnected Pathway of Glutamate and Urea Cycle Metabolism. Front Neurol 2019; 10:131. [PMID: 30853934 PMCID: PMC6395431 DOI: 10.3389/fneur.2019.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by a progressive rigidity and weakness of the lower limbs, caused by pyramidal tract lesions. As of today, 80 different forms of HSP have been mapped, 64 genes have been cloned, and new forms are constantly being described. HSPs represent an intensively studied field, and the functional understanding of the biochemical and molecular pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive mutations in the ALDH18A1 gene resulting in the deficiency of the encoded enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically characterized by highly penetrant spastic paraplegia. These three diseases represent a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on these forms, on the common features among them and on the hypotheses for possible shared pathogenetic mechanisms causing the HSP phenotype.
Collapse
Affiliation(s)
- Emanuele Panza
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Pamela Magini
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Carlo Dionisi Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Marco Seri
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Oxidative stress in urea cycle disorders: Findings from clinical and basic research. Clin Chim Acta 2018; 477:121-126. [DOI: 10.1016/j.cca.2017.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
15
|
de Sousa SM, Braz GRF, Freitas CDM, de Santana DF, Sellitti DF, Fernandes MP, Lagranha CJ. Oxidative injuries induced by maternal low-protein diet in female brainstem. Nutr Neurosci 2017; 21:580-588. [PMID: 28494696 DOI: 10.1080/1028415x.2017.1325974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many studies have shown that a maternal low-protein diet increases the susceptibility of offspring to cardiovascular disease in later-life. Moreover, a lower incidence of cardiovascular disease in females than in males is understood to be largely due to the protective effect of high levels of estrogens throughout a woman's reproductive life. However, to our knowledge, the role of estradiol in moderating the later-life susceptibility of offspring of nutrient-deprived mothers to cardiovascular disease is not fully understood. The present study is aimed at investigating whether oxidative stress in the brainstem caused by a maternal low-protein diet administered during a critical period of fetal/neonatal brain development (i.e during gestation and lactation) is affected by estradiol levels. Female Wistar rat offspring were divided into four groups according to their mothers' diets and to the serum estradiol levels of the offspring at the time of testing: (1) 22 days of age/control diet: (2) 22 days of age/low-protein diet; (3) 122 days of age/control diet: (4) 122 days of age/low-protein diet. Undernutrition in the context of low serum estradiol compared to undernutrition in a higher estradiol context resulted in increased levels of oxidative stress biomarkers and a reduction in enzymatic and non-enzymatic antioxidant defenses. Total global oxy-score showed oxidative damage in 22-day-old rats whose mothers had received a low-protein diet. In the 122-day-old group, we observed a decrease in oxidative stress biomarkers, increased enzymatic antioxidant activity, and a positive oxy-score when compared to control. We conclude from these results that following a protein deficiency in the maternal diet during early development of the offspring, estrogens present at high levels at reproductive age may confer resistance to the oxidative damage in the brainstem that is very apparent in pre-pubertal rats.
Collapse
Affiliation(s)
- Shirley Maria de Sousa
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Glauber Rudá F Braz
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Cristiane de Moura Freitas
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - David Filipe de Santana
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | | | - Mariana P Fernandes
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| | - Claudia J Lagranha
- a Laboratory of Biochemistry and Exercise Biochemistry CAV-Federal University of Pernambuco , UFPE 55608-680 , Brazil
| |
Collapse
|
16
|
Lehnen TE, Santos MV, Lima A, Maia AL, Wajner SM. N-Acetylcysteine Prevents Low T3 Syndrome and Attenuates Cardiac Dysfunction in a Male Rat Model of Myocardial Infarction. Endocrinology 2017; 158:1502-1510. [PMID: 28323971 DOI: 10.1210/en.2016-1586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
Nonthyroidal illness syndrome (NTIS) affects patients with myocardial infarction (MI). Oxidative stress has been implicated as a causative factor of NTIS, and reversed via N-acetylcysteine (NAC). Male Wistar rats submitted to left anterior coronary artery occlusion received NAC or placebo. Decreases in triiodothyronine (T3) levels were noted in MI-placebo at 10 and 28 days post-MI, but not in MI-NAC. Groups exhibited similar infarct areas whereas MI-NAC exhibited higher ejection fraction than did MI-placebo. Left ventricular systolic and diastolic diameters were also preserved in MI-NAC, but not in MI-placebo. Ejection fraction was positively correlated with T3 levels. Oxidative balance was deranged only in MI-placebo animals. Increased type 3 iodothyronine deiodinase expression was detected in the cardiomyocytes of MI-placebo compared with normal heart tissue. NAC was shown to diminish type 3 iodothyronine deiodinase expression and activity in MI-NAC. These results show that restoring redox balance by NAC treatment prevents NTIS- related thyroid hormone derangement and preserves heart function in rats subjected to MI.
Collapse
Affiliation(s)
- Tatiana Ederich Lehnen
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Marcus Vinicius Santos
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Adrio Lima
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Zanatta Â, Rodrigues MDN, Amaral AU, Souza DG, Quincozes-Santos A, Wajner M. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome. Neurochem Res 2016; 41:2190-8. [PMID: 27161368 DOI: 10.1007/s11064-016-1933-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/16/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.
Collapse
Affiliation(s)
- Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Marília Danyelle Nunes Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Débora Guerini Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Effects of neonatal inflammation on the inflammatory and oxidative profile during experimental sepsis in adult life. Physiol Behav 2015; 151:516-24. [DOI: 10.1016/j.physbeh.2015.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
|
19
|
Zanatta Â, Viegas CM, Hickmann FH, de Oliveira Monteiro W, Sitta A, de Moura Coelho D, Vargas CR, Leipnitz G, Wajner M. Ornithine In Vivo Administration Disrupts Redox Homeostasis and Decreases Synaptic Na(+), K (+)-ATPase Activity in Cerebellum of Adolescent Rats: Implications for the Pathogenesis of Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome. Cell Mol Neurobiol 2015; 35:797-806. [PMID: 25772141 PMCID: PMC11486193 DOI: 10.1007/s10571-015-0173-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/07/2015] [Indexed: 12/16/2022]
Abstract
Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an inborn error of metabolism caused by a defect in the transport of ornithine (Orn) into mitochondrial matrix leading to accumulation of Orn, homocitrulline (Hcit), and ammonia. Affected patients present a variable clinical symptomatology, frequently associated with cerebellar symptoms whose pathogenesis is poorly known. Although in vitro studies reported induction of oxidative stress by the metabolites accumulating in HHH syndrome, so far no report evaluated the in vivo effects of these compounds on redox homeostasis in cerebellum. Therefore, the present work was carried out to investigate the in vivo effects of intracerebellar administration of Orn and Hcit on antioxidant defenses (reduced glutathione concentrations and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase), lipid oxidation (malondialdehyde concentrations), as well as on the activity of synaptic Na(+), K(+)-ATPase, an enzyme highly vulnerable to free radical attack, in the cerebellum of adolescent rats. Orn significantly increased malondialdehyde levels and the activities of all antioxidant enzymes, and reduced Na(+), K(+)-ATPase activity. In contrast, glutathione concentrations were not changed by Orn treatment. Furthermore, intracerebellar administration of Hcit was not able to alter any of these parameters. The present data show for the first time that Orn provokes in vivo lipid oxidative damage, activation of the enzymatic antioxidant defense system, and reduction of the activity of a crucial enzyme involved in neurotransmission. It is presumed that these pathomechanisms may contribute at least partly to explain the neuropathology of cerebellum abnormalities and the ataxia observed in patients with HHH syndrome.
Collapse
Affiliation(s)
- Ângela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Fernanda Hermes Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Wagner de Oliveira Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | | | - Carmen Regla Vargas
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No 2600 – Anexo, Porto Alegre, RS CEP 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| |
Collapse
|
20
|
Kang S, Zhang Z, Richardson J, Shah B, Gupta S, Huang CJ, Qiu J, Le N, Lin H, Bondarenko PV. Metabolic markers associated with high mannose glycan levels of therapeutic recombinant monoclonal antibodies. J Biotechnol 2015; 203:22-31. [DOI: 10.1016/j.jbiotec.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023]
|