1
|
Downregulating PDPK1 and taking phillyrin as PDPK1-targeting drug protect hepatocytes from alcoholic steatohepatitis by promoting autophagy. Cell Death Dis 2022; 13:991. [PMID: 36418288 PMCID: PMC9684571 DOI: 10.1038/s41419-022-05422-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
The health risk stemming from drinking alcohol is serious, sometimes even life-threatening. Alcoholic steatohepatitis (ASH) is a critical stage leading to cirrhosis and end-stage liver disease. However, its pathogenesis is still far from clearly understood, and a treatment that is widely recognised as effective has not been discovered. Interestingly, PDPK1,3-phosphoinositide-dependent protein kinase 1, also known as PDK1, was observed to be obviously increased in the ASH model by our researchers. We also investigated the protective role of autophagy in ASH. Here, we studied the function of PDPK1 and found an efficient treatment to alleviate symptoms by targeting PDPK1 in ASH. In our study, PDPK1 affected hepatocyte self-healing by inhibiting autophagy. Both inhibiting PDPK1 and the phosphorylation of PDPK1 (ser241) could protect hepatocytes from suffering heavy alcoholic hepatitis.
Collapse
|
2
|
Ahsan MK, Figueroa-Hall L, Baratta V, Garcia-Milian R, Lam TT, Hoque K, Salas PJ, Ameen NA. Glucocorticoids and serum- and glucocorticoid-inducible kinase 1 are potent regulators of CFTR in the native intestine: implications for stress-induced diarrhea. Am J Physiol Gastrointest Liver Physiol 2020; 319:G121-G132. [PMID: 32567324 PMCID: PMC7500270 DOI: 10.1152/ajpgi.00076.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nongenomic glucocorticoid (GC) and serum- and glucocorticoid-inducible kinase 1 (SGK1) signaling regulate ion transport, but CFTR has not been investigated in the intestine. We examined GC, SGK1, and phosphatidylinositol 3-kinase (PI3K) kinase signaling of CFTR ion transport in native intestine and the role of GCs on mRNA, protein, surface expression, and cyclic guanosine monophosphate (cGMP)-elicited diarrhea. Rats were treated with dexamethasone (DEXA; 2 mg/kg ip) or DMSO for 1, 4, and 24 h. Cyclic adenosine monophosphate (cAMP)-activated ion transport was examined in the presence or absence of SGK1 and PI3K inhibitors. Phosphorylation of SGK1, phosphoinositide-dependent kinase 1, and Akt kinases was confirmed by immunoblots using phosphor-specific antibodies. Tissue lysates were analyzed by mass spectrometry. CFTR and SGK1 mRNA were measured by quantitative PCR. Changes in total and surface CFTR protein were determined. The role of GC in cGMP-activated CFTR ion transport was examined. GC synergistically increased CFTR ion transport by SGK1 and PI3K signaling and increased CFTR protein without altering SGK1 or CFTR mRNA. GC induced highest levels of CFTR protein at 4 h that were associated with marked increase in surface CFTR, phosphorylation of the ubiquitin ligase neural precursor cell expressed developmentally downregulated 4-like (Nedd4-2), and 14-3-3ε, supporting their roles in surface retention and stability. Coimmunoprecipitation of CFTR, Nedd4-2, and 14-3-3ε indicated that assembly of this complex is a likely effector of the SGK and Akt pathways. Mass spectrometry identified phosphorylated peptides in relevant proteins. GC-SGK1 potently regulates CFTR in the intestine and is implicated in diarrheal disease.NEW & NOTEWORTHY This is the first study to examine the mechanisms of glucocorticoid, serum- and glucocorticoid-inducible kinase 1, and nongenomic kinase signaling of CFTR in the native intestine. We identified unique and druggable intestine-specific factors of the pathway that are targets for treating stress-induced diarrhea.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Leandra Figueroa-Hall
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut
| | - Vanessa Baratta
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Mass Spectrometry and Proteomics Resource, W. M. Keck Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut
| | - Kazi Hoque
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pedro J Salas
- Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Nadia A Ameen
- Department of Pediatrics/Gastroenterology and Hepatology, Yale School of Medicine, New Haven, Connecticut.,Department of Pediatrics, Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 2019; 34:361-374. [PMID: 30734603 PMCID: PMC6327997 DOI: 10.1080/14756366.2018.1553167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1) is an important protein in mediating the PI3K-AKT pathway and is thus identified as a promising target. The catalytic activity of PDK1 is tightly regulated by allosteric modulators, which bind to the PDK1 Interacting Fragment (PIF) pocket of the kinase domain that is topographically distinct from the orthosteric, ATP binding site. Allosteric modulators by attaching to the less conserved PIF-pocket have remarkable advantages such as higher selectivity, less side effect, and lower toxicity. Targeting allosteric PIF-pocket of PDK1 has become the focus of recent attention. In this review, we summarise the current advances in the structure-based discovery of PDK1 allosteric modulators. We will first present the three-dimensional structure of PDK1 and illustrate the allosteric regulatory mechanism of PDK1 through the modulation of the PIF-pocket. Then, the recent advances of PDK1 allosteric modulators targeting the PIF-pocket will be recapitulated detailly according to the structural similarity of allosteric modulators.
Collapse
Affiliation(s)
- Xinyuan Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen Y, Wang S, Tian ST, Hu X, Xu J, Yang GZ, Wang CY. 12b-hydroxy-des-D-garcigerin A enhances glucose metabolism in insulin-resistant HepG2 cells via the IRS-1/PI3-K/Akt cell signaling pathway. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:1091-1100. [PMID: 27285735 DOI: 10.1080/10286020.2016.1193489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
HepG2 cells were induced with a high concentration of insulin to establish an insulin-resistant cell model (HepG2/IR). The effect of 12b-hydroxy-des-D-garcigerin A (DGA) on the glucose consumption (GC) of HepG2/IR cells was analyzed with the glucose oxidase/peroxidase assay. The results showed that DGA significantly stimulated GC by enhancing the activity of hexokinase (HK) and pyruvate kinase (PK) in HepG2/IR cells. The cell signaling pathway by which DGA enhances the GC of HepG2/IR cells was explored. The results showed that DGA promoted the expression of insulin receptor (InsR) protein, and stimulated the expression of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3 kinase (p-PI3-K), and phospho-protein kinase B Serine(473) (p-AKT ser(473)). Therefore, we concluded that DGA improved the insulin-resistance of HepG2/IR cells by inducing the IRS-1/PI3-K/Akt cell signaling pathway. Interestingly, DGA had no effect on the phosphorylation of threonine(172) (Thr(172)) in AMP-activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Yu Chen
- a College of Chemistry and Material Sciences, South-Central University for Nationalities , Wuhan 430074 , China
| | - Sha Wang
- b College of Pharmacy, South-Central University for Nationalities , Wuhan 430074 , China
| | - Shi-Ting Tian
- c College of Life Science, South-Central University for Nationalities , Wuhan 430074 , China
| | - Xin Hu
- b College of Pharmacy, South-Central University for Nationalities , Wuhan 430074 , China
| | - Jing Xu
- b College of Pharmacy, South-Central University for Nationalities , Wuhan 430074 , China
| | - Guang-Zhong Yang
- b College of Pharmacy, South-Central University for Nationalities , Wuhan 430074 , China
| | - Chao-Yuan Wang
- c College of Life Science, South-Central University for Nationalities , Wuhan 430074 , China
| |
Collapse
|
5
|
Calleja V, Laguerre M, de Las Heras-Martinez G, Parker PJ, Requejo-Isidro J, Larijani B. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochem Soc Trans 2014; 42:1435-40. [PMID: 25233428 DOI: 10.1042/bst20140222] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositide-dependent kinase 1 (PDK1) is the master regulator of at least 23 other AGC kinases whose downstream signalling has often been implicated in various diseases and in particular in cancer. Therefore there has been great interest in determining how PDK1 is controlled and how it regulates its substrates spatially and temporally. The understanding of these mechanisms could offer new possibilities for therapeutic intervention. Over the years, a more comprehensive view of the mechanisms involved in the regulation of PDK1 has emerged and these comprise serine/threonine as well as tyrosine phosphorylation, subcellular localization, regulator binding and conformation status. In the present review, we discuss how various molecular mechanisms are together responsible for the conformational regulation behind the activation of PDK1 in cells.
Collapse
Affiliation(s)
| | - Michel Laguerre
- ‡Institut Européen de Chimie et Biologie, Université de Bordeaux, UMR 5248, 2 rue Robert Escarpit, F-33607 Pessac, France
| | | | | | - Jose Requejo-Isidro
- §Biophotonics Lab, Unidad de Biofísica CSIC-UPV/EHU, Barrio de Sarriena s/n, 48940 Leioa, Spain
| | | |
Collapse
|
6
|
Alcántara-Hernández R, Hernández-Méndez A, García-Sáinz JA. The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: possible role of metalloproteinases. Eur J Pharmacol 2014; 740:88-96. [PMID: 25016091 DOI: 10.1016/j.ejphar.2014.06.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Phosphoinositide-dependent protein kinase 1 (PDK1) is a key enzyme, master regulator of cellular proliferation and metabolism; it is considered a key target for pharmacological intervention. Using membranes obtained from DDT1 MF-2 cells, phospho-PDK1 was identified by Western blotting, as two major protein bands of Mr 58-68 kDa. Cell incubation with the PDK1 inhibitor, UCN-01, induced a time- and concentration-dependent decrease in the amount of phospho-PDK1 with a concomitant appearance of a ≈42 kDa phosphorylated fragment. Knocking down PDK1 diminished the amount of phospho-PDK1 detected in membranes, accompanied by similarly decreased fragment generation. UCN-01-induced fragment generation was also observed in membranes from cells stably expressing a myc-tagged PDK1 construct. Other PDK1 inhibitors were also tested: OSU-03012 induced a clear decrease in phospho-PDK1 and increased the presence of the phosphorylated fragment in membrane preparations; in contrast, GSK2334470 and staurosporine induced only marginal increases in the amount of PDK1 fragment. Galardin and batimastat, two metalloproteinase inhibitors, markedly attenuated inhibitor-induced PDK1 fragment generation. Metalloproteinases 2, 3, and 9 co-immunoprecipitated with myc-PDK1 under baseline conditions and this interaction was stimulated by UCN-01; batimastat also markedly diminished this effect of the PDK1 inhibitor. Our results indicate that a series of protein kinase inhibitors, namely UCN-01 and OSU-03012 and to a lesser extent GSK2334470 and staurosporine induce PDK1 fragmentation and suggest that metalloproteinases could participate in this effect.
Collapse
Key Words
- Batimastat (BB-94) (CID 5362422). Galardin (GM 6001) (PubChem CID 132519)
- GSK2334470, (3S,6R)-1-[6-(3-amino-1H-indazol-6-yl)-2-(methylamino)-4-pyrimidinyl]-N-cyclohexyl-6-methyl-3-piperidinecarboxamide. ) (PubChem CID 46215815)
- OSU-03012, (2-amino-N-[4-[5-(2-phenanthrenyl)-3-trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide) (PubChem CID 10027278)
- PDK1
- Protein fragmentation
- Protein kinase
- Protein kinase inhibitor
- Staurosporine (PubChem CID 44259)
- UCN-01
- UCN-01, (7-hydroxystaurosporine (3R*,8S*, 9R*, 10R*,12R*)-2,3,9,10,11,12-hexahydro-3-hydroxy-9-methoxy-8-methyl-10-(methylamino)-8,12-epoxy-1H, 8H-2,7b,12a-triazadibenzo[a,g]-cyclonona[cde]triden-1-one) (PubChem CID 3078519)
Collapse
Affiliation(s)
- Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - Aurelio Hernández-Méndez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-248, México DF 04510, México.
| |
Collapse
|