1
|
Kiani Ghalesardi O, Zaker F, Ghotaslou A, Boustani H, Rezvani MR, Kiani J, Shahidi M. Effect of siRNA-mediated silencing of p53R2 gene on sensitivity of T-ALL cellsto Daunorubicin. Gene 2023; 880:147622. [PMID: 37419428 DOI: 10.1016/j.gene.2023.147622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION p53R2 is a p53-inducible protein that, as one of the subunits of ribonucleotide reductase, plays an important role in providing dNTPs for DNA repair. Although p53R2 is associated with cancer progression, its role in T-cell acute lymphoblastic leukemia (T-ALL) cells is unknown. Therefore, in this study, we evaluated the effect of p53R2 silencing on double-stranded DNA breaks, apoptosis and cell cycle of T-ALL cells treated with Daunorubicin. METHODS Transfection was performed using Polyethyleneimine (PEI). Gene expression was measured using real-time PCR and protein expression was evaluated using Western blotting. Cell metabolic activity and IC50 were calculated using MTT assay, formation of double-stranded DNA breaks was checked using immunohistochemistry for γH2AX, and cell cycle and apoptosis were evaluated using flow cytometry. RESULTS We found that p53 silencing synergistically inhibited the growth of T-ALL cells by Daunorubicin. p53R2 siRNA in combination with Daunorubicin but not alone increases the rate of DNA double-strand breaks in T-ALL cells. In addition, p53R2 siRNA significantly increased Daunorubicin-induced apoptosis. p53R2 siRNA also caused a non-significant increase in cells in G2 phase. CONCLUSION The results of the present study showed that silencing of p53R2 using siRNA can significantly increase the antitumor effects of Daunorubicin on T-ALL cells. Therefore, p53R2 siRNA has the potential to be used as an adjuvant therapy in combination with Daunorubicin in T-ALL.
Collapse
Affiliation(s)
- Omid Kiani Ghalesardi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical laboratory sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Boustani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Rezvani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Perrault EN, Shireman JM, Ali ES, Lin P, Preddy I, Park C, Budhiraja S, Baisiwala S, Dixit K, James CD, Heiland DH, Ben-Sahra I, Pott S, Basu A, Miska J, Ahmed AU. Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production. SCIENCE ADVANCES 2023; 9:eade7236. [PMID: 37196077 PMCID: PMC10191446 DOI: 10.1126/sciadv.ade7236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
During therapy, adaptations driven by cellular plasticity are partly responsible for driving the inevitable recurrence of glioblastoma (GBM). To investigate plasticity-induced adaptation during standard-of-care chemotherapy temozolomide (TMZ), we performed in vivo single-cell RNA sequencing in patient-derived xenograft (PDX) tumors of GBM before, during, and after therapy. Comparing single-cell transcriptomic patterns identified distinct cellular populations present during TMZ therapy. Of interest was the increased expression of ribonucleotide reductase regulatory subunit M2 (RRM2), which we found to regulate dGTP and dCTP production vital for DNA damage response during TMZ therapy. Furthermore, multidimensional modeling of spatially resolved transcriptomic and metabolomic analysis in patients' tissues revealed strong correlations between RRM2 and dGTP. This supports our data that RRM2 regulates the demand for specific dNTPs during therapy. In addition, treatment with the RRM2 inhibitor 3-AP (Triapine) enhances the efficacy of TMZ therapy in PDX models. We present a previously unidentified understanding of chemoresistance through critical RRM2-mediated nucleotide production.
Collapse
Affiliation(s)
- Ella N. Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jack M. Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheol Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C. David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical-Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical-Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide reductase subunit switching in hepatoblastoma drug response and relapse. Commun Biol 2023; 6:249. [PMID: 36882565 PMCID: PMC9992519 DOI: 10.1038/s42003-023-04630-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meifen Lu
- Center for Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide Reductase Subunit Switching in Hepatoblastoma Drug Response and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36747774 PMCID: PMC9900781 DOI: 10.1101/2023.01.24.525404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B . Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
|
5
|
Mobarra N, Gholamalizadeh H, Abdulhussein KA, Raji S, Taheri Asl F, Mirvahabi MS, Rafiee M, Pakzad R. Serum level and tumor tissue expression of Ribonucleotide-diphosphate Reductase subunit M2 B: a potential biomarker for colorectal cancer. Mol Biol Rep 2022; 49:3657-3663. [DOI: 10.1007/s11033-022-07205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
|
6
|
Wang S, Wei M, Zhu W. WITHDRAWN: Melatonin increases doxorubicin-induced apoptosis via oxidative DNA damage in oral squamous cell carcinoma. DNA Repair (Amst) 2021. [DOI: 10.1016/j.dnarep.2021.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Gajek A, Gralewska P, Marczak A, Rogalska A. Current Implications of microRNAs in Genome Stability and Stress Responses of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112690. [PMID: 34072593 PMCID: PMC8199164 DOI: 10.3390/cancers13112690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.
Collapse
|
8
|
Yi X, Zhou Q, Sui G, Ren G, Tan L, Li J, Lin J, Bao S. Interactions among variants in P53 apoptotic pathway genes are associated with neurologic deterioration and functional outcome after acute ischemic stroke. Brain Behav 2021; 11:e01492. [PMID: 31909567 PMCID: PMC8119796 DOI: 10.1002/brb3.1492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Neurologic deterioration (ND) and functional outcome after ischemic stroke (IS) are not accurately predicted by clinical pictures on admission. The aim of present study was to investigate the association of variants in P53 apoptotic pathway genes with ND and functional outcome after IS. METHODS Genotypes of nine variants in apoptosis-relevant genes were measured in patients with acute IS. Gene-gene interactions were analyzed by generalized multifactor dimensionality reduction (GMDR). The primary outcome was ND. ND was diagnosed in patients who worsened ≥2 points (National Institutes of Health Stroke Scale [NIHSS] score) within the first 10 days of stroke onset. The secondary outcome was functional status at 90 days after IS as measured by modified Rankin Scale (mRS) score. RESULTS A total of 705 enrolled patients, ND occurred in 174 (24.7%) patients, and 184 (26.1%) patients were poor functional outcome (mRS score > 2). Although the nine variants were not significantly associated with ND and functional outcome by univariate analysis, there was a gene-gene interaction among P53rs1042522, MDM-2rs2279744, and MMP-9 rs3918242 using GMDR analysis. The high-risk interaction among the three variants was independently associated with higher risk of ND (HR, 2.04, 95% CI: 1.22-5.64, p = .018) and poor functional outcome (OR, 2.68, 95% CI: 1.68-7.86, p = .004) after adjusting for the covariates. CONCLUSION The interactions among P53 rs1042522, MDM-2 rs2279744, and MMP-9 rs3918242 may increase the risk of ND and poor functional outcome and may be considered as a genetic marker of predicting ND and poor functional outcome after stroke.
Collapse
Affiliation(s)
- Xingyang Yi
- Department of Neurology, The People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo Sui
- Nursing Department, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Gaoping Ren
- Department of Neurology, The People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Lili Tan
- Nursing Department, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Jie Li
- Department of Neurology, The People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Jing Lin
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaozhi Bao
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Peng Y, Feng H, Wang C, Song Z, Zhang Y, Liu K, Cheng X, Zhao R. The role of E26 transformation-specific variant transcription factor 5 in colorectal cancer cell proliferation and cell cycle progression. Cell Death Dis 2021; 12:427. [PMID: 33931578 PMCID: PMC8087822 DOI: 10.1038/s41419-021-03717-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/03/2023]
Abstract
E26 transformation-specific variant transcription factor 5 (ETV5) contributes to tumor growth and progression and promotes colorectal cancer (CRC) angiogenesis. Previous studies indicate that ETV5 may regulate the cell cycle, but its detailed mechanism remain unclear. Gene Ontology (GO) analysis of RNA-seq data revealed that ETV5 possibly regulates the cell cycle in CRC. Here, in vitro and in vivo experiments were performed to verify that ETV5 promoted tumor progression and influenced cell cycle G1/S transition. Cell cycle PCR array and co-immunoprecipitation (Co-IP) helped identify the p21-CDKs pathway. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to determine whether ETV5 binds to the p21 promoter. ETV5 and p21 were detected by immunohistochemistry, and the effects of their expression on CRC patients were evaluated. ETV5 upregulation enhanced tumor proliferative capacity and promoted G1 phase transfer to the S phase. ETV5 knockdown slowed the growth of CRC cells and repressed the G1/S transition. We also found p21 as a downstream target of ETV5. p21 knockdown resulted in faster CRC cell growth and in more cells being driven from the G0/1 phase into the S phase. Co-IP experiments showed that p21 banding to CDK2, CDK4, and CDK6 inhibited p130 phosphorylation. Using the ChIP and luciferase reporter assay, we confirmed that ETV5 bound to the p21 promoter and repressed p21 expression. CRC patients with high ETV5 expression and low p21 expression showed the worst prognosis. Finally, by targeting p21 to regulate CDK function, ETV5 also changed drug-sensitivity to palbociclib and dinaciclib. In conclusion, ETV5 promoted cell cycle G1/S transition through transcriptional inhibition of p21, thereby accelerating tumor growth. Moreover, ETV5 changed drug-sensitivity to palbociclib and dinaciclib. Therefore, therapeutic regimens targeting ETV5 may be promising in improving the efficacy of target-CDK treatment in CRC.
Collapse
Affiliation(s)
- Yi Peng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Haoran Feng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Changgang Wang
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Zijia Song
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yaqi Zhang
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Kun Liu
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Xi Cheng
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Ren Zhao
- grid.16821.3c0000 0004 0368 8293Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| |
Collapse
|
10
|
Zhang R, Wu T, Zheng P, Liu M, Xu G, Xi M, Yu J. Thymoquinone sensitizes human hepatocarcinoma cells to TRAIL-induced apoptosis via oxidative DNA damage. DNA Repair (Amst) 2021; 103:103117. [PMID: 33990030 DOI: 10.1016/j.dnarep.2021.103117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) remains one of the most predominant types of digestive system malignancies worldwide. TNF-related apoptosis-inducing ligand (TRAIL) is a biological cytokine with the mentioned specificity, but some tumor cells' resistance limits its use as a therapeutic approach. The present study aimed to investigate thymoquinone (TQ) and TRAIL's combined effect and the potential mechanisms in human hepatic HepG2 carcinoma cells. METHODS Cell viability and IC50 dose for TQ and TRAIL, alone and in combination, were determined using the MTT method. ELISA evaluated the expression levels of 8-Hydroxy-2'-deoxyguanosine. The apoptosis rate was assessed by flow cytometry, ELISA cell death assay, and caspase 8 activity assays. The mRNA and protein evaluation of candidate genes, including survivin, Bcl-2, XIAP, c-IAP1, c-IAP2, and c-FLIP, were accomplished before and after the treatment using qRT-PCR and Western blot analysis, respectively. RESULTS Our results showed that TQ synergistically increased TRAIL's cell toxic effects as follows: TQ plus TRAIL > TRAIL > TQ. TQ could sensitize the HepG2 cells against the TRAIL-induced apoptosis and amplify the caspase 8 activity. This outcome is achieved by decreasing the mRNA and protein expression levels of anti-apoptotic genes. CONCLUSIONS Our findings suggest that TQ can sensitize the human HCC cell line HepG2 against TRAIL by inducing the death receptor pathway. Moreover, these agents' combinational therapy might promise a therapeutic regimen for improving the clinical efficacy of TRAIL-induced apoptosis in patients with HCC.
Collapse
Affiliation(s)
- Ruikui Zhang
- Department of Special Emergency Surgery, Special Medical Center of Chinese People 's Armed Police Forces, Tianjin, 300162, China
| | - Tao Wu
- Department of Infectious Disease, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - Peipei Zheng
- Department of General Surgery, the First Hospital Affiliated of Shandong First Medical University (Qianfoshan Hospital), Jinan, Shandong, 250014, China
| | - Ming Liu
- Department of Infectious Disease, Hainan General Hospital, Haikou, Hainan, 570311, China
| | - Guixiang Xu
- Department of General Surgery, Qingdao Fuwai Hospital Qingdao, Shandong, 266034, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, 510800, China
| | - Jian Yu
- Department of General Surgery, the First Hospital Affiliated of Shandong First Medical University (Qianfoshan Hospital), Jinan, Shandong, 250014, China.
| |
Collapse
|
11
|
Liu J, Song X, Ren Z. The effect of microRNA-330 replacement on inhibition of growth and migration in renal cancer cells. Biotechnol Appl Biochem 2021; 69:558-566. [PMID: 33605482 DOI: 10.1002/bab.2132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
This study was conducted to scrutinize microRNA-330 (miR-330) role in growth, migration, and the expression of metastatic genes in renal cell carcinoma (RCC) in vitro. Following transfection of the cells with miR-330 mimic, cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration by wound healing assay, and apoptosis by flow cytometry were evaluated. Quantitative real-time PCR was conducted to assess expression levels of matrix metalloproteinase 2 (MMP2), MMP9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), Kirsten rat sarcoma virus (K-Ras), cellular Myc (c-Myc), and C-X-C chemokine receptor type 4 (CXCR-4) as metastatic genes in the progression of RCC. Results showed that miR-330 was downregulated in the Caki-1 cells compared with HK-2 cells (p < 0.001). Upregulation of miR-330 obstructed in vitro expansion and migration, while it intensified apoptosis rate in the Caki-1 cells. Moreover, it was found that miR-330 transfection negatively modulated the expression of MMP2, MMP9, ADAMTS, K-Ras, c-Myc, and CXCR-4 in the Caki-1 cells. Our findings revealed that overexpression of miR-330 might provide an auxiliary treatment approach for overcoming invasion, progression, and metastasis in patients with RCC by enhancing cell apoptosis.
Collapse
Affiliation(s)
- Jun Liu
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Xin Song
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Zhongwei Ren
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Potential targets for intervention against doxorubicin-induced cardiotoxicity based on genetic studies: a systematic review of the literature. J Mol Cell Cardiol 2020; 138:88-98. [DOI: 10.1016/j.yjmcc.2019.11.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
|
13
|
Dittmer A, Lange T, Leyh B, Dittmer J. Protein‑ and growth‑modulatory effects of carcinoma‑associated fibroblasts on breast cancer cells: Role of interleukin‑6. Int J Oncol 2019; 56:258-272. [PMID: 31789400 PMCID: PMC6910226 DOI: 10.3892/ijo.2019.4918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) secrete factors that increase the expression and/or activities of proteins in breast cancer cells and induce resistance to anti-estrogens, such as fulvestrant. A major factor is interleukin-6 (IL-6). This study demonstrated that, across estrogen receptor (ER) α-positive and -negative cell lines, recombinant human IL-6 (rhIL-6) mimicked most of the CAF-conditioned medium (CM)-induced changes in protein expression patterns; however, in most cases, it failed to recapitulate CAF-CM-triggered alterations in ERK1/2 and AKT activities. The ability of rhIL-6 to induce fulvestrant resistance was dependent upon the culture conditions. In 3D, but not in 2D cultures, rhIL-6 increased the survival of fulvestrant-treated cells, although not to the same extent as observed with CAF-CM. In 2D cultures, rhIL-6 acted in a pro-apoptotic manner and decreased the expression of ATP-binding cassette transporter G2 (ABCG2). The inhibition of the PI3K/AKT pathway had similar effects on apoptosis and ABCG2 expression, linking the failure of rhIL-6 to induce fulvestrant resistance to its inability to activate the PI3K/AKT pathway. In 3D cultures, both CAF-CM and rhIL-6 acted in an anti-apoptotic manner. These activities are likely independent on the PI3K/AKT pathway and ABCG2. Experiments on ERα-negative breast cancer cells revealed a growth-inhibitory effects of both CAF-CM and rhIL-6, which coincided with a reduction in the c-Myc level. These data suggest that IL-6 plays a role in several effects of CAF-CM, including alterations in protein expression patterns, fulvestrant resistance in 3D cultures and growth inhibition. By contrast, IL-6 is unlikely to be responsible for the CAF-CM-induced activation of the PI3K/AKT pathway and fulvestrant resistance in 2D cultures.
Collapse
Affiliation(s)
- Angela Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Theresia Lange
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Benjamin Leyh
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle‑Wittenberg, 06120 Halle/Saale, Germany
| |
Collapse
|
14
|
Karimian A, Mir SM, Parsian H, Refieyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between Phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2018; 120:10248-10272. [PMID: 30592328 DOI: 10.1002/jcb.28309] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway is one of the well-characterized and most important signaling pathways activated in response to DNA damage. This review discusses the most recent discoveries on the involvement of PI3K/Akt signaling pathway in cancer development, as well as stimulation of some important signaling networks involved in the maintenance of cellular homeostasis upon DNA damage, with an exploration of how PI3K/Akt signaling pathway contributes to the regulation of modulators and effectors underlying DNA damage response, the intricate, protein-based signal transduction network, which decides between cell cycle arrest, DNA repair, and apoptosis, the elimination of irreparably damaged cells to maintain homeostasis. The review continues by looking at the interplay between cell cycle checkpoints, checking the repair of damage inflicted to the DNA before entering DNA replication to facilitate DNA synthesis, and PI3K/Akt signaling pathway. We then investigate the challenges the cells overcome to ameliorate damages induced by oxidative activities, for example, the recruitment of many pathways and factors to maintain integrity and hemostasis. Finally, the review provides a discussion of how cells use the PI3K/Akt signaling pathway to regulate the balance between these networks.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sayed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sona Refieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Vega-Benedetti AF, Saucedo CN, Zavattari P, Vanni R, Royo F, Llavero F, Zugaza JL, Parada LA. PLAGL1 gene function during hepatoma cells proliferation. Oncotarget 2018; 9:32775-32794. [PMID: 30214684 PMCID: PMC6132347 DOI: 10.18632/oncotarget.25996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma develops as a multistep process, in which cell cycle deregulation is a central feature, resulting in unscheduled proliferation. The PLAGL1 gene encodes a homonym zinc finger protein that is involved in cell-proliferation control. We determined the genomic profile and the transcription and expression level of PLAGL1, simultaneously with that of its molecular partners p53, PPARγ and p21, in cell-lines derived from patients with liver cancer, during in vitro cell growth. Our investigations revealed that genomic and epigenetic changes of PLAGL1 are also present in hepatoma cell-lines. Transcription of PLAGL1 in tumor cells is significantly lower than in normal fibroblasts, but no significant differences in terms of protein expression were detected between these two cell-types, indicating that there is not a direct relationship between the gene transcriptional activity and protein expression. RT-PCR analyses on normal fibroblasts, used as control, also showed that PLAGL1 and p53 genes transcription occurs as an apparent orchestrated process during normal cells proliferation, which gets disturbed in cancer cells. Furthermore, abnormal trafficking of the PLAGL1 protein may occur in hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Patrizia Zavattari
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Roberta Vanni
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Felix Royo
- CIC BioGUNE-CIBERehd, Bizkaia Technology Park, Derio, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis A Parada
- Institute of Experimental Pathology, CONICET-UNSa, Salta, Argentina
| |
Collapse
|
16
|
Duan X, Yang Y, Wang S, Feng X, Wang T, Wang P, Yao W, Cui L, Wang W. Interaction between polymorphisms in cell-cycle genes and environmental factors in regulating cholinesterase activity in people with exposure to omethoate. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172357. [PMID: 29892419 PMCID: PMC5990798 DOI: 10.1098/rsos.172357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/12/2018] [Indexed: 05/04/2023]
Abstract
Cholinesterase activity (ChA), the effective biomarker for organophosphate pesticide exposure, is possibly affected by single nucleotide polymorphisms (SNPs) in cell-cycle-related genes. One hundred and eighty workers with long-term exposure to omethoate and 115 healthy controls were recruited to explore the gene-gene and gene-environment interactions. The acetylthiocholine and dithio-bis-(nitrobenzoic acid) method was used to detect the cholinesterase activities in whole blood, erythrocytes and plasma. Genetic polymorphisms were determined by the PCR-RFLP and direct PCR electrophoresis methods. Statistical results showed that the cholinesterase activities of whole blood, erythrocytes and plasma in the exposure group were significantly lower than those in the control group (p < 0.001), and erythrocyte cholinesterase activities were associated with gender, smoking and drinking in the exposure group (p < 0.05). Single-locus analyses showed that there is a statistically significant difference in the ChA among the genotypes CC, CA and AA of the p21 rs1801270 locus in the control group (p = 0.033), but not in the exposure group. A significant interaction between genes and environmental factors (i.e. p53, p21, mdm2, gender, smoking and drinking) affecting ChA was found through a generalized multifactor dimensionality reduction analysis. These obtained markers will be useful in further marker-assisted selection in workers with exposure to omethoate.
Collapse
Affiliation(s)
- Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Sihua Wang
- Department of Occupational Health, Henan Institute for Occupational Medicine, Zhengzhou, People's Republic of China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liuxin Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
- Author for correspondence: Wei Wang e-mail:
| |
Collapse
|
17
|
Azimi A, Majidinia M, Shafiei-Irannejad V, Jahanban-Esfahlan R, Ahmadi Y, Karimian A, Mir SM, Karami H, Yousefi B. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene 2018; 642:249-255. [DOI: 10.1016/j.gene.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
|
18
|
Chen J, Xiao Y, Cai X, Liu J, Chen K, Zhang X. Overexpression of p53R2 is associated with poor prognosis in lung sarcomatoid carcinoma. BMC Cancer 2017; 17:855. [PMID: 29246119 PMCID: PMC5731091 DOI: 10.1186/s12885-017-3811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023] Open
Abstract
Background This study aimmed to evaluate the expression of p53-inducible RR small subunit 2 homologue (p53R2) in Lung sarcomatoid carcinoma (LSC) and its association with clinicopathological parameters and prognosis. Methods In this study, clinicopathological factors and prognostic significance of the expression of p53R2 was investigated by immunohistochemistry (IHC) in 100 cases of LSC. Results The results showed that the expression of p53R2 was significantly correlated with clinical stage (P<0.05). But there was no statistically correlation with gender, age, smoking, tumor size, pT stage, pN stage, pM stage, therapy and relapse. Kaplan-Meier analysis revealed that the expression of p53R2, clinical stage, pT stage, pN stage, pM stage and tumor size were closely related to patients’ survival, and the analysis also revealed that patients with low expression of p53R2 had a longer overall survival than that with high expression (Mean overall survival: 84.8 months vs. 34.7 months, P<0.05). Further multivariate analysis indicated that the expression of p53R2 was identified as an independent prognostic factor in the prediction of the overall survival for patients with LSC (HR = 3.217, P<0.05). Conclusions The expression of p53R2 was inversely associated with the proliferation and progression of LSC, and the results indicated that the high expression of p53R2 was an independent factor for unfavorable prognosis of patients with LSC.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbo Xiao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaoyan Cai
- Department of Pathology, Taishan People's Hospital, Taishan, Guangdong, 529200, China
| | - Jun Liu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Keming Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinke Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Yousefi B, Azimi A, Majidinia M, Shafiei-Irannejad V, Badalzadeh R, Baradaran B, Zarghami N, Samadi N. Balaglitazone reverses P-glycoprotein-mediated multidrug resistance via upregulation of PTEN in a PPARγ-dependent manner in leukemia cells. Tumour Biol 2017; 39:1010428317716501. [DOI: 10.1177/1010428317716501] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Critical role of p21 on olaquindox-induced mitochondrial apoptosis and S-phase arrest involves activation of PI3K/AKT and inhibition of Nrf2/HO-1pathway. Food Chem Toxicol 2017; 108:148-160. [DOI: 10.1016/j.fct.2017.07.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
|
21
|
Jiang C, Xu R, Li XX, Wang YY, Liang WQ, Zeng JD, Zhang SS, Xu XY, Yang Y, Zhang MY, Wang HY, Zheng XFS. p53R2 overexpression in cervical cancer promotes AKT signaling and EMT, and is correlated with tumor progression, metastasis and poor prognosis. Cell Cycle 2017; 16:1673-1682. [PMID: 28841361 DOI: 10.1080/15384101.2017.1320629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53R2 is a p53-inducible ribonucleotide reductase subunit involved in deoxyribonucleotide biosynthesis and DNA repair. Although p53R2 has been linked to human cancer, its role in cervical cancer remains unknown. In this study, we investigated the expression and clinical significance of p53R2 in early-stage cervical cancer. p53R2 expression is significantly upregulated at both mRNA and protein levels in cervical cancer cells and tissues, compared with that in matched normal cervical cells and tissues, respectively. p53R2 overexpression is associated with increased risk of pelvic lymph node metastasis (PLNM, p = 0.001) and cancer relapse (p = 0.009). Patients with high p53R2 expression have a shorter overall survival (OS) and disease-free survival (DFS). p53R2 is an independent factor for predicting OS and DFS of cervical cancer patients. We further show that p53R2 is important for oncogenic growth, migration and invasion in cervical cancer cells. Mechanistically, p53R2 promotes Akt signaling and epithelial-mesenchymal transition (EMT). In conclusion, our study demonstrates for the first time that p53R2 protein is overexpressed in early-stage cervical cancer and unravels some unconventional oncogenic functions of p53R2. p53R2 may be a useful prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chao Jiang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Rui Xu
- b Department of Internal Medicine , Cancer Center of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Xiao-Xing Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yan-Yan Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Wen-Qian Liang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Ju-Deng Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Shan-Shan Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Xiao-Yi Xu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yang Yang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Mei-Yin Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Hui-Yun Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| | - X F Steven Zheng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
22
|
Zhang J, Song N, Zang D, Yu J, Li J, Di W, Guo R, Zhao W, Wang H. c-Myc promotes tumor proliferation and anti‑apoptosis by repressing p21 in rhabdomyosarcomas. Mol Med Rep 2017; 16:4089-4094. [PMID: 28765944 DOI: 10.3892/mmr.2017.7101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/05/2017] [Indexed: 11/05/2022] Open
Abstract
v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) is an important member protein of the Myc family that is important in cell cycle progression, apoptosis and tumorigenesis. In the present study, the role of c‑Myc in rhabdomyosarcoma (RMS) was assessed. Firstly, expression of endogenous c‑Myc and cyclin dependent kinase inhibitor 1A (p21) was examined in normal skeletal muscle, RMS specimens and TE671 RMS cells by immunohistochemistry, reverse transcription‑quantitative polymerase chain reaction and western blotting. Furthermore, cell cycle progression and apoptosis were assessed in TE671 RMS cells following treatment with a c‑Myc inhibitor, 10058‑F4. The results demonstrated that c‑Myc was overexpressed in clinical RMS tissues and TE671 cells, with the highest expression observed in the most RMS samples. Expression of p21 protein and apoptosis function were increased following treatment with 10058‑F4, but no difference was observed in cell cycle progression. In conclusion, the present study indicated that c‑Myc promotes RMS development by inhibiting apoptosis through repression of p21 transcription. Further studies will be required to evaluate c‑Myc as a target for RMS clinical treatment.
Collapse
Affiliation(s)
- Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Na Song
- Department of Molecular Biology and Biochemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Jinsong Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Wenyu Di
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Ruina Guo
- Department of Pathology, Puyang Oilfield General Hospital, Puyang 457000, P.R. China
| | - Weixing Zhao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Haijun Wang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, P.R. China
| |
Collapse
|
23
|
Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: Possible applications in cancer treatment. Chem Biol Drug Des 2017; 90:1056-1066. [DOI: 10.1111/cbdd.13013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vahid Shafiei-Irannejad
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Roya Salehi
- Department of Medical Nanotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
24
|
Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S, Maftouh M, Ferns GA, Avan A. The Therapeutic Potential of Targeting Tumor Microenvironment in Breast Cancer: Rational Strategies and Recent Progress. J Cell Biochem 2017; 119:111-122. [DOI: 10.1002/jcb.26183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Afsane Bahrami
- Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Medical Biochemistry, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Majid Khazaei
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Mina Maftouh
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationFalmer, BrightonSussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Cancer Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
25
|
Affiliation(s)
- Huang Bo
- a Oncology Department , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Cai Weiyang
- a Oncology Department , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanjie Zhang
- a Oncology Department , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
26
|
Majidinia M, Yousefi B. DNA repair and damage pathways in breast cancer development and therapy. DNA Repair (Amst) 2017; 54:22-29. [DOI: 10.1016/j.dnarep.2017.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
|
27
|
Guoxin Y, Bing F, Ronghai Z, Jian Z, Xiaofeng S, Lei T, Qimin W, Jinhong H, Xufei L, Ying W, Yuan Z, Zongxuan H, Yixiang L, Ning L, Lei C, Zhenggang C. [Effects of RhoA silencing on proliferation of tongue squamous cancer cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 34:620-625. [PMID: 28318165 DOI: 10.7518/hxkq.2016.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the effect of RhoA silencing through RNA interference on proliferation and growth of tongue cancer cells, as well as explored the possible mechanisms of this effect. METHODS SSC-4 tongue cancer cells were cultured in vitro and then transfected with small interfering RNA to knock down RhoA expression. The tested cells were divided into three groups: experimental group (experimental group 1: transfected with RhoA-siRNA-1; experi-mental group 2: transfected with RhoA-siRNA-2), negative control group (transfected by random sequence NC-siRNA), and blank control group (transfected with Lipofectamine). The expression levels of RhoA mRNA were respectively measured by quantitative real-time polymerase chain reaction and western blot assay. Moreover, the expression levels of cyclin D1, p21, and p27 and RhoA protein were evaluated by Western blot assay. Proliferation and growth potentiality were analyzed through evaluation of doubling times and methyl thiazolyl tetrazolium assessment. RESULTS The expression levels of RhoA gene and protein of experimental groups significantly decreased following siRNA transfection compared with those in the negative and blank control groups. The expression of cyclin D1 decreased significantly and that of p21 and p27 increased significantly. The doubling time was extended and the growth potentiality decreased. CONCLUSIONS The results indicated that RhoA silencing can inhibit proliferation of tongue cancer cells, whereas RhoA affects cell proliferation by regulating the cell cycle pathway. Thus, RhoA is a potential target in gene therapy for tongue cancer.
Collapse
Affiliation(s)
- Yan Guoxin
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Fan Bing
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Zou Ronghai
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Zhang Jian
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Sun Xiaofeng
- Dept. of Stomatology, Wuxi No 2. People's Hospital, Wuxi 214002, China
| | - Tong Lei
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Wang Qimin
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Han Jinhong
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Lu Xufei
- Dept. of Stomatology, Pudong Healthcare Center of Jimo County, Qingdao 266234, China
| | - Wang Ying
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - Zhou Yuan
- College of Stomatology, Weifang Medical University, Weifang 261021, China
| | - He Zongxuan
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Liao Yixiang
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China
| | - Li Ning
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Cao Lei
- Postgraduate School, Dalian Medical University, Dalian 116044, China
| | - Chen Zhenggang
- Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
28
|
Jahanban-Esfahlan R, Seidi K, Monfaredan A, Shafie-Irannejad V, Abbasi MM, Karimian A, Yousefi B. The herbal medicine Melissa officinalis extract effects on gene expression of p53, Bcl-2, Her2, VEGF-A and hTERT in human lung, breast and prostate cancer cell lines. Gene 2017; 613:14-19. [PMID: 28259690 DOI: 10.1016/j.gene.2017.02.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Earlier, we verified that Melissa officinalis extract (MOE) elicits potent antiproliferative effects on different human cancer cells. To gain insights into the molecular mechanisms accounting for the cytotoxic effects of MOE, we assessed the expression patterns of several prominent molecules with therapeutic potential in cancer by Quantitative PCR (Q-PCR). METHODS A549, MCF-7 and PC3 cancer cells were grown in complete RPMI 1640 and seeded in 24 well micro plates. After incubation for 72h, 100μg/ml of MOE was added and the cells were further incubated for 72h. Afterwards, the cells were subjected to RNA extraction for the means of Q-PCR. RESULTS Our results indicated that in PC3 cancer cells, MOE resulted in a significant downregulation of VEGF-A (0.0004 fold), Bcl-2 (0.001 fold), Her2 (0.02 fold), and hTERT (0.023 fold) compared to the untreated control. In addition, VEGF-A and hTERT mRNA were significantly downregulated in MCF-7 and A549 cancer cells, as well. Notably, high anti-angiogenic activity was closely associated with a high anti-telomerase activity of MOE in studying cancer cells. The decrease in VEGF-A expression was significantly superior than that of hTERT downregulation, as PC3 cancer cells with the highest hTERT down regulation (0.023) presented the highest anti VEGF activity (0.0004 fold), whereas MCF-7 cells with the lowest hTERT inhibition (0.213) showed the lowest VEGF inhibition(0.0435) among the three studied cancer cells. We noticed that the modulation of VEGF-A and hTERT gene expression can be considered as a common target, accounting for the therapeutic potential of MOE on human breast, lung and prostate cancer cells. CONCLUSION Altogether, it is suggested that the potent antiproliferative activity of the hydroalcoholic extract of Melissa officinalis is somehow explainable by its high potency to inhibit expression of the prominent oncogenes Bcl2, Her2, VEGF-A and hTERT in prostate cancer. In tumors with functional p53, including MCF-7 and A549 cancer cells, the role of p53, Bcl2 and Her2 is less significant. It appears that MOE exerts its antiproliferative effects in these cancer cells partly via concurrent downregulation of VEGF-A and hTERT. Additional studies are needed to clarify the role of other active molecules in cancer cells harboring functional p53.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Monfaredan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafie-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Majidinia M, Yousefi B. Breast tumor stroma: A driving force in the development of resistance to therapies. Chem Biol Drug Des 2017; 89:309-318. [PMID: 28042683 DOI: 10.1111/cbdd.12893] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. In spite of huge advancements in early detection and ever-increasing knowledge of breast cancer biology, approximately 30% of patients with early-stage breast cancer experience disease recurrence. Most patients are chemosensitive and cancer free immediately after the treatment. About 50% to 70% of breast cancer patients, however, will relapse within 1 year. Such a relapse is usually concomitant with adenocarcinoma cells acquiring a chemoresistant phenotype. Both de novo and acquired chemoresistance are poorly understood and present a major burden in the treatment of breast cancer. Although, previously, chemoresistance was largely linked to genetic alterations within the cancer cells, recent investigations are indicating that chemoresistance can also be associated with the tumor microenvironment. Nowadays, it is widely believed that tumor microenvironment is a key player in tumor progression and response to treatment. In this study, we will review the interactions of breast tumor cells with their microenvironment, present the latest research on the resistance mediated by the stromal component in breast cancer, and discuss the potential therapeutic strategies that can be exploited to treat breast cancers by targeting tumor microenvironment.
Collapse
Affiliation(s)
- Maryam Majidinia
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences, Urmia, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
31
|
Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 2016; 45:25-33. [PMID: 27427176 DOI: 10.1016/j.dnarep.2016.06.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Abstract
The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail.
Collapse
|
32
|
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 2016; 42:63-71. [PMID: 27156098 DOI: 10.1016/j.dnarep.2016.04.008] [Citation(s) in RCA: 802] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity.
Collapse
Affiliation(s)
- Ansar Karimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Ahmadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
34
|
TP53 mutation, mitochondria and cancer. Curr Opin Genet Dev 2016; 38:16-22. [PMID: 27003724 DOI: 10.1016/j.gde.2016.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/09/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Under normal conditions, basal levels of wild-type p53 promote mitochondrial function through multiple mechanisms. Remarkably, some missense mutations of p53, in contrast to the null state, can result in the retention of its metabolic activities. These effects are particularly prominent in the mitochondria and demonstrate a functional role for mutant p53 in cancer metabolism. This review summarizes accumulating data on the mechanisms by which p53 missense mutations can regulate mitochondrial metabolism and promote the viability and survival of both normal and cancer cells, thus acting as a double edged sword for the host. Greater understanding of these mechanisms may provide insights for developing new treatment or preventive strategies against cancer.
Collapse
|
35
|
Akt and p53R2, partners that dictate the progression and invasiveness of cancer. DNA Repair (Amst) 2014; 22:24-9. [PMID: 25086499 DOI: 10.1016/j.dnarep.2014.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/25/2023]
Abstract
The serine/threonine kinase or the so-called "Akt" is a key regulatory molecule of signaling pathway that regulates various cellular processes. Many intracellular proteins are involved in the activation or inhibition of Akt signaling and the hyperactivation of Akt signaling pathway is found to be frequently involved in various types of human cancers. Furthermore, while p53R2, a p53-inducible peptide involved in the synthesis of dNTPs normally works toward suppression of cancer through elimination of reactive oxygen species (ROS), inhibition of MAPK/ERK pathway and providing dNTPs for DNA repair, the overexpression of p53R2 is reported to be associated with cancer progression and resistance to therapy. In this review article, we will discuss the situation in which cancer cells with hyperactive PI3K/Akt signaling can recruit p53R2 in favor of cancer progression and resistance to therapy. In the hyperactive state of PI3K/Akt signaling (which happens in the absence of deactivation or excess of activation), p53R2 can be used by cancer cells to promote proliferation. Therefore, the hyperactivity of PI3K/Akt pathway and elevated levels of p53R2 can give rise to highly invasive cancers.
Collapse
|