1
|
Landim-Vieira M, Nieto Morales PF, ElSafty S, Kahmini AR, Ranek MJ, Solís C. The role of mechanosignaling in the control of myocardial mass. Am J Physiol Heart Circ Physiol 2025; 328:H622-H638. [PMID: 39739566 DOI: 10.1152/ajpheart.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Regulation of myocardial mass is key for maintaining cardiovascular health. This review highlights the complex and regulatory relationship between mechanosignaling and myocardial mass, influenced by many internal and external factors including hemodynamic and microgravity, respectively. The heart is a dynamic organ constantly adapting to changes in workload (preload and afterload) and mechanical stress exerted on the myocardium, influencing both physiological adaptations and pathological remodeling. Mechanosignaling pathways, such as the mitogen-activated protein kinases (MAPKs) and the phosphoinositide 3-kinases and serine/threonine kinase (PI3K/Akt) pathways, mediate downstream effects on gene expression and play key roles in transducing mechanical cues into biochemical signals, thereby modulating cellular processes, including control of myocardial mass. Dysregulation of these processes can lead to pathological cardiac remodeling, such as hypertrophic cardiomyopathy. Furthermore, recent studies have highlighted the importance of protein quality control mechanisms, such as the ubiquitin-proteasome system, in settings of extreme physiological conditions that alter the heart workload such as pregnancy and microgravity. Overall, this review provides a thorough insight into how mechanical signals are converted into chemical signals to regulate myocardial mass in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Paula F Nieto Morales
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Summer ElSafty
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher Solís
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Pasmiño G, Paredes M, Silva H. Effects of High-Intensity Swimming Interval Training on Area, Perimeter, Circularity Index and Phenotype of Cardiac Mitochondrial Ultrastructure in Sprague Dawley Rats. Life (Basel) 2024; 14:984. [PMID: 39202726 PMCID: PMC11355701 DOI: 10.3390/life14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 09/03/2024] Open
Abstract
Physical inactivity impairs health by increasing morbidity. In childhood, modifiable risk factors associated with cardiovascular pathologies and related to mitochondrial function and structure are initiated by physical inactivity. The objective of this study was to analyze the effect of high-intensity swimming interval training (HIIT-swim) on cardiac mitochondrial ultrastructure in young Sprague Dawley rats compared with a sedentary group. Five-week-old Sprague Dawley rats (n = 18) were divided into a control group (C) (n = 6), a sedentary group (S) (n = 6) and an HIIT-swim group (H-s) (n = 6), the last of which performed HIIT-swim for 4 weeks. A mitochondrial ultrastructural evaluation was performed using transmission electron microscopy. In the H-s rats, mitochondrial areas and perimeters were found to be statistically significantly different from those of the C and S rats. In addition, no predominant intramitochondrial multifragmentation was observed in the mitochondria of H-s rats, but multifragmentation was evident in the mitochondria of S rats.
Collapse
Affiliation(s)
- Grace Pasmiño
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Laboratorio Fisiología del Ejercicio, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marco Paredes
- Laboratorio de Biología Celular, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Héctor Silva
- Laboratorio Fisiología del Ejercicio, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Fernandez-Patron C, Lopaschuk GD, Hardy E. A self-reinforcing cycle hypothesis in heart failure pathogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:627-636. [PMID: 39196226 DOI: 10.1038/s44161-024-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Heart failure is a progressive syndrome with high morbidity and mortality rates. Here, we suggest that chronic exposure of the heart to risk factors for heart failure damages heart mitochondria, thereby impairing energy production to levels that can suppress the heart's ability to pump blood and repair mitochondria (both energy-consuming processes). As damaged mitochondria accumulate, the heart becomes deprived of energy in a 'self-reinforcing cycle', which can persist after the heart is no longer chronically exposed to (or after antagonism of) the risk factors that initiated the cycle. Together with other previously described pathological mechanisms, this proposed cycle can help explain (1) why heart failure progresses, (2) why it can recur after cessation of treatment, and (3) why heart failure is often accompanied by dysfunction of multiple organs. Ideally, therapy of heart failure syndrome would be best attempted before the self-reinforcing cycle is triggered or designed to break the self-reinforcing cycle.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Cardiovascular Research Centre, Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
4
|
Jurado MR, Tombor LS, Arsalan M, Holubec T, Emrich F, Walther T, Abplanalp W, Fischer A, Zeiher AM, Schulz MH, Dimmeler S, John D. Improved integration of single-cell transcriptome data demonstrates common and unique signatures of heart failure in mice and humans. Gigascience 2024; 13:giae011. [PMID: 38573186 PMCID: PMC10993718 DOI: 10.1093/gigascience/giae011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Cardiovascular research heavily relies on mouse (Mus musculus) models to study disease mechanisms and to test novel biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffective drugs. Therefore, it is an open challenge of translational science to develop models with high similarities and predictive value. This requires a comparison of disease models in mice with diseased tissue derived from humans. RESULTS To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called OrthoIntegrate, which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The pipeline has been designed to be as easy to use and is fully integrable in the standard Seurat workflow.We applied OrthoIntegrate on scRNA-seq from cardiac tissue of heart failure patients with reduced ejection fraction (HFrEF) and scRNA-seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct regulatory pathways between human HFrEF patients and the corresponding mouse model. Overall, 54% of genes were commonly regulated, including major changes in cardiomyocyte energy metabolism. However, several regulatory pathways (e.g., angiogenesis) were specifically regulated in humans. CONCLUSIONS The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice models and human HFrEF and shows that results from the mice model should be validated carefully. OrthoIntegrate is publicly accessible (https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate other large datasets to provide a general comparison of models with patient data.
Collapse
Affiliation(s)
- Mariano Ruz Jurado
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas S Tombor
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
| | - Mani Arsalan
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Tomas Holubec
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Fabian Emrich
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Thomas Walther
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Department of Cardiovascular Surgery, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Wesley Abplanalp
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Centre for Cardiovascular Research (DZHK), 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Waknitz M, Berg Luecke L, Mesidor R, Wojtkiewicz M, Castro C, Gundry RL. The GENTIL Method for Isolation of Human Adult Cardiomyocytes from Cryopreserved Tissue for Proteomic Analyses. Methods Mol Biol 2024; 2735:145-167. [PMID: 38038848 PMCID: PMC11232436 DOI: 10.1007/978-1-0716-3527-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Heart failure is a serious clinical and economic health care problem, and its clinical progression is linked to pathological cardiac remodeling. Due to the heterogeneity of heart failure, lack of animal models to accurately represent advanced heart failure, and limited access to fresh human cardiac tissue, little is known regarding cell-type-specific mechanisms and context-specific functions of cardiomyocytes during disease development processes. While mass spectrometry has been increasingly applied to unravel changes in the proteome associated with cardiovascular physiology and disease, most studies have used homogenized tissue. Therefore, new studies using isolated cardiomyocytes are necessary to gain a better understanding of the intricate cell-type-specific molecular mechanisms underlying the pathophysiology of heart failure. This chapter describes the GENTIL method, which incorporates recent technological developments in sample handling, for isolation of cardiomyocytes from cryopreserved human cardiac tissues for use in proteomic analyses.
Collapse
Affiliation(s)
- Michelle Waknitz
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Roneldine Mesidor
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research; Division of Cardiovascular Medicine; and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
7
|
Liu X, Guo C, Zhang Q. Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress Chaperones 2023; 28:133-144. [PMID: 36652120 PMCID: PMC10050249 DOI: 10.1007/s12192-023-01321-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chenchen Guo
- Neck, Shoulder, Waist and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
8
|
Figueiredo AM, Cardoso AC, Pereira BLB, Silva RAC, Ripa AFGD, Pinelli TFB, Oliveira BC, Rafacho BPM, Ishikawa LLW, Azevedo PS, Okoshi K, Fernandes AAH, Zornoff LAM, Minicucci MF, Polegato BF, Paiva SAR. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS One 2022; 17:e0264854. [PMID: 35245316 PMCID: PMC8896726 DOI: 10.1371/journal.pone.0264854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction has a high mortality rate worldwide. Therefore, clinical intervention in cardiac remodeling after myocardial infarction is essential. Açai pulp is a natural product and has been considered a functional food because of its antioxidant/anti-inflammatory properties. The aim of the present study was to analyze the effect of açai pulp supplementation on cardiac remodeling after myocardial infarction in rats. After 7 days of surgery, male Wistar rats were assigned to six groups: sham animals fed standard chow (SA0, n = 14), fed standard chow with 2% açai pulp (SA2, n = 12) and fed standard chow with 5% açai pulp (SA5, n = 14), infarcted animals fed standard chow (IA0, n = 12), fed standard chow with 2% açai pulp (IA2, n = 12), and fed standard chow with 5% açai pulp (IA5, n = 12). After 3 months of supplementation, echocardiography and euthanasia were performed. Açai pulp supplementation, after myocardial infarction, improved energy metabolism, attenuated oxidative stress (lower concentration of malondialdehyde, P = 0.023; dose-dependent effect), modulated the inflammatory process (lower concentration of interleukin-10, P<0.001; dose-dependent effect) and decreased the deposit of collagen (lower percentage of interstitial collagen fraction, P<0.001; dose-dependent effect). In conclusion, açai pulp supplementation attenuated cardiac remodeling after myocardial infarction in rats. Also, different doses of açai pulp supplementation have dose-dependent effects on cardiac remodeling.
Collapse
Affiliation(s)
- Amanda Menezes Figueiredo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| | - Ana Carolina Cardoso
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Leticia Buzati Pereira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Aparecida Candido Silva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Bruna Camargo Oliveira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Paola Murino Rafacho
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Angelica Henrique Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sergio Alberto Rupp Paiva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
9
|
Wang J, He J, Fan Y, Xu F, Liu Q, He R, Yan R. Extensive mitochondrial proteome disturbance occurs during the early stages of acute myocardial ischemia. Exp Ther Med 2021; 23:85. [PMID: 34938367 PMCID: PMC8688935 DOI: 10.3892/etm.2021.11008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial malfunction leads to the remodeling of myocardial energy metabolism during myocardial ischemia (MI). However, the alterations to the mitochondrial proteome profile during this period has not yet been clarified. An acute MI model was established by high position ligation of the left anterior descending artery in 8-week-old C57BL/6N mice. After 15 min of ligation, the animals were euthanized, and their hearts were collected. The myocardial ultrastructure was observed using transmission electron microscopy (TEM). The cardiac mitochondrial proteome profile was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. TEM showed that the outer membrane of the mitochondria was dissolved, and the inner membrane (cristae) was corrupted and broken down extensively in the MI group. The mitochondrial membrane potential was decreased. More than 1,700 mitochondrial proteins were identified by LC-MS/MS analysis, and 119 were differentially expressed. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis showed that endopeptidase activity regulation, the mitochondrial inner membrane, oxidative phosphorylation, the hypoxia-inducible factor-1 signaling pathway, the pentose phosphate pathway and the peroxisome proliferator-activated receptor signaling pathway were involved in the pathophysiological process in the early stage of acute MI. Extensive and substantial changes in the mitochondrial proteins as well as mitochondrial microstructural damage occur in the early stages of acute MI. In the present study, the series of proteins crucially involved in the pathways of mitochondrial dysfunction and metabolism were identified. Further studies are needed to clarify the roles of these proteins in myocardial metabolism remodeling during acute MI injury.
Collapse
Affiliation(s)
- Jie Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Jun He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Yucheng Fan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Fangjing Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Qian Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Ruhua He
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Ru Yan
- Department of Cardiovascular Internal Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| |
Collapse
|
10
|
Wojtkiewicz M, Berg Luecke L, Castro C, Burkovetskaya M, Mesidor R, Gundry RL. Bottom-up proteomic analysis of human adult cardiac tissue and isolated cardiomyocytes. J Mol Cell Cardiol 2021; 162:20-31. [PMID: 34437879 PMCID: PMC9620472 DOI: 10.1016/j.yjmcc.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
The heart is composed of multiple cell types, each with a specific function. Cell-type-specific approaches are necessary for defining the intricate molecular mechanisms underlying cardiac development, homeostasis, and pathology. While single-cell RNA-seq studies are beginning to define the chamber-specific cellular composition of the heart, our views of the proteome are more limited because most proteomics studies have utilized homogenized human cardiac tissue. To promote future cell-type specific analyses of the human heart, we describe the first method for cardiomyocyte isolation from cryopreserved human cardiac tissue followed by flow cytometry for purity assessment. We also describe a facile method for preparing isolated cardiomyocytes and whole cardiac tissue homogenate for bottom-up proteomic analyses. Prior experience in dissociating cardiac tissue or proteomics is not required to execute these methods. We compare different sample preparation workflows and analysis methods to demonstrate how these can impact the depth of proteome coverage achieved. We expect this how-to guide will serve as a starting point for investigators interested in general and cell-type-specific views of the cardiac proteome.
Collapse
Affiliation(s)
- Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Linda Berg Luecke
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maria Burkovetskaya
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Roneldine Mesidor
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine, Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Dias Amoedo N, Dard L, Sarlak S, Mahfouf W, Blanchard W, Rousseau B, Izotte J, Claverol S, Lacombe D, Rezvani HR, Pierri CL, Rossignol R. Targeting Human Lung Adenocarcinoma with a Suppressor of Mitochondrial Superoxide Production. Antioxid Redox Signal 2020; 33:883-902. [PMID: 32475148 DOI: 10.1089/ars.2019.7892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.
Collapse
Affiliation(s)
- Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Laetitia Dard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Saharnaz Sarlak
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Walid Mahfouf
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Wendy Blanchard
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Benoît Rousseau
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Bordeaux, France.,Transgenic Animal Core Facility, University of Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Bordeaux University, Bordeaux, France.,Proteomics Core Facility, Functional Genomics Center (CGFB), Bordeaux, France
| | - Didier Lacombe
- Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Haut-Lévèque Hospital, Thoracic Surgery, Bordeaux, France
| | - Hamid Reza Rezvani
- Bordeaux University, Bordeaux, France.,Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | - Rodrigue Rossignol
- CELLOMET, Functional Genomics Center (CGFB), Bordeaux, France.,Bordeaux University, Bordeaux, France.,INSERM U1211, University of Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Circulating Leukocytes and Oxidative Stress in Cardiovascular Diseases: A State of the Art. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2650429. [PMID: 31737166 PMCID: PMC6815586 DOI: 10.1155/2019/2650429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies.
Collapse
|
13
|
Leichner JM, Konyukhov E, Kamoun D, Yaniv Y. Real time mitochondrial dimension measurements. J Biol Methods 2019; 6:e111. [PMID: 31453260 PMCID: PMC6706126 DOI: 10.14440/jbm.2019.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial volume is correlated with cell function and internal cell processes. Changes in mitochondrial volume were associated with advanced states of cardiac disease. Thus, measurements of mitochondrial dimension deformations are important to the understanding of cell function and its deterioration. Existing methods either allow measurements of the volume of isolated mitochondria, which are an inferior model to that of isolated cells, or they allow short time measurements that are toxic to the cells. Recent studies have discovered that mitochondrial deformation along a given cell axis can be measured by using the Fourier transformation on the variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows. However, this method was used only offline and in a line scan mode, making it impossible to measure both axes. We designed an open source program in LabVIEW to take advantage of the transmitted light diffraction technique and quantify mitochondrial two dimension (2D) deformation in cardiomyocytes, in situ in real time for long periods (more than several seconds). We validated the program on synthetic and on experimental images from rabbit and rat ventricular myocytes. The program can analyze offline and real time simultaneous 2D mitochondrial deformation dynamics as well as also sarcomere length dynamics. Moreover, the program can accurately analyze images acquired from different cameras. Quantification of mitochondrial 2D deformations is a powerful tool for exploring cell biophysics and bioenergetics mechanisms and will lay the foundation for a future clinical tool for quantifying mitochondrial volume changes associated with different cardiac diseases.
Collapse
Affiliation(s)
| | - Evgene Konyukhov
- Biomedical Engineering Faculty, Technion-IIT, Haifa 32000, Israel
| | - David Kamoun
- Biomedical Engineering Faculty, Technion-IIT, Haifa 32000, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa 32000, Israel
| |
Collapse
|
14
|
Lu D, Xia Y, Chen Z, Chen A, Wu Y, Jia J, Sun A, Zou Y, Qian J, Ge J. Cardiac Proteome Profiling in Ischemic and Dilated Cardiomyopathy Mouse Models. Front Physiol 2019; 10:750. [PMID: 31275164 PMCID: PMC6591471 DOI: 10.3389/fphys.2019.00750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is a worldwide pandemic with an unacceptable high level of morbidity and mortality. Understanding the different pathophysiological mechanisms will contribute to prevention and individualized therapy of HF. We established mouse models for ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) by inducing myocardial infarction (MI) and Coxsackievirus B3 infection, respectively. Isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry technology was used to identify the protein expression profiles in control and failing hearts. A total of 1,638 proteins were identified and compared in this proteomics analysis. Among them, 286 proteins were differently expressed. Gene ontology, KEGG pathway and ingenuity pathway analysis was performed to systematically assess the potential connections of the differentially expressed proteins to biological functions. Compared with control group, the differentially expressed proteins derived from the hearts of ICM and DCM mice were partially similar and mainly modulated in oxidative phosphorylation, metabolism and protein folding pathways. Moreover, difference still existed, the differentially expressed proteins between DCM and ICM hearts were significantly modulated in oxidative phosphorylation, metabolic and AMPK signaling pathways. Confirmatory western bolt analysis demonstrated that SDHB was down-regulated in both ICM and DCM hearts, while UQCRQ, GLUT4 and adiponectin were up-regulated in ICM hearts. Adenosine triphosphate (ATP) concentration significantly decreased in both DCM and ICM hearts. The protein expression of phospho-AMPKα decreased significantly in DCM hearts, but increased in ICM. In summary, oxidative phosphorylation, cardiac metabolism, and protein folding play critical roles in the pathogenesis of HF. The diverse changes in protein expression profiles between failing hearts induced by either MI or CVB3 infection demonstrated the heterogeneity of HF. Understanding the differences in proteome profiles could offer more precise therapeutic options for HF.
Collapse
Affiliation(s)
- Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
16
|
Chen A, Chen Z, Xia Y, Lu D, Jia J, Hu K, Sun A, Zou Y, Qian J, Ge J. Proteomics Analysis of Myocardial Tissues in a Mouse Model of Coronary Microembolization. Front Physiol 2018; 9:1318. [PMID: 30283360 PMCID: PMC6157402 DOI: 10.3389/fphys.2018.01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023] Open
Abstract
Coronary microembolization (CME) is an important clinical problem, and it is related to poor outcome. The specific molecular mechanisms of CME are not fully understood. In the present study, we established a mice model of CME. Isobaric tags for relative and absolute quantitation (iTRAQ) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) technologies identified 249 differentially expressed proteins in the myocardial tissues of CME mice as compared with sham-operated mice. Bioinformatics analysis demonstrated that these differentially expressed proteins were enriched in several energy metabolism or cytoskeleton organization related processes or pathways. Quantitative PCR and Western blotting validation experiments revealed that succinate dehydrogenase (SDHA and SDHB) were upregulated, Rho GDP dissociation inhibitor α (RhoGDIα) and Filamin-A (FLNA) were downregulated significantly in CME mice. These findings indicated that the alternations of the cytoskeleton and energy metabolism pathways play important roles in the pathogenesis of CME, future studies are warranted to verify if targeting these molecules might be useful to alleviate CME injury or not.
Collapse
Affiliation(s)
- Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Cueto R, Zhang L, Shan HM, Huang X, Li X, Li YF, Lopez J, Yang WY, Lavallee M, Yu C, Ji Y, Yang X, Wang H. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - Novel hypothesis establishment. Redox Biol 2018; 17:70-88. [PMID: 29679893 PMCID: PMC6006524 DOI: 10.1016/j.redox.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) which has been implicated in matochondrial (Mt) function impairment. In this study, we characterized Hcy metabolism in mouse tissues by using LC-ESI-MS/MS analysis, established tissue expression profiles for 84 nuclear-encoded Mt electron transport chain complex (nMt-ETC-Com) genes in 20 human and 19 mouse tissues by database mining, and modeled the effect of HHcy on Mt-ETC function. Hcy levels were high in mouse kidney/lung/spleen/liver (24-14 nmol/g tissue) but low in brain/heart (~5 nmol/g). S-adenosylhomocysteine (SAH) levels were high in the liver/kidney (59-33 nmol/g), moderate in lung/heart/brain (7-4 nmol/g) and low in spleen (1 nmol/g). S-adenosylmethionine (SAM) was comparable in all tissues (42-18 nmol/g). SAM/SAH ratio was as high as 25.6 in the spleen but much lower in the heart/lung/brain/kidney/liver (7-0.6). The nMt-ETC-Com genes were highly expressed in muscle/pituitary gland/heart/BM in humans and in lymph node/heart/pancreas/brain in mice. We identified 15 Hcy-suppressive nMt-ETC-Com genes whose mRNA levels were negatively correlated with tissue Hcy levels, including 11 complex-I, one complex-IV and two complex-V genes. Among the 11 Hcy-suppressive complex-I genes, 4 are complex-I core subunits. Based on the pattern of tissue expression of these genes, we classified tissues into three tiers (high/mid/low-Hcy responsive), and defined heart/eye/pancreas/brain/kidney/liver/testis/embryonic tissues as tier 1 (high-Hcy responsive) tissues in both human and mice. Furthermore, through extensive literature mining, we found that most of the Hcy-suppressive nMt-ETC-Com genes were suppressed in HHcy conditions and related with Mt complex assembly/activity impairment in human disease and experimental models. We hypothesize that HHcy inhibits Mt complex I gene expression leading to Mt dysfunction.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Lixiao Zhang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Min Shan
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Huang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xinyuan Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Ya-Feng Li
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Jahaira Lopez
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Catherine Yu
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; The Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University - Lewis Katz School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Thrombosis Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA; Cardiovascular Research Center, Temple University - Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Groehler A, Kren S, Li Q, Robledo-Villafane M, Schmidt J, Garry M, Tretyakova N. Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radic Biol Med 2018; 120. [PMID: 29540307 PMCID: PMC5940493 DOI: 10.1016/j.freeradbiomed.2018.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) is a life-threatening condition that can occur when blood flow to the heart is interrupted due to a blockage in one or more of the coronary vessels. Current treatments of MI rapidly restore blood flow to the affected myocardium using thrombolytic agents or angioplasty. Adverse effects including inflammation, tissue necrosis, and ventricular dysfunction are, however, not uncommon following reperfusion therapy. These conditions are thought to be caused by a sudden influx of reactive oxygen species (ROS) to the affected myocardium. We employed the model of left anterior descending artery ligation/reperfusion surgery in a rat model to show that ischemia/reperfusion injury is associated with the formation of toxic DNA-protein cross-links (DPCs) in cardiomyocytes. Mass spectrometry based experiments have revealed that these conjugates were formed by a free radical mechanism and involved thymidine residues of DNA and tyrosine side chains of proteins (dT-Tyr). Quantitative proteomics experiments have identified nearly 90 proteins participating in hydroxyl radical-induced DPC formation, including ROS scavengers, contractile proteins, and regulators of apoptosis. Global proteome changes were less pronounced and included increased expression of mitochondrial proteins required for aerobic respiration and biomarkers of sarcomere breakdown following ischemia/reperfusion injury. Overall, our results are consistent with a model where sudden return of oxygen to ischemic tissues induces oxidative stress, inflammation, and the formation of DNA-protein cross-links that may contribute to reperfusion injury by desregulating gene expression and inducing cardiomyocyte death.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Stefan Kren
- Lillehei Heart Institute, University of Minnesota, 4-165 CCRB, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Qinglu Li
- Lillehei Heart Institute, University of Minnesota, 4-165 CCRB, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Maggie Robledo-Villafane
- Lillehei Heart Institute, University of Minnesota, 4-165 CCRB, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Joshua Schmidt
- Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Mary Garry
- Lillehei Heart Institute, University of Minnesota, 4-165 CCRB, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, 8-101 Weaver Densford Hall, 308 Harvard Street SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 2-147 CCRB, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
|
20
|
You Y, Zhang Y, Lu Y, Hu K, Qu X, Liu Y, Lu B, Jin L. Protein profiling and functional analysis of liver mitochondria from rats with nonalcoholic steatohepatitis. Mol Med Rep 2017; 16:2379-2388. [PMID: 28677739 PMCID: PMC5547946 DOI: 10.3892/mmr.2017.6893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/06/2017] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction is closely associated with the pathogenesis of nonalcoholic steatohepatitis (NASH). The aim of the present study was to comprehensively determine mitochondrial abnormalities in NASH by detecting the proteomics in liver mitochondria in a NASH rat model, which was induced for 16 weeks by the provision of a high fat and high cholesterol diet (HFD). Serum parameters, including triglycerides, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol were determined, and hematoxylin and eosin staining of liver tissues was examined to evaluate the NASH rat model. Various parameters associated with mitochondrial function were examined, including mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential (MMP) and mitochondrial respiratory chain complex (MRC) activity. The mitochondrial proteomics were analyzed and identified using isobaric tags for relative and absolute quantitation labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry. The identified proteins were classified and grouped using the Blast2GO program against the non-redundant protein database, the Kyoto Encyclopedia of Genes and Genomes database and the Cluster of Orthologous Groups of proteins database. Compared with the control, mtDNA copy number, MMP, and activities of MRC I and III were decreased markedly in the HFD group. A total of 18 upregulated and 13 downregulated proteins were identified, with a significant 1.2-fold difference between the control and NASH groups. The dysregulated proteins were closely involved in mitochondrial oxidative phosphorylation, the lipid metabolic process and fatty acid β-oxidation. The results of the present study provide important proteomic information regarding liver mitochondria in NASH and serve as a basis for further detailed investigations of the pathogenesis of NASH.
Collapse
Affiliation(s)
- Yanting You
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuxing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuanyuan Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Keke Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaohu Qu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yongzhag Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Liqin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
21
|
Murino Rafacho BP, Portugal dos Santos P, Gonçalves ADF, Fernandes AAH, Okoshi K, Chiuso-Minicucci F, Azevedo PS, Mamede Zornoff LA, Minicucci MF, Wang XD, Rupp de Paiva SA. Rosemary supplementation (Rosmarinus oficinallis L.) attenuates cardiac remodeling after myocardial infarction in rats. PLoS One 2017; 12:e0177521. [PMID: 28494028 PMCID: PMC5426768 DOI: 10.1371/journal.pone.0177521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown. METHODS AND RESULTS To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1) Sham group fed standard chow (SR0, n = 23); 2) Sham group fed standard chow supplemented with 0.02% rosemary (R002) (SR002, n = 23); 3) Sham group fed standard chow supplemented with 0.2% rosemary (R02) (SR02, n = 22); 4) group submitted to MI and fed standard chow (IR0, n = 13); 5) group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8); and 6) group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9). After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively. CONCLUSION Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | - Fernanda Chiuso-Minicucci
- Department of Microbiology and Immunology, Botucatu Biosciences Institute–UNESP, Botucatu/SP, Brazil
| | - Paula S. Azevedo
- Internal Medicine Department, Botucatu Medical School–UNESP, Botucatu/SP, Brazil
| | | | | | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston/MA, United States of America
| | | |
Collapse
|
22
|
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183:57-70. [PMID: 28130064 PMCID: PMC5393930 DOI: 10.1016/j.trsl.2017.01.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Kieren J Mather
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind; Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
23
|
Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D. Lack of β, β-carotene-9', 10'-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res 2017; 61. [PMID: 27991717 DOI: 10.1002/mnfr.201600576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
SCOPE β,β-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid β-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Abby Davis
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hui He
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
24
|
Wang S, Long CL, Chen J, Cui WY, Zhang YF, Zhang H, Wang H. Pharmacological evidence: a new therapeutic approach to the treatment of chronic heart failure through SUR2B/Kir6.1 channel in endothelial cells. Acta Pharmacol Sin 2017; 38:41-55. [PMID: 27890915 PMCID: PMC5220542 DOI: 10.1038/aps.2016.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Both iptakalim (Ipt) and natakalim (Nat) activate the SUR2B/Kir6.1 channel, an ATP-sensitive potassium channel (KATP) subtype, with high selectivity. In this study we investigated the therapeutic effects of Ipt and Nat against isoproterenol-induced chronic heart failure (ISO-CHF) in rats, and demonstrated a new therapeutic approach to the treatment of CHF through activation of the SUR2B/Kir6.1 channel in endothelial cells. In ISO-CHF rats, oral administration of Nat (1, 3, 9 mg·kg-1·d-1) or Ipt (3 mg·kg-1·d-1) for 60 days significantly improved cardiac dysfunction, reversed cardiac remodeling, significantly attenuated the pathological increases in BNP levels, and improved endothelial dysfunction by adjusting the balance between endothelin and NO systems. The therapeutic effects of Nat were prevented by the selective KATP blocker glibenclamine (Gli, 50 mg·kg-1·d-1), confirming that these effects were mediated through activation of the SUR2B/Kir6.1 channel in endothelial cells. The molecular mechanisms underlying the therapeutic effects of Nat were further addressed using proteomic methods. We identified 724 proteins in the plasma of ISO-CHF rats; 55 proteins were related to Nat. These differentially expressed proteins were mainly involved in single-organism processes and the regulation of biological quality relative to CHF, including proteasome (Psm) and ATP protein clusters. We screened out PRKAR2β, GAS6/eNOS/NO and NO/PKG/VASP pathways involved in the amelioration of CHF among the 24 enriched pathways. We further confirmed 6 protein candidates, including PRKAR2β, GAS6 and VASP, which were involved in the endothelial mechanisms, and ATP, TIMP3 and AGT, which contributed to its cardiovascular actions. This study demonstrates a new pharmacological approach to the treatment of CHF through activation of the SUR2B/Kir6.1 channel in endothelial cells, and that the eNOS/VASP pathways are involved in its signaling mechanisms.
Collapse
Affiliation(s)
- Shang Wang
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao-liang Long
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jun Chen
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Wen-yu Cui
- Cardiovascular Drug Research Center, Thadweik Academy of Medicine, Beijing 100039, China
| | - Yan-fang Zhang
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hao Zhang
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hai Wang
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
- Cardiovascular Drug Research Center, Thadweik Academy of Medicine, Beijing 100039, China
| |
Collapse
|
25
|
Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol 2016; 312:H33-H45. [PMID: 27742689 DOI: 10.1152/ajpheart.00341.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is an end point resulting from a number of disease states. The prognosis for HF patients is poor with survival rates precipitously low. Energy metabolism is centrally linked to the development of HF, and it involves the proteomic remodeling of numerous pathways, many of which are targeted to the mitochondrion. microRNAs (miRNA) are noncoding RNAs that influence posttranscriptional gene regulation. miRNA have garnered considerable attention for their ability to orchestrate changes to the transcriptome, and ultimately the proteome, during HF. Recently, interest in the role played by miRNA in the regulation of energy metabolism at the mitochondrion has emerged. Cardiac proteome remodeling during HF includes axes impacting hypertrophy, oxidative stress, calcium homeostasis, and metabolic fuel transition. Although it is established that the pathological environment of hypoxia and hemodynamic stress significantly contribute to the HF phenotype, it remains unclear as to the mechanistic underpinnings driving proteome remodeling. The aim of this review is to present evidence highlighting the role played by miRNA in these processes as a means for linking pathological stimuli with proteomic alteration. The differential expression of proteins of substrate transport, glycolysis, β-oxidation, ketone metabolism, the citric acid cycle (CAC), and the electron transport chain (ETC) are paralleled by the differential expression of miRNA species that modulate these processes. Identification of miRNAs that translocate to cardiomyocyte mitochondria (miR-181c, miR-378) influencing the expression of the mitochondrial genome-encoded transcripts as well as suggested import modulators are discussed. Current insights, applications, and challenges of miRNA-based therapeutics are also described.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| |
Collapse
|
26
|
Colak D, Alaiya AA, Kaya N, Muiya NP, AlHarazi O, Shinwari Z, Andres E, Dzimiri N. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy. PLoS One 2016; 11:e0162669. [PMID: 27711126 PMCID: PMC5053516 DOI: 10.1371/journal.pone.0162669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/28/2016] [Indexed: 01/30/2023] Open
Abstract
Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease.
Collapse
Affiliation(s)
- Dilek Colak
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ayodele A. Alaiya
- Proteomics Unit, Stem Cell Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Namik Kaya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Nzioka P. Muiya
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Olfat AlHarazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Editha Andres
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Nduna Dzimiri
- Genetics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
- * E-mail:
| |
Collapse
|
27
|
Proteomics of human mitochondria. Mitochondrion 2016; 33:2-14. [PMID: 27444749 DOI: 10.1016/j.mito.2016.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Proteomics have passed through a tremendous development in the recent years by the development of ever more sensitive, fast and precise mass spectrometry methods. The dramatically increased research in the biology of mitochondria and their prominent involvement in all kinds of diseases and ageing has benefitted from mitochondrial proteomics. We here review substantial findings and progress of proteomic analyses of human cells and tissues in the recent past. One challenge for investigations of human samples is the ethically and medically founded limited access to human material. The increased sensitivity of mass spectrometry technology aids in lowering this hurdle and new approaches like generation of induced pluripotent cells from somatic cells allow to produce patient-specific cellular disease models with great potential. We describe which human sample types are accessible, review the status of the catalog of human mitochondrial proteins and discuss proteins with dual localization in mitochondria and other cellular compartments. We describe the status and developments of pertinent mass spectrometric strategies, and the use of databases and bioinformatics. Using selected illustrative examples, we draw a picture of the role of proteomic analyses for the many disease contexts from inherited disorders caused by mutation in mitochondrial proteins to complex diseases like cancer, type 2 diabetes and neurodegenerative diseases. Finally, we speculate on the future role of proteomics in research on human mitochondria and pinpoint fields where the evolving technologies will be exploited.
Collapse
|
28
|
Abstract
Advances in mass spectrometry technology and bioinformatics using clinical human samples have expanded quantitative proteomics in cardiovascular research. There are two major proteomic strategies: namely, "gel-based" or "gel-free" proteomics coupled with either "top-down" or "bottom-up" mass spectrometry. Both are introduced into the proteomic analysis using plasma or serum sample targeting 'biomarker" searches of aortic aneurysm and tissue samples, such as from the aneurysmal wall, calcific aortic valve, or myocardial tissue, investigating pathophysiological protein interactions and post-translational modifications. We summarize the proteomic studies that analyzed human samples taken during cardiovascular surgery to investigate disease processes, in order to better understand the system-wide changes behind known molecular factors and specific signaling pathways.
Collapse
Affiliation(s)
- Teiji Oda
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
29
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
30
|
Impaired border zone formation and adverse remodeling after reperfused myocardial infarction in cannabinoid CB2 receptor deficient mice. Life Sci 2015; 138:8-17. [DOI: 10.1016/j.lfs.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022]
|
31
|
Huang Y, Powers C, Madala SK, Greis KD, Haffey WD, Towbin JA, Purevjav E, Javadov S, Strauss AW, Khuchua Z. Cardiac metabolic pathways affected in the mouse model of barth syndrome. PLoS One 2015; 10:e0128561. [PMID: 26030409 PMCID: PMC4451073 DOI: 10.1371/journal.pone.0128561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.
Collapse
Affiliation(s)
- Yan Huang
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Corey Powers
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Satish K. Madala
- Division of Pulmonary Medicine, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kenneth D. Greis
- Department of Cancer Biology, UC College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Wendy D. Haffey
- Department of Cancer Biology, UC College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- University of Tennessee Health Science Center, Memphis, TN, United States of America
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
- Le Bonheur Children's Hospital, Memphis, TN, United States of America
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, 00936–5067, PR
| | - Arnold W. Strauss
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Zaza Khuchua
- The Heart Institute, Department of Pediatrics, the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|