1
|
Wu S, Zou Y, Tan X, Yang S, Chen T, Zhang J, Xu X, Wang F, Li W. The molecular mechanisms of peptidyl-prolyl cis/trans isomerase Pin1 and its relevance to kidney disease. Front Pharmacol 2024; 15:1373446. [PMID: 38711994 PMCID: PMC11070514 DOI: 10.3389/fphar.2024.1373446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Shukun Wu
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurong Zou
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Zhang XL, Zhang G, Bai ZH. miR-34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin-1. Cell Biol Int 2021; 45:642-653. [PMID: 33289184 DOI: 10.1002/cbin.11512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/29/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by myocardial hypertrophy and fibrosis. This study aimed to investigate the effects of microRNA (miR)-34a on myocardial fibrosis in DCM and its potential mechanism of targeting Pin-1 signaling. Vimentin and Pin-1 proteins in mouse cardiac tissues were detected by immunohistochemical staining. Locked nucleic acid in situ hybridization was used to measure miR-34a expression in cardiac tissues. Primary mouse cardiac fibroblasts (CFs) were transfected with a mimics control/miR-34a mimics or Pin-1 plasmid and cultured in high-glucose (HG) Dulbecco's modified Eagle's medium. The miR-34a levels were measured by quantitative polymerase chain reaction. The apoptosis and viability of transfected cells were detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling and Cell Counting Kit-8 assays respectively. A cell migration experiment and dual-luciferase reporter assay were also performed. The body weight and fasting blood glucose of DCM mice were significantly higher than those in the control (CTL) group. In addition, DCM mice had decreased serum insulin levels and impaired cardiac function. The number of CFs in the DCM group was higher than in the CTL group and Pin-1 expression was upregulated. The expression level of miR-34a in the cardiac tissue of mice in the DCM group was obviously downregulated compared with the CTL group. The HG stimulation of CFs for 48 h significantly downregulated the expression level of miR-34a and was associated with increased Type I collagen expression, cell viability, and migration and decreased apoptosis. However, these effects could be reversed by overexpressing miR-34a in HG-induced CFs. Furthermore, we found that Pin-1 was a direct target of miR-34a. Our results suggest that miR-34a can attenuate myocardial fibrosis in DCM by reducing Type I collagen production, cell viability, and migration and increasing the apoptosis of CFs by targeting Pin-1 signaling.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Gang Zhang
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Ze-Hong Bai
- Department of Anesthesiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
4
|
Vahdat S, Bakhshandeh B. Prediction of putative small molecules for manipulation of enriched signalling pathways in hESC-derived early cardiovascular progenitors by bioinformatics analysis. IET Syst Biol 2019; 13:77-83. [PMID: 33444476 DOI: 10.1049/iet-syb.2018.5037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/25/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (CPCs) are considered as powerful tools for cardiac regenerative medicine and developmental study. Mesoderm posterior1+ (MESP1+ ) cells are identified as the earliest CPCs from which almost all cardiac cell types are generated. Molecular insights to the transcriptional regulatory factors of early CPCs are required to control cell fate decisions. Herein, the microarray data set of human embryonic stem cells (hESCs)-derived MESP1+ cells was analysed and differentially expressed genes (DEGs) were identified in comparison to undifferentiated hESCs and MESP1-negative cells. Then, gene ontology and pathway enrichment analysis of DEGs were carried out with the subsequent prediction of putative regulatory small molecules for modulation of CPC fate. Some key signalling cascades of cardiogenesis including Hippo, Wnt, transforming growth factor-β, and PI3K/Akt were highlighted in MESP1+ cells. The transcriptional regulatory network of MESP1+ cells were visualised through interaction networks of DEGs. Additionally, 35 promising chemicals were predicted based on correlations with gene expression signature of MESP1+ cells for effective in vitro CPC manipulation. Studying the transcriptional profile of MESP1+ cells resulted into the identification of important signalling pathways and chemicals which could be introduced as powerful tools to manage proliferation and differentiation of hESC-derived CPCs more efficiently.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Abstract
Cardiovascular disease is one of the most common causes of deaths in clinics. Experimental models of cardiovascular diseases are essential to understand disease mechanism, to provide accurate diagnoses, and to develop new therapies. Large numbers of experimental models have been proposed and replicated by many laboratories in the past. Models with significant advantages are chosen and became more popular. Particularly, feasibility, reproducibility, and human disease resemblance are the common key factors for frequently used cardiovascular disease models. In this chapter, we provide a brief overview of these experimental models used for in vitro, in vivo, and in silico studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Wu X, Li M, Chen SQ, Li S, Guo F. Pin1 facilitates isoproterenol‑induced cardiac fibrosis and collagen deposition by promoting oxidative stress and activating the MEK1/2‑ERK1/2 signal transduction pathway in rats. Int J Mol Med 2017; 41:1573-1583. [PMID: 29286102 PMCID: PMC5819929 DOI: 10.3892/ijmm.2017.3354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
Peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) is a member of a large superfamily of phosphorylation-dependent peptidyl-prolyl cis/trans isomerases, which not only regulates multiple targets at various stages of cellular processes, but is also involved in the pathogenesis of several diseases, including microbial infection, cancer, asthma and Alzheimer's disease. However, the role of Pin1 in cardiac fibrosis remains to be fully elucidated. The present study investigated the potential mechanism of Pin1 in isoprenaline (ISO)-induced myocardial fibrosis in rats. The rats were randomly divided into three groups. Echocardiography was used to evaluate changes in the size, shape and function of the heart, and histological staining was performed to visualize inflammatory cell infiltration and fibrosis. Reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemistry and Picrosirius red staining were used to differentiate collagen subtypes. Additionally, cardiac-specific phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular-signal regulated protein kinase 1/2 (ERK1/2), and the activities of Pin1 and α-smooth muscle actin (α-SMA) and other oxidative stress parameters were estimated in the heart. The administration of ISO resulted in an increase in cardiac parameters and elevated the heart-to-body weight ratio. Histopathological examination of heart tissues revealed interstitial inflammatory cellular infiltrate and disorganized collagen fiber deposition. In addition, lipid peroxidation products and oxidative stress marker activity in plasma and tissues were significantly increased in the ISO-treated rats. Western blot analysis showed significantly elevated protein levels of phosphorylated Pin1, MEK1/2, ERK1/2 and α-SMA in remodeling hearts. Treatment with juglone following intraperitoneal injection of ISO significantly prevented inflammatory cell infiltration, improved cardiac function, and suppressed oxidative stresses and fibrotic alterations. In conclusion, the results of the present study suggested that the activation of Pin1 promoted cardiac extracellular matrix deposition and oxidative stress damage by regulating the phosphorylation of the MEK1/2-ERK1/2 signaling pathway and the expression of α-SMA. By contrast, the inhibition of Pin1 alleviated cardiac damage and fibrosis in the experimental models, suggesting that Pin1 contributed to the development of cardiac remodeling in ISO-administered rats, and that the inactivation of Pin1 may be a novel therapeutic candidate for the treatment of cardiovascular disease and heart failure.
Collapse
Affiliation(s)
- Xian Wu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingjiang Li
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Su-Qin Chen
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha Li
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Furong Guo
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Goncalves GK, Scalzo S, Alves AP, Agero U, Guatimosim S, Reis AM. Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. Am J Physiol Cell Physiol 2017; 314:C310-C322. [PMID: 29167148 DOI: 10.1152/ajpcell.00060.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estradiol (E2) prevents cardiac hypertrophy, and these protective actions are mediated by estrogen receptor (ER)α and ERβ. The G protein-coupled estrogen receptor (GPER) mediates many estrogenic effects, and its activation in the heart has been observed in ischemia and reperfusion injury or hypertension models; however, the underlying mechanisms need to be fully elucidated. Herein, we investigated whether the protective effect of E2 against cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) is mediated by GPER and the signaling pathways involved. Isolated neonatal female rat cardiomyocytes were treated with ET-1 (100 nmol/l) for 48 h in the presence or absence of E2 (10 nmol/l) or GPER agonist G-1 (10 nmol/l) and GPER antagonist G-15 (10 nmol/l). ET-1 increased the surface area of cardiomyocytes, and this was associated with increased expression of atrial and brain natriuretic peptides. Additionally, ET-1 increased the phosphorylation of extracellular signal-related protein kinases-1/2 (ERK1/2). Notably, E2 or G-1 abolished the hypertrophic actions of ET-1, and that was reversed by G-15. Likewise, E2 reversed the ET-1-mediated increase of ERK1/2 phosphorylation as well as the decrease of phosphorylated Akt and its upstream activator 3-phosphoinositide-dependent protein kinase-1 (PDK1). These effects were inhibited by G-15, indicating that they are GPER dependent. Confirming the participation of GPER, siRNA silencing of GPER inhibited the antihypertrophic effect of E2. In conclusion, E2 plays a key role in antagonizing ET-1-induced hypertrophy in cultured neonatal cardiomyocytes through GPER signaling by a mechanism involving activation of the PDK1 pathway, which would prevent the increase of ERK1/2 activity and consequently the development of hypertrophy.
Collapse
Affiliation(s)
- Gleisy Kelly Goncalves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Sergio Scalzo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Ana Paula Alves
- Departament of Physics, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Ubirajara Agero
- Departament of Physics, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Adelina M Reis
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| |
Collapse
|
8
|
Sakai S, Maruyama H, Kimura T, Tajiri K, Honda J, Homma S, Aonuma K, Miyauchi T. Antagonists to endothelin receptor type B promote apoptosis in human pulmonary arterial smooth muscle cells. Life Sci 2016; 159:116-120. [DOI: 10.1016/j.lfs.2016.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022]
|
9
|
Wang JZ, Liu GJ, Li ZY, Wang XH. Pin1 in cardiovascular dysfunction: A potential double-edge role. Int J Cardiol 2016; 212:280-3. [DOI: 10.1016/j.ijcard.2016.03.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/14/2022]
|
10
|
Maruyama H, Dewachter C, Sakai S, Belhaj A, Rondelet B, Remmelink M, Vachiéry JL, Naeije R, Dewachter L. Bosentan reverses the hypoxia-induced downregulation of the bone morphogenetic protein signaling in pulmonary artery smooth muscle cells. Life Sci 2016; 159:111-115. [PMID: 27188586 DOI: 10.1016/j.lfs.2016.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022]
Abstract
AIMS Pulmonary hypertension (PH) is a common complication of chronic hypoxic lung diseases. Bone morphogenetic protein (BMP) and endothelin-1 signaling pathways have been shown to be altered in hypoxic PH and to play crucial roles in the associated pulmonary artery remodeling. We, therefore, aimed to study the potential link between hypoxia and the alteration of BMP and endothelin-1 signaling observed in pulmonary artery smooth muscle cells (PA-SMCs) in hypoxic PH. MATERIALS AND METHODS Human PA-SMCs were treated with hypoxia-mimetic agent cobalt chloride (CoCl2; 100μM), with or without pretreatment with a dual endothelin receptor antagonist bosentan (10μM). Expressions of preproendothelin-1 (PPET1), BMP type 2 receptor (BMPR-2), and one BMP signaling target gene, the inhibitor of DNA binding 1 (ID1) were evaluated by real time quantitative polymerase chain reaction. BMP2-treated PA-SMCs were assessed for Smad1/5/8 signaling activation by Western Blotting. KEY FINDINGS Treatment of PA-SMCs with CoCl2 increased PPET1 gene expression, while it did not alter expressions of endothelin converting enzyme, endothelin receptor type A or type B. Hypoxia-mimetic agent CoCl2 decreased the expressions of BMPR-2 and ID1 maximally after 3- and 6-hour treatment respectively, while CoCl2 treatment progressively increased noggin expression. Bosentan pretreatment restored expressions of BMPR-2 and ID1, as well as the activation (by phosphorylation) of Smad1/5/8 signaling induced by BMP2. SIGNIFICANCE Hypoxia induces the downregulation of the BMP signaling in PA-SMCs, at least, partly through the endothelin system. In hypoxic PH, increased endothelin-1 production might therefore contribute to the altered BMP signaling and subsequent PA-SMC hyperplasia.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium,.
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Satoshi Sakai
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Asmae Belhaj
- Department of Thoracic Surgery, Erasmus University Hospital, Brussels, Belgium
| | - Benoit Rondelet
- Department of Thoracic Surgery, Erasmus University Hospital, Brussels, Belgium
| | - Myriam Remmelink
- Department of Anatomopathology, Erasmus University Hospital, Brussels, Belgium
| | - Jean-Luc Vachiéry
- Department of Cardiology, Erasmus University Hospital, Brussels, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Liensinine- and Neferine-Induced Cardiotoxicity in Primary Neonatal Rat Cardiomyocytes and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2016; 17:ijms17020186. [PMID: 26840304 PMCID: PMC4783920 DOI: 10.3390/ijms17020186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA) Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs), to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates.
Collapse
|
12
|
Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37:2602-11. [PMID: 26802132 DOI: 10.1093/eurheartj/ehv713] [Citation(s) in RCA: 709] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Sustained cardiac hypertrophy accompanied by maladaptive cardiac remodelling represents an early event in the clinical course leading to heart failure. Maladaptive hypertrophy is considered to be a therapeutic target for heart failure. However, the molecular mechanisms that regulate cardiac hypertrophy are largely unknown. METHODS AND RESULTS Here we show that a circular RNA (circRNA), which we term heart-related circRNA (HRCR), acts as an endogenous miR-223 sponge to inhibit cardiac hypertrophy and heart failure. miR-223 transgenic mice developed cardiac hypertrophy and heart failure, whereas miR-223-deficient mice were protected from hypertrophic stimuli, indicating that miR-223 acts as a positive regulator of cardiac hypertrophy. We identified ARC as a miR-223 downstream target to mediate the function of miR-223 in cardiac hypertrophy. Apoptosis repressor with CARD domain transgenic mice showed reduced hypertrophic responses. Further, we found that a circRNA HRCR functions as an endogenous miR-223 sponge to sequester and inhibit miR-223 activity, which resulted in the increase of ARC expression. Heart-related circRNA directly bound to miR-223 in cytoplasm and enforced expression of HRCR in cardiomyocytes and in mice both exhibited attenuated hypertrophic responses. CONCLUSIONS These findings disclose a novel regulatory pathway that is composed of HRCR, miR-223, and ARC. Modulation of their levels provides an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Long
- Laboratory of Molecular Medicine, Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Jian-Xun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Lu-Yu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Teng Sun
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Man Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Tao Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying Gong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan-Han Dong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Na Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
13
|
Pin1: a molecular orchestrator in the heart. Trends Cardiovasc Med 2014; 24:256-62. [PMID: 25070718 DOI: 10.1016/j.tcm.2014.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 11/23/2022]
Abstract
Pin1 is an evolutionarily conserved peptidyl-prolyl isomerase that binds and changes the three-dimensional conformation of specific phospho-proteins. By regulating protein structure and folding, Pin1 affects the stability, interaction, and activity of a broad spectrum of target proteins, thus impacting upon diverse cellular processes. This review discusses the pivotal role Pin1 plays in regulating cardiac pathophysiology by functioning as a "molecular orchestrator" of a myriad of signal transduction pathways in the heart.
Collapse
|