1
|
Duangrat R, Parichatikanond W, Likitnukul S, Mangmool S. Endothelin-1 Induces Cell Proliferation and Myofibroblast Differentiation through the ET AR/G αq/ERK Signaling Pathway in Human Cardiac Fibroblasts. Int J Mol Sci 2023; 24:ijms24054475. [PMID: 36901906 PMCID: PMC10002923 DOI: 10.3390/ijms24054475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Endothelin-1 (ET-1) has been implicated in the pathogenesis of cardiac fibrosis. Stimulation of endothelin receptors (ETR) with ET-1 leads to fibroblast activation and myofibroblast differentiation, which is mainly characterized by an overexpression of α-smooth muscle actin (α-SMA) and collagens. Although ET-1 is a potent profibrotic mediator, the signal transductions and subtype specificity of ETR contributing to cell proliferation, as well as α-SMA and collagen I synthesis in human cardiac fibroblasts are not well clarified. This study aimed to evaluate the subtype specificity and signal transduction of ETR on fibroblast activation and myofibroblast differentiation. Treatment with ET-1 induced fibroblast proliferation, and synthesis of myofibroblast markers, α-SMA, and collagen I through the ETAR subtype. Inhibition of Gαq protein, not Gαi or Gβγ, inhibited these effects of ET-1, indicating the essential role of Gαq protein-mediated ETAR signaling. In addition, ERK1/2 was required for ETAR/Gαq axis-induced proliferative capacity and overexpression of these myofibroblast markers. Antagonism of ETR with ETR antagonists (ERAs), ambrisentan and bosentan, inhibited ET-1-induced cell proliferation and synthesis of α-SMA and collagen I. Furthermore, ambrisentan and bosentan promoted the reversal of myofibroblasts after day 3 of treatment, with loss of proliferative ability and a reduction in α-SMA synthesis, confirming the restorative effects of ERAs. This novel work reports on the ETAR/Gαq/ERK signaling pathway for ET-1 actions and blockade of ETR signaling with ERAs, representing a promising therapeutic strategy for prevention and restoration of ET-1-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sutharinee Likitnukul
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
2
|
Kamato D, Gabr M, Kumarapperuma H, Chia ZJ, Zheng W, Xu S, Osman N, Little PJ. Gαq Is the Specific Mediator of PAR-1 Transactivation of Kinase Receptors in Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms232214425. [PMID: 36430902 PMCID: PMC9692893 DOI: 10.3390/ijms232214425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
AIMS G protein-coupled receptor (GPCR) transactivation of kinase receptors greatly expands the actions attributable to GPCRs. Thrombin, via its cognate GPCR, protease-activated receptor (PAR)-1, transactivates tyrosine and serine/threonine kinase receptors, specifically the epidermal growth factor receptor and transforming growth factor-β receptor, respectively. PAR-1 transactivation-dependent signalling leads to the modification of lipid-binding proteoglycans involved in the retention of lipids and the development of atherosclerosis. The mechanisms of GPCR transactivation of kinase receptors are distinct. We aimed to investigate the role of proximal G proteins in transactivation-dependent signalling. MAIN METHODS Using pharmacological and molecular approaches, we studied the role of the G⍺ subunits, G⍺q and G⍺11, in the context of PAR-1 transactivation-dependent signalling leading to proteoglycan modifications. KEY FINDINGS Pan G⍺q subunit inhibitor UBO-QIC/FR900359 inhibited PAR-1 transactivation of kinase receptors and proteoglycans modification. The G⍺q/11 inhibitor YM254890 did not affect PAR-1 transactivation pathways. Molecular approaches revealed that of the two highly homogenous G⍺q members, G⍺q and G⍺11, only the G⍺q was involved in regulating PAR-1 mediated proteoglycan modification. Although G⍺q and G⍺11 share approximately 90% homology at the protein level, we show that the two isoforms exhibit different functional roles. SIGNIFICANCE Our findings may be extrapolated to other GPCRs involved in vascular pathology and highlight the need for novel pharmacological tools to assess the role of G proteins in GPCR signalling to expand the preeminent position of GPCRs in human therapeutics.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Mai Gabr
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Hirushi Kumarapperuma
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng J. Chia
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230052, China
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
3
|
Strength training alters the tissue fatty acids profile and slightly improves the thermogenic pathway in the adipose tissue of obese mice. Sci Rep 2022; 12:6913. [PMID: 35484170 PMCID: PMC9050661 DOI: 10.1038/s41598-022-10688-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Obesity is a disease characterized by the exacerbated increase of adipose tissue. A possible way to decrease the harmful effects of excessive adipose tissue is to increase the thermogenesis process, to the greater energy expenditure generated by the increase in heat in the body. In adipose tissue, the thermogenesis process is the result of an increase in mitochondrial work, having as substrate H+ ions, and which is related to the increased activity of UCP1. Evidence shows that stress is responsible for increasing the greater induction of UCP1 expression via β-adrenergic receptors. It is known that physical exercise is an important implement for sympathetic stimulation promoting communication between norepinephrine/epinephrine with membrane receptors. Thus, the present study investigates the influence of short-term strength training (STST) on fatty acid composition, lipolysis, lipogenesis, and browning processes in the subcutaneous adipose tissue (sWAT) of obese mice. For this, Swiss mice were divided into three groups: lean control, obesity sedentary, and obese strength training (OBexT). Obese animals were fed a high-fat diet for 14 weeks. Trained obese animals were submitted to 7 days of strength exercise. It was demonstrated that STST sessions were able to reduce fasting glycemia. In the sWAT, the STST was able to decrease the levels of the long-chain fatty acids profile, saturated fatty acid, and palmitic fatty acid (C16:0). Moreover, it was showed that STST did not increase protein levels responsible for lipolysis, the ATGL, ABHD5, pPLIN1, and pHSL. On the other hand, the exercise protocol decreased the expression of the lipogenic enzyme SCD1. Finally, our study demonstrated that the STST increased browning process-related genes such as PGC-1α, PRDM16, and UCP1 in the sWAT. Interestingly, all these biomolecular mechanisms have been observed independently of changes in body weight. Therefore, it is concluded that short-term strength exercise can be an effective strategy to initiate morphological changes in sWAT.
Collapse
|
4
|
Moody TW, Ramos-Alvarez I, Jensen RT. Bombesin, endothelin, neurotensin and pituitary adenylate cyclase activating polypeptide cause tyrosine phosphorylation of receptor tyrosine kinases. Peptides 2021; 137:170480. [PMID: 33385499 DOI: 10.1016/j.peptides.2020.170480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Numerous peptides including bombesin (BB), endothelin (ET), neurotensin (NTS) and pituitary adenylate cyclase-activating polypeptide (PACAP) are growth factors for lung cancer cells. The peptides bind to G protein-coupled receptors (GPCRs) resulting in elevated cAMP and/or phosphatidylinositol (PI) turnover. In contrast, growth factors such as epidermal growth factor (EGF) or neuregulin (NRG)-1 bind to receptor tyrosine kinases (RTKs) such as the EGFR or HER3, increasing tyrosine kinase activity, resulting in the phosphorylation of protein substrates such as PI3K or phospholipase (PL)C. Peptide GPCRs can transactivate numerous RTKs, especially members of the EGFR/HER family resulting in increased phosphorylation of ERK, leading to cellular proliferation or increased phosphorylation of AKT, leading to cellular survival. GRCR antagonists and tyrosine kinase inhibitors are useful agents to prevent RTK transactivation and inhibit proliferation of cancer cells.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Center for Cancer Training, Bethesda, MD, 20892, USA.
| | - Irene Ramos-Alvarez
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, 9000 Rockville Pike, Bethesda, MD, 20892 USA
| |
Collapse
|
5
|
Alcalde-Estévez E, Asenjo-Bueno A, Sosa P, Olmos G, Plaza P, Caballero-Mora MÁ, Rodríguez-Puyol D, Ruíz-Torres MP, López-Ongil S. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging (Albany NY) 2020; 12:11200-11223. [PMID: 32572011 PMCID: PMC7343454 DOI: 10.18632/aging.103450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Endothelial dysfunction, with increased endothelin-1 (ET-1) synthesis, and sarcopenia, characterized by the loss of muscular mass and strength, are two aging–related conditions. However, a relationship between them has not been already established. The aim of this study was to determine whether ET-1 induces senescence and fibrosis in cultured murine myoblasts, which could be involved in the development of sarcopenia related to aging. For this purpose, myoblasts were incubated with ET-1 to assess cellular senescence, analyzed by senescence associated β-galactosidase activity and p16 expression; and fibrosis, assessed by fibronectin expression. ET-1 induced myoblast senescence and fibrosis through ETA receptor. The use of antioxidants and several antagonists revealed that ET-1 effect on senescence and fibrosis depended on ROS production and activation of PI3K-AKT-GSK pathway. To stress the in vivo relevance of these results, circulating ET-1, muscular strength, muscular fibrosis and p16 expression were measured in male C57Bl6 mice from 5-18-24-months-old. Old mice shown high levels of ET-1 correlated with muscular fibrosis, muscular p16 expression and loss of muscle strength. In conclusion, ET-1 promotes fibrosis and senescence in cultured myoblasts, similar results were found in old mice, suggesting a potential role for ET-1 in the development of sarcopenia related to aging.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Ana Asenjo-Bueno
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | - Patricia Sosa
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Gemma Olmos
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| | - Patricia Plaza
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | | | - Diego Rodríguez-Puyol
- Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain.,Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain
| | - María Piedad Ruíz-Torres
- Departamento Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid 28871, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid 28805, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid 28003, Spain.,Area 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid 28046, Spain
| |
Collapse
|
6
|
Horinouchi T, Karki S, Terada K, Mazaki Y, Miwa S. Ca 2+ signal is involved in endothelin-1-induced internalization of endothelin type A receptor expressed in Chinese hamster ovary cells. J Pharmacol Sci 2019; 140:102-105. [PMID: 31103330 DOI: 10.1016/j.jphs.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/27/2022] Open
Abstract
Endothelin type A receptor (ETAR) is internalized upon agonist stimulation; however, the mechanism thereof remains controversial. In this study, we characterized the endothelin-1 (ET-1)-induced internalization of ETAR expressed in Chinese hamster ovary cells. ET-1 elicited ETAR internalization and increase in intracellular Ca2+ concentration. ET-1-induced ETAR internalization was completely inhibited by a reduction in intracellular and extracellular Ca2+ levels and partially suppressed by inhibitors of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2), both of which are downstream molecules in ETAR signaling. These results suggest that Ca2+ mobilization, PKC, and ERK1/2 are involved in ET-1-induced ETAR internalization.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-City, Hokkaido, 060-8638, Japan.
| | - Sarita Karki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-City, Hokkaido, 060-8638, Japan
| | - Koji Terada
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu-City, Shiga, 520-2192, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-City, Hokkaido, 060-8638, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-City, Hokkaido, 060-8638, Japan
| |
Collapse
|
7
|
Smith MP, Rowling EJ, Miskolczi Z, Ferguson J, Spoerri L, Haass NK, Sloss O, McEntegart S, Arozarena I, von Kriegsheim A, Rodriguez J, Brunton H, Kmarashev J, Levesque MP, Dummer R, Frederick DT, Andrews MC, Cooper ZA, Flaherty KT, Wargo JA, Wellbrock C. Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Mol Med 2017; 9:1011-1029. [PMID: 28606996 PMCID: PMC5538298 DOI: 10.15252/emmm.201607156] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF-induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re-activation in a paracrine manner. Most importantly, EDN1 not only supports MITF-high populations through the endothelin receptor B (EDNRB), but also AXL-high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL-high-expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL-high cells.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Loredana Spoerri
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Nikolas K Haass
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Qld, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Olivia Sloss
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sophie McEntegart
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Navarrabiomed-Fundación Miguel Servet-Idisna, Pamplona, Spain
| | | | - Javier Rodriguez
- Systems Biology Ireland, School of Medicine, UCD, Dublin 4, Ireland
| | - Holly Brunton
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jivko Kmarashev
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, Universitätsspital Zürich, University of Zurich, Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Miles C Andrews
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Maihöfer NA, Suleiman S, Dreymüller D, Manley PW, Rossaint R, Uhlig S, Martin C, Rieg AD. Imatinib relaxes the pulmonary venous bed of guinea pigs. Respir Res 2017; 18:32. [PMID: 28178968 PMCID: PMC5299687 DOI: 10.1186/s12931-017-0514-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022] Open
Abstract
Background Recently, the IMPRES study revealed that systemic imatinib improves exercise capacity in patients with advanced pulmonary arterial hypertension. Imatinib blocks the tyrosine kinase activity of the platelet-derived growth factor (PDGF)-receptor (PDGFR), acts antiproliferative and relaxes pulmonary arteries. However so far, the relaxant effects of imatinib on pulmonary veins (PVs) and on the postcapillary resistance are unknown, although pulmonary hypertension (PH) due to left heart disease (LHD) is most common and primarily affects PVs. Next, it is unknown whether activation of PDGFR alters the pulmonary venous tone. Due to the reported adverse effects of systemic imatinib, we evaluated the effects of nebulized imatinib on the postcapillary resistance. Methods Precision-cut lung slices (PCLS) were prepared from guinea pigs. PVs were pre-constricted with Endothelin-1 (ET-1) and the imatinib-induced relaxation was studied by videomicroscopy; PDGF-BB-related vascular properties were evaluated as well. The effects of perfused/nebulized imatinib on the postcapillary resistance were studied in cavine isolated perfused lungs (IPL). Intracellular cAMP/cGMP was measured by ELISA in PVs. Results In PCLS, imatinib (100 μM) relaxed pre-constricted PVs (126%). In PVs, imatinib increased cAMP, but not cGMP and inhibition of adenyl cyclase or protein kinase A reduced the imatinib-induced relaxation. Further, inhibition of KATP-channels, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathrm{BK}}_{\mathrm{Ca}}^{2+} $$\end{document}BKCa2+-channels or Kv-channels diminished the imatinib-induced relaxation, whereas inhibition of NO-signaling was without effect. In the IPL, perfusion or nebulization of imatinib reduced the ET-1-induced increase of the postcapillary resistance. In PCLS, PDGF-BB contracted PVs, which was blocked by imatinib and by the PDGFR-β kinase inhibitor SU6668, whereas inhibition of PDGFR-α (ponatinib) had no significant effect. Conversely, PDGFR-β kinase inhibitors (SU6668/DMPQ) relaxed PVs pre-constricted with ET-1 comparable to imatinib, whereas the PDGFR-α kinase inhibitor ponatinib did not. Conclusions Imatinib-induced relaxation depends on cAMP and on the activation of K+-channels. Perfused or nebulized imatinib significantly reduces the postcapillary resistance in the pre-constricted (ET-1) pulmonary venous bed. Hence, nebulization of imatinib is feasible and might reduce systemic side effects. Conversely, PDGF-BB contracts PVs by activation of PDGFR-β suggesting that imatinib-induced relaxation depends on PDGFR-β-antagonism. Imatinib combines short-term relaxant and long-term antiproliferative effects. Thus, imatinib might be a promising therapy for PH due to LHD.
Collapse
Affiliation(s)
- Nina A Maihöfer
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Daniela Dreymüller
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | | | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Annette D Rieg
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany. .,Department of Anesthesiology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany.
| |
Collapse
|
9
|
Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, Cui L, Zuo C. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med 2016; 38:1411-1418. [PMID: 27633041 PMCID: PMC5065307 DOI: 10.3892/ijmm.2016.2738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling.
Collapse
Affiliation(s)
- Yuechun Zhong
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liyi Zou
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zonggui Wang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yaqiong Pan
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhong Dai
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xinguang Liu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Changqing Zuo
- Department of Pharmacology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
10
|
Horinouchi T, Hoshi A, Harada T, Higa T, Karki S, Terada K, Higashi T, Mai Y, Nepal P, Mazaki Y, Miwa S. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells. Br J Pharmacol 2016; 173:1018-32. [PMID: 26660861 DOI: 10.1111/bph.13406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Akimasa Hoshi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Takuya Harada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunaki Higa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Sarita Karki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Koji Terada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yosuke Mai
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Prabha Nepal
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| |
Collapse
|
11
|
Wang Y, Appiah-Kubi K, Wu M, Yao X, Qian H, Wu Y, Chen Y. The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are major players in oncogenesis, drug resistance, and attractive oncologic targets in cancer. Growth Factors 2016; 34:64-71. [PMID: 27170215 DOI: 10.1080/08977194.2016.1180293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a key role in signaling pathways in oncogenesis. The overexpression of PDGFs and PDGFRs and the oncogenic alterations of these receptors have been implicated in human cancers and correlated significantly with poor outcomes. This review discusses the biology of the PDGF isoforms and receptors briefly, and their role in oncogenesis. Also, the attractiveness of targeting PDGFs and PDGFRs, based on a wide display of oncologic alterations in cancers, diverse therapeutic strategies, their roles in resistance to cancer treatments with prospects of overcoming drug resistance, and the extent to which validated biomarkers have been developed for effective PDGFs and PDGFRs-based cancer management are discussed.
Collapse
Affiliation(s)
- Ying Wang
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Kwaku Appiah-Kubi
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
- b Department of Applied Biology , University for Development Studies , Navrongo , Ghana , and
| | - Min Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Xiaoyuan Yao
- c Basic Medical Department, Changchun Medical College , Jilin , People's Republic of China
| | - Hai Qian
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yan Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yongchang Chen
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| |
Collapse
|
12
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
13
|
Muscarinic cholinoceptor-mediated activation of JNK negatively regulates intestinal secretion in mice. J Pharmacol Sci 2015; 127:150-3. [PMID: 25704031 DOI: 10.1016/j.jphs.2014.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 11/21/2022] Open
Abstract
Regulation of intestinal secretion is important for body fluid homeostasis. We investigated the role of three MAP kinases (MAPKs) as negative regulators in muscarinic cholinoceptor (mAChR)-mediated intestinal secretion in mice. Electrophysiological analyses revealed that mAChR stimulation enhanced intestinal chloride secretion, which was further augmented by the inhibition of JNK but not by that of ERK or p38 with specific inhibitors SP600125, U0126 or SB203580, respectively. Immunoblot analyses in colonic mucosa showed that mAChR stimulation increased MAPKs phosphorylation that was suppressed by the specific inhibitor for each MAPK. This suggests that JNK is a major negative regulator in mAChR-induced intestinal secretion.
Collapse
|