1
|
Zhou J, Li N, Li X, Ye J, Wang M, Sun G. Review on recent advancements in understanding acetylsalicylic acid-induced gastrointestinal injury: mechanisms, medication, and dosage refinement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3297-3320. [PMID: 39545984 DOI: 10.1007/s00210-024-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Acetylsalicylic acid (ASA) is a clinical drug with multiple effects, including prevention of cardiovascular adverse events and anti-cancer effects. However, gastrointestinal side effects, such as gastrointestinal ulcers and bleeding, limit the use of ASA and reduce patient compliance. Various studies have investigated the mechanisms of ASA-induced gastrointestinal injury, and many medicines have been reported to be effective in preventing and treating the adverse gastrointestinal effects of ASA. New formulations of ASA have demonstrated milder gastrointestinal injury than ASA alone. In this article, we summarized the mechanisms of ASA-induced gastrointestinal injury, drugs that resist gastrointestinal side effects of ASA, and progress in research on formulation improvement of ASA to help resolve the clinical dilemma of ASA usage.
Collapse
Affiliation(s)
- Jiahui Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinzhong Li
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China.
- Key Laboratory of New Drug Discovery Based On Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Peng L, Li X, Li J, Liu S, Liang G. The drug risks of cilostazol: A pharmacovigilance study of FDA Adverse Event Reporting System database. PLoS One 2024; 19:e0314957. [PMID: 39630707 PMCID: PMC11616863 DOI: 10.1371/journal.pone.0314957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE Cilostazol is indicated for alleviating intermittent claudication (IC) in stable-phase peripheral arterial disease (PAD) patients. Conducting data mining on adverse events (AEs) of cilostazol in the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database to explore its potential medication risks and advance more rational and secure clinical medication practices. METHODS This study utilized the Open Vigil 2.1-MedDRA tool to retrieve and extract AE reporting data related to cilostazol from the FAERS database spanning the first quarter of 2004 to the first quarter of 2024. The primary methodology employed was the application of the reporting odds ratio (ROR) method to detect risk signals associated with AEs of cilostazol. RESULTS A total of 2,130 AE reports involving cilostazol were identified as the primary suspect drug, with a total of 7,134 AEs reported. These reports were predominantly concentrated among patients aged 60 and above, with a higher occurrence in males compared to females. Japan ranked first among the reporting countries, and the majority of reports were submitted by healthcare professionals. Through the screening of cilostazol, a total of 323 positive risk signals for AEs were identified, encompassing 23 system organ classes (SOCs). A comparison with the existing cilostazol product label revealed 8 AEs that were not included based on the number of AE reports, and 19 AEs that were not included based on the strength of the risk signals. Cilostazol exhibited positive risk signals for AEs primarily affecting 8 organ systems based on the SOC classification. Among these, cardiac disorders ranked highest, with a total of 53 positive risk signals for cardiovascular-related AEs identified. In terms of the number of reports, cardiac failure ranked first, aligning with the black box warning issued by the FDA regarding cilostazol. The occurrence of adverse reactions related to cilostazol is primarily concentrated within the first month of treatment. However, a certain proportion of adverse reactions have been reported to occur after long-term use (exceeding 360 days) of cilostazol therapy. CONCLUSION Our results have further enriched the observations from existing clinical and real-world studies, uncovering new AE signals for cilostazol, including fall, cerebral infarction, pneumonia, loss of consciousness, acute kidney injury, renal impairment, renal failure, cardiac vein perforation, basal ganglia haematoma, cerebral hyperperfusion syndrome, et al. This study also highlights the significant impact of cilostazol on the cardiovascular system, necessitating close attention to potential cardiovascular toxicities. In addition to focusing on the short-term adverse reactions following cilostazol administration, thorough research into its long-term safety profile is also imperative. This study provides recommendations and guidance for the rational and safe clinical use of cilostazol. In the future, prospective studies are needed to explore the occurrence of related AEs further.
Collapse
Affiliation(s)
- Lufeng Peng
- Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xueli Li
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong Province, China
| | - Junhai Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shibin Liu
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Gang Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Bayrak A, Mohr F, Kolb K, Szpakowska M, Shevchenko E, Dicenta V, Rohlfing AK, Kudolo M, Pantsar T, Günther M, Kaczor AA, Poso A, Chevigné A, Pillaiyar T, Gawaz M, Laufer SA. Discovery and Development of First-in-Class ACKR3/CXCR7 Superagonists for Platelet Degranulation Modulation. J Med Chem 2022; 65:13365-13384. [PMID: 36150079 DOI: 10.1021/acs.jmedchem.2c01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atypical chemokine receptor 3 (ACKR3), formerly known as CXC-chemokine receptor 7 (CXCR7), has been postulated to regulate platelet function and thrombus formation. Herein, we report the discovery and development of first-in-class ACKR3 agonists, which demonstrated superagonistic properties with Emax values of up to 160% compared to the endogenous reference ligand CXCL12 in a β-arrestin recruitment assay. Initial in silico screening using an ACKR3 homology model identified two hits, C10 (EC50 19.1 μM) and C11 (EC50 = 11.4 μM). Based on these hits, extensive structure-activity relationship studies were conducted by synthesis and testing of derivatives. It resulted in the identification of the novel thiadiazolopyrimidinone-based compounds 26 (LN5972, EC50 = 3.4 μM) and 27 (LN6023, EC50 = 3.5 μM). These compounds are selective for ACKR3 versus CXCR4 and show metabolic stability. In a platelet degranulation assay, these agonists effectively reduced P-selectin expression by up to 97%, suggesting potential candidates for the treatment of platelet-mediated thrombosis.
Collapse
Affiliation(s)
- Alp Bayrak
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Florian Mohr
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Kyra Kolb
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Ekaterina Shevchenko
- Department of Internal Medicine VIII, Oncology and Pneumology, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Valerie Dicenta
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Mark Kudolo
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tatu Pantsar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland
| | - Marcel Günther
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Agnieszka A Kaczor
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.,Department of Internal Medicine VIII, Oncology and Pneumology, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Use of Antiplatelet Agents Decreases the Positive Predictive Value of Fecal Immunochemical Tests for Colorectal Cancer but Does Not Affect Their Sensitivity. J Pers Med 2021; 11:jpm11060497. [PMID: 34205974 PMCID: PMC8227279 DOI: 10.3390/jpm11060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Previous studies have evaluated the effects of antithrombotic agents on the performance of fecal immunochemical tests (FITs) for the detection of colorectal cancer (CRC), but the results were inconsistent and based on small sample sizes. We studied this topic using a large-scale population-based database. Using the Korean National Cancer Screening Program Database, we compared the performance of FITs for CRC detection between users and non-users of antiplatelet agents and warfarin. Non-users were matched according to age and sex. Among 5,426,469 eligible participants, 768,733 used antiplatelet agents (mono/dual/triple therapy, n = 701,683/63,211/3839), and 19,569 used warfarin, while 4,638,167 were non-users. Among antiplatelet agents, aspirin, clopidogrel, and cilostazol ranked first, second, and third, respectively, in terms of prescription rates. Users of antiplatelet agents (3.62% vs. 4.45%; relative risk (RR): 0.83; 95% confidence interval (CI): 0.78–0.88), aspirin (3.66% vs. 4.13%; RR: 0.90; 95% CI: 0.83–0.97), and clopidogrel (3.48% vs. 4.88%; RR: 0.72; 95% CI: 0.61–0.86) had lower positive predictive values (PPVs) for CRC detection than non-users. However, there were no significant differences in PPV between cilostazol vs. non-users and warfarin users vs. non-users. For PPV, the RR (users vs. non-users) for antiplatelet monotherapy was 0.86, while the RRs for dual and triple antiplatelet therapies (excluding cilostazol) were 0.67 and 0.22, respectively. For all antithrombotic agents, the sensitivity for CRC detection was not different between users and non-users. Use of antiplatelet agents, except cilostazol, may increase the false positives without improving the sensitivity of FITs for CRC detection.
Collapse
|
5
|
Lee TH, Lin YS, Liou CW, Lee JD, Peng TI, Liu CH. Comparison of long-term efficacy and safety between cilostazol and clopidogrel in chronic ischemic stroke: a nationwide cohort study. Ther Adv Chronic Dis 2020; 11:2040622320936418. [PMID: 32843953 PMCID: PMC7418470 DOI: 10.1177/2040622320936418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Previous clinical trials showed a significant difference in efficacy and safety among antiplatelets in acute ischemic stroke (IS). The present study wished to compare the efficacy and safety head-to-head between cilostazol and clopidogrel in chronic IS. Methods: This open prospective cohort study recruited chronic IS patients with an index hospitalization between 2001 and 2013 from Taiwan National Health Insurance Research Database. In the 504,191 hospitalized patients, patients who had missing information and history of atrial fibrillation or rheumatic heart disease, received mechanical valve replacement or anticoagulants, expired during the index hospitalization, received follow-up ⩽6 months, or had recurrent stroke within 6 months after index stroke were excluded. Results: Among the 15,968 eligible patients, 502 patients who consistently received either cilostazol or clopidogrel from the 7th month after the index stroke were included for analysis after propensity score matching. The 3-year primary outcomes showed similar frequency of recurrent IS, all-cause mortality, and acute myocardial infarction (AMI), and similar frequency of intracerebral hemorrhage, gastrointestinal bleeding, and major bleeding between the cilostazol and clopidogrel groups. Subgroup analysis revealed that patients with a history of hypertension or gastrointestinal bleeding had a trend of having lower frequency of recurrent IS or major bleeding, respectively, in the cilostazol group. Conclusion: The present real-world study demonstrated no significant difference in efficacy and safety between cilostazol and clopidogrel in chronic IS. However, cilostazol might be better than clopidogrel in patients with a history of hypertension or gastrointestinal bleeding.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sheng Lin
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiann-Der Lee
- Department of Neurology, Chiayi Chang Gung Memorial Hospital, Chiayi College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, No. 5, Fu-Hsing St., Kueishan, Taoyuan, 33333 College of Medicine, Chang Gung University, Taoyuan Graduate Institute of Clinical Medical Sciences, Division of Medical Education, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Multistage release matrices for potential antiplatelet therapy: Assessing the impact of polymers and Sorb-Cel M® on floating, swelling, and release behavior. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Moawad H, El Awdan SA, Sallam NA, El-Eraky WI, Alkhawlani MA. Gastroprotective effect of cilostazol against ethanol- and pylorus ligation–induced gastric lesions in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1605-1616. [PMID: 31372695 DOI: 10.1007/s00210-019-01699-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
|
8
|
Taslidere E, Vardi N, Parlakpinar H, Yıldız A, Taslidere B, Karaaslan MG. Effects of melatonin on acetylsalicylic acid induced gastroduodenal and jejunal mucosal injury. Biotech Histochem 2018; 93:485-495. [PMID: 30388896 DOI: 10.1080/10520295.2018.1442020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We evaluated the effects of melatonin on acetylsalicylic acid (ASA) induced gastroduodenal and jejunal mucosal injury. We used 40 postpubertal rats divided randomly into five groups of eight animals. The control group consisted of untreated animals. The Mel group was injected intraperitoneally (i.p.) with 5 mg/kg melatonin. The ASA group was injected i.p. with 200 mg/kg ASA. The ASA + Mel group was injected i.p. with 5 mg/kg melatonin 45 min after administering 200 mg/kg ASA i.p. The Mel + ASA group was injected i.p. with 5 mg/kg melatonin 45 min before administering 200 mg/kg ASA i.p. We found no statistically significant differences in mean histopathological scores in the ASA + Mel group compared to the ASA group. ASA caused shortened villi and loss of the apical villus in the duodenum. The histopathological score was increased and villus height was decreased in the ASA group compared to untreated controls. Treatment with melatonin attenuated the histological damage. In the ASA group, occasional areas showed erosion of villi in the jejunum; however, differences in mean histopathological score in ASA group compared to the other groups were not statistically significant. Malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) activities were measured in stomach, duodenal and jejunum tissue. We found increased MDA activity in both stomach and duodenal tissues in the ASA group compared to the control group (p < 0.05). We found no statistically significant changes in MDA levels in jejunal tissue in the ASA group compared to the control group. We found no change in SOD activity in either stomach or duodenal tissues in the ASA group compared to the control group. We observed decreased SOD activity in jejunal tissue in the ASA group compared to the control group (p < 0.05). We detected no change in GSH activity in stomach, duodenal or jejunal tissues in the ASA group compared to the control group. The stomach damage was less in melatonin treated groups, but the lesions were not completely eliminated. The jejunum in the ASA group retained a nearly normal appearance. We found that melatonin exhibited some healing effects on ASA induced duodenal mucosal injury.
Collapse
Affiliation(s)
- E Taslidere
- a Department of Histology and Embryology, Medical Faculty , Bezmialem Vakif University , Istanbul
| | - N Vardi
- b Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya , Turkey
| | - H Parlakpinar
- c Department of Pharmacology, Medical Faculty , Inonu University , Malatya , Turkey
| | - A Yıldız
- b Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya , Turkey
| | - B Taslidere
- d Department of Emergency Medicine , Malatya State Hospital , Malatya , Turkey
| | - M G Karaaslan
- e Department of Biochemistry, Medical Faculty , Inonu University , Malatya , Turkey
| |
Collapse
|
9
|
Verma S, Kumar VL. Artesunate affords protection against aspirin–induced gastric injury by targeting oxidative stress and proinflammatory signaling. Pharmacol Rep 2018; 70:390-397. [PMID: 29397336 DOI: 10.1016/j.pharep.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
10
|
The efficacy and safety of cilostazol as an alternative to aspirin in Chinese patients with aspirin intolerance after coronary stent implantation: a combined clinical study and computational system pharmacology analysis. Acta Pharmacol Sin 2018; 39:205-212. [PMID: 28933424 DOI: 10.1038/aps.2017.85] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
Dual antiplatelet therapy (DAT) with aspirin and clopidogrel is the standard regimen to achieve rapid platelet inhibition and prevent thrombotic events. Currently, little information is available regarding alternative antiplatelet therapy in patients with an allergy or intolerance to aspirin. Although cilostazol is already a common alternative to aspirin in clinical practice in China, its efficacy and safety remain to be determined. We retrospectively analyzed 613 Chinese patients who had undergone primary percutaneous coronary intervention (PCI). Among them, 405 patients received standard DAT (aspirin plus clopidogrel) and 205 patients were identified with intolerance to aspirin and received alternative DAT (cilostazol plus clopidogrel). There were no significant differences between the two groups in their baseline clinical characteristics. The main outcomes of the study included major adverse cardiac events (MACEs) and bleeding events during 12 months of follow-up. The MACEs endpoint was reached in 10 of 205 patients treated with cilostazol (4.9%) and in 34 of 408 patients treated with aspirin (8.3%). No statistically significant difference was observed in MACEs between the two groups. However, patients in the cilostazol group had less restenosis than did patients in the aspirin group (1.5% vs 4.9%, P=0.035). The occurrence of bleeding events tended to be lower in the cilostazol group (0.49% vs 2.7%, P=0.063). These clinical observations were further analyzed using network system pharmacology analysis, and the outcomes were consistent with clinical observations and preclinical data reports. We conclude that in Chinese patients with aspirin intolerance undergoing coronary stent implantation, the combination of clopidogrel with cilostazol may be an efficacious and safe alternative to the standard DAT regimen.
Collapse
|