1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Mariyammal V, Sathiageetha V, Amalraj S, Gurav SS, Amiri-Ardekani E, Jeeva S, Ayyanar M. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
The Ginsenoside Rg 1 Rescues Mitochondrial Disorders in Aristolochic Acid-Induced Nephropathic Mice. Life (Basel) 2021; 11:life11101018. [PMID: 34685389 PMCID: PMC8539135 DOI: 10.3390/life11101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic exposure to aristolochic acid (AA) leads to renal interstitial fibrosis and nephropathy. In this study, we aimed to investigate the renoprotective effects of Panax ginseng extract (GE) and ginsenoside saponin (GS) on AA-induced nephropathy (AAN) in mice. Eighty female C3H/He mice were randomly divided into eight groups, including normal; AA (3 μg/mL for 56 days); AA with GE (125, 250, or 500 mg/kg/d for 14 days); and AA with important GE ingredients, Rg1, Rb1, or Rd (5 mg/kg/d for 14 days). Compared with the AA group, renal injuries were significantly decreased in the GE (250 mg/kg/d), Rb1, and Rg1 treatment groups. Rg1 exhibited the best renoprotection among all GS-treated groups. There were 24 peaks significantly altered among normal, AA, and AA + Rg1 groups, and four mitochondrial proteins were identified, including acyl-CoA synthetase medium-chain family member 2, upregulated during skeletal muscle growth 5 (Usmg5), mitochondrial aconitase 2 (ACO2), and cytochrome c oxidase subunit Va preprotein (COX5a). We demonstrated for the first time that the AAN mechanism and renoprotective effects of Rg1 are associated with expression of mitochondrial proteins, especially ACO2, Usmg5, and COX5a.
Collapse
|
4
|
Lin CE, Lin PY, Yang WC, Huang YS, Lin TY, Chen CM, Chen HS, Lee JA, Chen SM. Evaluation of the nephrotoxicity and safety of low-dose aristolochic acid, extending to the use of Xixin (Asurum), by determination of methylglyoxal and d-lactate. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113945. [PMID: 33617966 DOI: 10.1016/j.jep.2021.113945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Most Aristolochiaceae plants are prohibited due to aristolochic acid nephropathy (AAN), except Xixin (Asarum spp.). Xixin contains trace amounts of aristolochic acid (AA) and is widely used in Traditional Chinese Medicine. Methylglyoxal and d-lactate are regarded as biomarkers for nephrotoxicity. AIM OF THE STUDY The use of Xixin (Asarum spp.) is essential and controversial. This study aimed to evaluate tubulointerstitial injury and interstitial renal fibrosis by determining urinary methylglyoxal and d-lactate after withdrawal of low-dose AA in a chronic mouse model. MATERIALS AND METHODS C3H/He mice in the AA group (n = 24/group) were given ad libitum access to distilled water containing 3 μg/mL AA (0.5 mg/kg/day) for 56 days and drinking water from days 57 to 84. The severity of tubulointerstitial injury and fibrosis were evaluated using the tubulointerstitial histological score (TIHS) and Masson's trichrome staining. Urinary and serum methylglyoxal were determined by high-performance liquid chromatography (HPLC); urinary d-lactate were determined by column-switching HPLC. RESULTS After AA withdrawal, serum methylglyoxal in the AA group increased from day 56 (429.4 ± 48.3 μg/L) to 84 (600.2 ± 99.9 μg/L), and peaked on day 70 (878.3 ± 171.8 μg/L; p < 0.05); TIHS and fibrosis exhibited similar patterns. Urinary methylglyoxal was high on day 56 (3.522 ± 1.061 μg), declined by day 70 (1.583 ± 0.437 μg) and increased by day 84 (2.390 ± 0.130 μg). Moreover, urinary d-lactate was elevated on day 56 (82.10 ± 18.80 μg) and higher from day 70 (201.10 ± 90.82 μg) to 84 (193.28 ± 61.32 μg). CONCLUSIONS Methylglyoxal is induced after AA-induced tubulointerstitial injury, so methylglyoxal excretion and metabolism may be a detoxification and repair strategy. A low cumulative AA dose is the key factor that limits tubulointerstitial injury and helps to repair. Thus, AA-containing herbs, especially Xixin, should be used at low doses for short durations (less than one month).
Collapse
Affiliation(s)
- Chia-En Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Po-Yeh Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Wen-Chi Yang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Tzu-Yao Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan.
| | - Hung-Shing Chen
- Graduate Institute of Electro-optical Engineering, National Taiwan University of Science and Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei, Taiwan.
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, No.250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Utilizing methylglyoxal and D-lactate in urine to evaluate saikosaponin C treatment in mice with accelerated nephrotoxic serum nephritis. PLoS One 2020; 15:e0241053. [PMID: 33104740 PMCID: PMC7588094 DOI: 10.1371/journal.pone.0241053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022] Open
Abstract
The relationship between methylglyoxal (MGO) and D-lactate during saikosaponin C (SSC) treatment of mice with accelerated nephrotoxic serum (NTS) nephritis was investigated. NTS nephritis was induced by administration of anti-basement membrane antibodies to C57BL/6 mice and three dosages of SSC were administered for 14 days. Proteinuria, blood urea nitrogen, serum creatinine, renal histology, urinary MGO and d-lactate changes were examined. Compared to the NTS control group, the middle dosage (10 mg/kg/day) of SSC significantly alleviated the development of nephritis based on urine protein measurements (34.40 ± 6.85 vs. 17.33 ± 4.79 mg/day, p<0.05). Pathological observation of the glomerular basement membrane (GBM) revealed monocyte infiltration, hypertrophy, and crescents were alleviated, and injury scoring also showed improved efficacy for the middle dose of SSC during nephritis (7.92 ± 1.37 vs. 3.50 ± 1.14, p<0.05). Moreover, the significant decreases in urinary levels of MGO (24.71 ± 3.46 vs. 16.72 ± 2.36 μg/mg, p<0.05) and D-lactate (0.31 ± 0.04 vs. 0.23 ± 0.02 μmol/mg, p<0.05) were consistent with the biochemical and pathological examinations. This study demonstrates that MGO and D-lactate may reflect the extent of damage and the efficacy of SSC in NTS nephritis; further studies are required to enable clinical application.
Collapse
|
6
|
Chen SM, Chen TH, Chang HT, Lin TY, Lin CY, Tsai PY, Imai K, Chen CM, Lee JA. Methylglyoxal and D-lactate in cisplatin-induced acute kidney injury: Investigation of the potential mechanism via fluorogenic derivatization liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) proteomic analysis. PLoS One 2020; 15:e0235849. [PMID: 32649695 PMCID: PMC7351171 DOI: 10.1371/journal.pone.0235849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Nephrotoxicity severely limits the chemotherapeutic efficacy of cisplatin (CDDP). Oxidative stress is associated with CDDP-induced acute kidney injury (AKI). Methylglyoxal (MG) forms advanced glycation end products that elevate oxidative stress. We aimed to explore the role of MG and its metabolite D-lactate and identify the proteins involved in CDDP-induced AKI. Six-week-old female BALB/c mice were intraperitoneally administered CDDP (5 mg/kg/day) for 3 or 5 days. Blood urea nitrogen (42.6 ± 7.4 vs. 18.3 ± 2.5; p < 0.05) and urinary N-acetyl-β-D-glucosaminide (NAG; 4.89 ± 0.61 vs. 2.43 ± 0.31 U/L; p < 0.05) were significantly elevated in the CDDP 5-day group compared to control mice. Histological analysis confirmed AKI was successfully induced. Confocal microscopy revealed TNF-α was significantly increased in the CDDP 5-day group. Fluorogenic derivatized liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) showed the kidney MG (36.25 ± 1.68 vs. 18.95 ± 2.24 mg/g protein, p < 0.05) and D-lactate (1.78 ± 0.29 vs. 1.12 ± 0.06 mol/g protein, p < 0.05) contents were significantly higher in the CDDP 5-day group than control group. FD-LC-MS/MS proteomics identified 33 and nine altered peaks in the CDDP 3-day group and CDDP 5-day group (vs. control group); of the 35 proteins identified using the MOSCOT database, 11 were antioxidant-related. Western blotting confirmed that superoxide dismutase 1 (SOD-1) and parkinson disease protein 7 (DJ-1) are upregulated and may participate with MG in CDDP-induced AKI. This study demonstrates TNF-α, MG, SOD-1 and DJ-1 play crucial roles in CDDP-induced AKI.
Collapse
Affiliation(s)
- Shih-Ming Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hui Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ting Chang
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Health, Taipei City Government, Taipei, Taiwan
| | - Tzu-Yao Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pei-Yun Tsai
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan-Fang Hospital, Taipei, Taiwan
| | - Kazuhiro Imai
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Jen-Ai Lee
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry. PLoS One 2020; 15:e0227838. [PMID: 31968011 PMCID: PMC6975546 DOI: 10.1371/journal.pone.0227838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023] Open
Abstract
Prednisolone is involved in glucose homeostasis and has been used for treatment for aristolochic acid (AA) nephropathy (AAN), but its effect on glycolysis in kidney has not yet been clarified. This study aims to investigate the effect in terms of altered proteins after prednisolone treatment in a mice model of AAN using a proteomics technique. The six-week C3H/He female mice were administrated AA (0.5 mg/kg/day) for 56 days. AA+P group mice were then given prednisolone (2 mg/kg/day) via oral gavage for the next 14 days, and AA group mice were fed water instead. The tubulointerstitial damage was improved after prednisolone treatment comparing to that of AA group. Kidney homogenates were harvested to perform the proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method (FD-LC-MS/MS). On the other hand, urinary methylglyoxal and D-lactate levels were determined by high performance liquid chromatography with fluorescence detection. There were 47 altered peaks and 39 corresponding proteins on day 14 among the groups, and the glycolysis-related proteins, especially glyoxalase 1 (GLO1), fructose-bisphosphate aldolase B (aldolase B), and triosephosphate isomerase (TPI), decreased in the AA+P group. Meanwhile, prednisolone decreased the urinary amount of methylglyoxal (AA+P: 2.004 ± 0.301 μg vs. AA: 2.741 ± 0.630 μg, p < 0.05), which was accompanied with decrease in urinary amount of D-lactate (AA+P: 54.07 ± 5.45 μmol vs. AA: 86.09 ± 8.44 μmol, p < 0.05). Prednisolone thus alleviated inflammation and interstitial renal fibrosis. The renal protective mechanism might be associated with down-regulation of GLO1 via reducing the contents of methylglyoxal derived from glycolysis. With the aid of proteomics analysis and the determination of methylglyoxal and its metabolite-D-lactate, we have demonstrated for the first time the biochemical efficacy of prednisolone, and urinary methylglyoxal and its metabolite-D-lactate might be potential biomarkers for AAN.
Collapse
|
8
|
Meshkani SE, Mahdian D, Abbaszadeh-Goudarzi K, Abroudi M, Dadashizadeh G, Lalau JD, De Broe ME, Hosseinzadeh H. Metformin as a protective agent against natural or chemical toxicities: a comprehensive review on drug repositioning. J Endocrinol Invest 2020; 43:1-19. [PMID: 31098946 DOI: 10.1007/s40618-019-01060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metformin is the first prescribed drug for hyperglycemia in type 2 diabetes mellitus. Mainly by activating AMPK pathway, this drug exerts various functions that among them protective effects are of the interest. PURPOSE Herein, we aimed to gather data about the protective impacts of metformin against various natural or chemical toxicities. RESULTS An extensive search among PubMed, Scopus, and Google Scholar was conducted by keywords related to protection, toxicity, natural and chemical toxins and, metformin. Our literature review showed metformin alongside its anti-hyperglycemic effect has a wide range of anti-toxic effects against anti-tumour and routine drugs, natural and chemical toxins, herbicides and, heavy metals. CONCLUSION It is evident that metformin is a potent drug against the toxicity of a broad spectrum of natural, chemical toxic agents which is proved by a vast number of studies. Metformin mainly through AMPK axis can protect different organs against toxicities. Moreover, metformin preserves DNA integrity and can be an option for adjuvant therapy to ameliorate side effect of other therapeutics.
Collapse
Affiliation(s)
- S E Meshkani
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - D Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - K Abbaszadeh-Goudarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Biochemistry, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - M Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - G Dadashizadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - J-D Lalau
- Department of Endocrinology, Université de Picardie Jules Verne, Amiens, France
| | - M E De Broe
- Department of Biomedical Sciences, Universiteit Antwerpen, Antwerp, Belgium
| | - H Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Semicarbazide-sensitive amine oxidase activity levels in patients with acute lymphoblastic leukemia after cytotoxic chemotherapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Huang YS, Wang SH, Chen SM, Lee JA. Metabolic profiling of metformin treatment for low-level Pb-induced nephrotoxicity in rat urine. Sci Rep 2018; 8:14587. [PMID: 30275489 PMCID: PMC6167321 DOI: 10.1038/s41598-018-32501-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease is a worldwide problem, and Pb contamination is a potential risk factor. Since current biomarkers are not sensitive for the diagnosis of Pb-induced nephrotoxicity, novel biomarkers are needed. Metformin has both hypoglycaemic effects and reno-protection ability. However, its mechanism of action is unknown. We aimed to discover the early biomarkers for the diagnosis of low-level Pb-induced nephrotoxicity and understand the mechanism of reno-protection of metformin. Male Wistar rats were randomly divided into control, Pb, Pb + ML, Pb + MH and MH groups. Pb (250 ppm) was given daily via drinking water. Metformin (50 or 100 mg/kg/d) was orally administered. Urine was analysed by nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analysis, and potential biomarkers were subsequently quantified. The results showed that Pb-induced nephrotoxicity was closely correlated with the elevation of 5-aminolevulinic acid, D-lactate and guanidinoacetic acid in urine. After co-treatment with metformin, 5-aminolevulinic acid and D-lactate were decreased. This is the first demonstration that urinary 5-aminolevulinic acid, D-lactate and guanidinoacetic acid could be early biomarkers of low-level Pb-induced nephrotoxicity in rats. The reno-protection of metformin might be attributable to the reduction of D-lactate excretion.
Collapse
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| |
Collapse
|
11
|
De Broe M, Kajbaf F, Lalau JD. Renoprotective Effects of Metformin. Nephron Clin Pract 2017; 138:261-274. [DOI: 10.1159/000481951] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
|
12
|
Jadot I, Colombaro V, Martin B, Habsch I, Botton O, Nortier J, Declèves AE, Caron N. Restored nitric oxide bioavailability reduces the severity of acute-to-chronic transition in a mouse model of aristolochic acid nephropathy. PLoS One 2017; 12:e0183604. [PMID: 28832640 PMCID: PMC5568239 DOI: 10.1371/journal.pone.0183604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Aristolochic Acid (AA) nephropathy (AAN) is a progressive tubulointerstitial nephritis characterized by an early phase of acute kidney injury (AKI) leading to chronic kidney disease (CKD). The reduced nitric oxide (NO) bioavailability reported in AAN might contribute to renal function impairment and progression of the disease. We previously demonstrated that L-arginine (L-Arg) supplementation is protective in AA-induced AKI. Since the severity of AKI may be considered a strong predictor of progression to CKD, the present study aims to assess the potential benefit of L-Arg supplementation during the transition from the acute phase to the chronic phase of AAN. C57BL/6J male mice were randomly subjected to daily i.p. injections of vehicle or AA for 4 days. To determine whether renal AA-induced injuries were linked to reduced NO production, L-Arg was added to drinking water from 7 days before starting i.p. injections, until the end of the protocol. Mice were euthanized 5, 10 and 20 days after vehicle or AA administration. AA-treated mice displayed marked renal injury and reduced NO bioavailability, while histopathological features of AAN were reproduced, including interstitial cell infiltration and tubulointerstitial fibrosis. L-Arg treatment restored renal NO bioavailability and reduced the severity of AA-induced injury, inflammation and fibrosis. We concluded that reduced renal NO bioavailability contributes to the processes underlying AAN. Furthermore, L-Arg shows nephroprotective effects by decreasing the severity of acute-to-chronic transition in experimental AAN and might represent a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Inès Jadot
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
- * E-mail:
| | - Vanessa Colombaro
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Blanche Martin
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Isabelle Habsch
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Olivia Botton
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| | - Joëlle Nortier
- Nephrology Department, Erasme Academic Hospital and Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit — URPhyM, NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
13
|
Jadot I, Declèves AE, Nortier J, Caron N. An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Int J Mol Sci 2017; 18:ijms18020297. [PMID: 28146082 PMCID: PMC5343833 DOI: 10.3390/ijms18020297] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
The term “aristolochic acid nephropathy” (AAN) is used to include any form of toxic interstitial nephropathy that is caused either by ingestion of plants containing aristolochic acids (AA) as part of traditional phytotherapies (formerly known as “Chinese herbs nephropathy”), or by the environmental contaminants in food (Balkan endemic nephropathy). It is frequently associated with urothelial malignancies. Although products containing AA have been banned in most of countries, AAN cases remain regularly reported all over the world. Moreover, AAN incidence is probably highly underestimated given the presence of AA in traditional herbal remedies worldwide and the weak awareness of the disease. During these two past decades, animal models for AAN have been developed to investigate underlying molecular and cellular mechanisms involved in AAN pathogenesis. Indeed, a more-in-depth understanding of these processes is essential to develop therapeutic strategies aimed to reduce the global and underestimated burden of this disease. In this regard, our purpose was to build a broad overview of what is currently known about AAN. To achieve this goal, we aimed to summarize the latest data available about underlying pathophysiological mechanisms leading to AAN development with a particular emphasis on the imbalance between vasoactive factors as well as a focus on the vascular events often not considered in AAN.
Collapse
Affiliation(s)
- Inès Jadot
- Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium.
| | - Anne-Emilie Declèves
- Laboratory of Molecular Biology, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons 7000, Belgium.
| | - Joëlle Nortier
- Nephrology Department, Erasme Academic Hospital and Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium.
| |
Collapse
|
14
|
Huang YS, Li YC, Tsai PY, Lin CE, Chen CM, Chen SM, Lee JA. Accumulation of methylglyoxal and d
-lactate in Pb-induced nephrotoxicity in rats. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Yi-Chieh Li
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Pei-Yun Tsai
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chia-En Lin
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering; National Taipei University of Technology; Taipei Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
15
|
Analysis of aristolochic acids, aristololactams and their analogues using liquid chromatography tandem mass spectrometry. Chin J Nat Med 2016; 14:626-40. [DOI: 10.1016/s1875-5364(16)30074-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 11/17/2022]
|
16
|
Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening. Int J Mol Sci 2016; 17:389. [PMID: 26999111 PMCID: PMC4813245 DOI: 10.3390/ijms17030389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.
Collapse
|
17
|
Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int 2016; 89:374-85. [DOI: 10.1038/ki.2015.327] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
|
18
|
Abdelgadir AA, Boudesocque-Delaye L, Thery-Koné I, Gueiffier A, Ahmed EM, Enguehard-Gueiffier C. One-step preparative isolation of aristolochic acids by strong ion-exchange centrifugal partition chromatography. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Xing WM, Yuan TJ, Xu JD, Gu LL, Liang P, Lu H. Proteomic identification of mitochondrial targets involved in andrographolide sodium bisulfite-induced nephrotoxicity in a rat model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:592-599. [PMID: 26356389 DOI: 10.1016/j.etap.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Our previous works have indicated that the mitochondrion is the primary target of nephrotoxicity induced by andrographolide sodium bisulfate (ASB), but the mechanisms of ASB-induced nephrotoxicity have remained largely unknown. In this study, proteomic analysis was used to explore the changes in the renal mitochondrial proteome in SD rats after treatment with ASB. SD rats were intraperitoneally administered with ASB (100, 600mg/kg/d) for 7 days. Renal impairment was evaluated by pathological observation. Two-dimensional gel electrophoresis (2-DE), as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS), was applied for the identification of mitochondrial protein and was validated by Western blotting. Protein-protein interactions were analyzed using a Web-based bioinformatics tool (STRING, version 9.1). Rat kidneys exhibited histopathological changes after treatment with ASB, and 13 proteins were significantly changed, including ES1 protein homolog, heat shock cognate 71kDa protein, peroxiredoxin-1 (Prdx1), cytochrome C oxidase subunit 5B (COX5B), prohibitin (PHB), threonine-tRNA ligase, pyruvate dehydrogenase E1 component subunit beta (PDH-β), voltage-dependent anion-selective channel protein 2 (VDAC2), voltage-dependent anion-selective channel protein 1 (VDAC1), adenylate kinase 2 (KAD2) and others. These data demonstrated that the expression levels of several proteins significantly changed in the mitochondria, and these proteins could be candidate biomarkers for ASB-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wen Min Xing
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tang Juan Yuan
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jia Dong Xu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Li Li Gu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Pei Liang
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Hong Lu
- School of Pharmacology, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|