1
|
Ni KD, Fu X, Luo Y, He X, Yin HH, Mo DP, Wu JX, Wu MJ, Zheng X, Liu YN, Jiang Q, Zhang LT, Lin AZ, Huang L, Pan QJ, Yin XD, Zhang HY, Meng YW, Zhou X, Pan J, Guo Z, Liu JY. Epoxy metabolites of linoleic acid promote the development of breast cancer via orchestrating PLEC/NFκB1/CXCL9-mediated tumor growth and metastasis. Cell Death Dis 2024; 15:901. [PMID: 39695149 DOI: 10.1038/s41419-024-07300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown. Here we report the role and underlying mechanism of epoxyoctadecenoic acids (EpOMEs), the metabolites of linoleic acid mediated by cytochrome P450 (CYP) monooxygenases, in promoting the development of BC, particularly triple-negative BC (TNBC). A metabolomics study identified that EpOMEs were significantly increased in the plasma of BC patients and MMTV-PyMT mice, which accounted for the upregulation of CYP2J2 in BC tumor tissues and tumor cells. Decreased EpOMEs by treatment of CYP monooxygenase inhibitors significantly alleviated tumor development in MMTV-PyMT mice. Treatment with EpOMEs and overexpression of CYP2J2 to increase EpOMEs in TNBC cells significantly promoted cellular proliferation, migration, tumor growth, and metastasis. Whereas knockdown of CYP2J2 to decrease EpOMEs inhibited tumorigenesis and lung metastasis of TNBC, which was reversed by EpOME administration. Transcriptomics and proteomics analyses revealed CXCL9 and PLEC were critical for EpOME-mediated promotion of TNBC. Knockdown of CXCL9 and PLEC inhibited TNBC progression and EpOME-mediated promotion of TNBC. Both overexpression of CYP2J2 and EpOME treatment upregulate PLEC, while PLEC upregulates NFκB1, which is a transcription regulator of CXCL9. This study extends the understanding of the function of PUFAs metabolism in BC development, providing potential therapeutic targets and dietary guidelines for patients with TNBC and other BCs. The illustration of the hypothetical mechanism CYP2J2/EpOMEs promotes the tumorigenesis and metastasis of TNBC via PLEC/NFKB1/CXCL9 signaling pathway.
Collapse
Affiliation(s)
- Kai-Di Ni
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xian Fu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ying Luo
- Department of Clinical Laboratory, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Xin He
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Hou-Hua Yin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Dong-Ping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jing-Xian Wu
- Department of Pathology, College of Basic Medicine of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming-Jun Wu
- Center for Science & technology Innovation, Chongqing Medical University, Chongqing, China
| | - Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ya-Nan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing Jiang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling-Tong Zhang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ai-Zhi Lin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling Huang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing-Jin Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xue-Dong Yin
- The Department of Breast and Thyroid surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan-Yu Zhang
- The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Yi-Wen Meng
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xue Zhou
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
3
|
Tan Z, Qiu J, Zhang Y, Yang Q, Yin X, Li J, Liu G, Li H, Yang G. Tetramethylpyrazine Alleviates Behavioral and Psychological Symptoms of Dementia Through Facilitating Hippocampal Synaptic Plasticity in Rats With Chronic Cerebral Hypoperfusion. Front Neurosci 2021; 15:646537. [PMID: 34025340 PMCID: PMC8134703 DOI: 10.3389/fnins.2021.646537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Behavioral and psychological symptoms of dementia (BPSD) ubiquitously disturb all patients with dementia at some point in the disease course. Although a plethora of non-pharmacological and pharmacological methods targeting the relief BPSD have been developed, the therapeutic effect is still far from ideal. Here, a rat BPSD model combining the physiological changes with mental insults was successfully established. Meanwhile, our results indicated that TMP attenuated anxious behavior using an elevated plus maze (EPM) test, ameliorated recognitive ability and sociability through a novel object recognition test (NORT) and social interaction test (SIT), and improved learning and memory impairments via a Barnes maze in rats with bilateral common carotid arteries occlusion (BCCAO) plus chronic restraint stress (CRS). Given that hippocampus chronic cerebral hypoperfusion (CCH) always causes damage to the hippocampus, and the majority of cognitive impairments, behaviors, and stress responses are associated with pathology in the hippocampus including anxiety and depression, we paid attention to investigate the role of the hippocampus in BPSD. Our results indicated that Tetramethylpyrazine (TMP) attenuated anxiety and ameliorated recognitive ability, sociability, learning, and memory impairments due to alleviating dendritic and spine deficits, and upregulating the expression of synapse-related proteins (including PSD95, SYN, GAP43, SYP) in the hippocampus. We also found that the underlying mechanism was that TMP could activate the TrkB/ERK/CREB signaling pathway to promote synaptic remodeling in vivo and in vitro. Mechanically, the present study enlarges the therapeutic scope of TMP in neurodegenerative disorders and provides basic knowledge and feasible candidates for treating BPSD, particularly for vascular dementia.
Collapse
Affiliation(s)
- Zihu Tan
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jing Qiu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuting Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiong Yang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Xixi Yin
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Guangya Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Hengfei Li
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Department of Infectious Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Guang Yang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Rodriguez-Zas SL, Wu C, Southey BR, O'Connor JC, Nixon SE, Garcia R, Zavala C, Lawson M, McCusker RH, Romanova EV, Sweedler JV, Kelley KW, Dantzer R. Disruption of microglia histone acetylation and protein pathways in mice exhibiting inflammation-associated depression-like symptoms. Psychoneuroendocrinology 2018; 97:47-58. [PMID: 30005281 PMCID: PMC6138522 DOI: 10.1016/j.psyneuen.2018.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Peripheral immune challenge can elicit microglia activation and depression-related symptoms. The balance of inflammatory signals in the tryptophan pathway can skew the activity of indoleamine-pyrrole 2,3 dioxygenase (IDO1) towards the metabolization of tryptophan into kynurenine (rather than serotonin), and towards neuroprotective or neurotoxic metabolites. The proteome changes that accompany inflammation-associated depression-related behaviors are incompletely understood. METHODS The changes in microglia protein abundance and post-translational modifications in wild type (WT) mice that exhibit depression-like symptoms after recovery from peripheral Bacille Calmette-Guerin (BCG) challenge were studied. This WT_BGG group was compared to mice that do not express depression-like symptoms after BCG challenge due to IDO1 deficiency by means of genetic knockout (BCG_KO group), and to WT Saline-treated (Sal) mice (WT_Sal group) using a mass spectrometry-based label-free approach. RESULTS The comparison of WT_BCG relative to WT_Sal and KO_BCG mice uncovered patterns of protein abundance and acetylation among the histone families that could influence microglia signaling and transcriptional rates. Members of the histone clusters 1, 2 and 3 families were less abundant in WT_BCG relative to WT_Sal whereas members in the H2A family exhibited the opposite pattern. Irrespective of family, the majority of the histones were less abundant in WT_BCG relative to KO_BCG microglia. Homeostatic mechanisms may temper the potentially toxic effects of high histone levels after BCG challenge to levels lower than Sal. Histone acetylation was highest in WT_BCG and the similar levels observed in WT_Sal and KO_BCG. This result suggest that histone acetylation levels are similar between IDO1 deficient mice after immune challenge and unchallenged WT mice. The over-abundance of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation proteins (14-3-3 series) in WT_BCG relative to KO_BCG is particularly interesting because these proteins activate another rate-limiting enzyme in the tryptophan pathway. The over-representation of alcoholism and systemic lupus erythematosus pathways among the proteins exhibiting differential abundance between the groups suggest that these disorders share microglia activation pathways with BCG challenge. The over-representation of phagosome pathway among proteins differentially abundant between WT_BCG and KO_BCG microglia suggest an association between IDO1 deficiency and phagocytosis. Likewise, the over-representation of the gap junction pathway among the differentially abundant proteins between KO_BCG and WT_Sal suggest a multifactorial effect of BCG and IDO1 deficiency on cell communication. CONCLUSIONS The present study of histone acetylation and differential protein abundance furthers the understanding of the long lasting effects of peripheral immune challenges. Our findings offer insights into target proteins and mechanisms that provide clues for therapies to ameliorate inflammation-associated depression-related behaviors.
Collapse
Affiliation(s)
- Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Cong Wu
- Department of Biochemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason C O'Connor
- Department of Pharmacology, University of Texas Health San Antonio and Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX, USA
| | - Scott E Nixon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robmay Garcia
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Cynthia Zavala
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcus Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert H McCusker
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Kelley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert Dantzer
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Liu ZK, Ng CF, Shiu HT, Wong HL, Chin WC, Zhang JF, Lam PK, Poon WS, Lau CBS, Leung PC, Ko CH. Neuroprotective effect of Da Chuanxiong Formula against cognitive and motor deficits in a rat controlled cortical impact model of traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:11-22. [PMID: 29425850 DOI: 10.1016/j.jep.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da Chuanxiong Formula (DCXF) is one of the famous herb pairs that contains dried rhizomes of Ligusticum chuanxiong Hort. and Gastrodia elata Bl. in the mass ratio of 4:1. This classic representative traditional Chinese medicine has been widely used to treat brain diseases like headache and migraine caused by blood stasis and wind pathogen. However, the therapeutic effect of DCXF on traumatic brain injury (TBI) has not been reported yet. AIM OF STUDY The present study was performed to investigate the neuroprotective effects of DCXF and its underlying mechanisms in the controlled cortical impact (CCI)-induced TBI rat model. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups: Sham, TBI control, 1X DCXF (520.6 mg/kg) and 5X DCXF (2603.0 mg/kg). Two treatment groups (1X and 5X DCXF) were intragastrically administered daily for 7 days before CCI-induced TBI and then DCXF treatments were continued post-TBI until the animal behavioral tests, including Morris water maze test, acceleration rotarod motor test and CatWalk quantitative gait analysis test, were done. The brain water content and blood brain barrier (BBB) integrity were measured by wet-dry weight method and Evans blue method, respectively. The number of neuron cells, neural stem cells (NSCs), GFAP positive cells (astrocyte) as well as Iba-1 positive cells (microglia) were determined by histology and immunohistochemistry. RESULTS Treatment with DCXF significantly improved the learning ability and memory retention in Morris water maze test, and remarkably enhanced motor performances in acceleration rotarod motor test and catwalk quantitative gait analysis test after TBI. Moreover, DCXF treatment was able to reduce BBB permeability, brain edema, microglia and astrocyte activation, improve the proliferation of NSCs and decrease neurons loss in the brain with TBI. CONCLUSIONS The present study demonstrated that DCXF treatment could decrease BBB leakage and brain edema, reduce neuron loss, microglia and astrocyte activation, and increase NSCs proliferation, which may contribute to the cognitive and motor protection of DCXF in the TBI rats. It is the first time to provide potentially underlying mechanisms of the neuroprotective effect of DCXF on TBI-induced brain damage and functional outcomes.
Collapse
Affiliation(s)
- Zhi-Ke Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Chun-Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hoi-Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Wai-Ching Chin
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Jin-Fang Zhang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Ping-Kuen Lam
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Wai-Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
6
|
Xia F, Yao X, Tang W, Xiao C, Yang M, Zhou B. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Proteomic Analysis of Hugan Qingzhi and Its Protective Properties against Free Fatty Acid-Induced L02 Hepatocyte Injury. Front Pharmacol 2017; 8:99. [PMID: 28293193 PMCID: PMC5329039 DOI: 10.3389/fphar.2017.00099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
In previous research, Hugan Qingzhi, a traditional Chinese medicine, was shown to have protective effects against hepatic steatosis. However, its activity against non-alcoholic fatty liver disease (NAFLD) and the mechanisms by which it exerts its effects remain unknown. In the present study, the effects of Hugan Qingzhi on free fatty acid (FFA)-induced L02 cells were examined. The techniques of iTRAQ labeling, together with strong cation exchange-non-liquid chromatography–tandem mass spectrometry (SCX-non-LC-MS/MS) analysis and serum pharmacology, were used to evaluate the effects of Hugan Qingzhi-medicated serum on FFA-induced L02 hepatocyte injury. Results identified 355 differentially expressed proteins following FFA treatment, compared with a control group; 359 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the FFA treatment group; and 365 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the control group. Based on the Kyoto Encyclopedia of Gene and Genomes pathway enrichment analysis, it is concluded that several pathways including those of microbial metabolism in diverse environments, fatty acid metabolism, peroxisome proliferator activated receptor signaling, and mitogen-activated protein kinase signaling are closely associated with the effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. Furthermore, several differentially expressed proteins, including heat shock protein 27 (HSP27), acetyl-CoA acetyltransferase 1, calnexin, and integrin-linked kinase, were validated by western blotting. A target-specific HSP27 siRNA was used to investigate further the function of HSP27, and it was found that HSP27 might have a key role in the observable effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. The results not only confirmed that Hugan Qingzhi exhibits a significant protective effect in FFA-induced L02 hepatocyte injury, but also suggest insights into the mechanism of such protective effects.
Collapse
Affiliation(s)
- Fan Xia
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Xiaorui Yao
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Waijiao Tang
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Chunxin Xiao
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Miaoting Yang
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Benjie Zhou
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|
7
|
Liu ZK, Ng CF, Shiu HT, Wong HL, Wong CW, Li KK, Zhang JF, Lam PK, Poon WS, Lau CBS, Leung PC, Ko CH. A traditional Chinese formula composed of Chuanxiong Rhizoma and Gastrodiae Rhizoma (Da Chuanxiong Formula) suppresses inflammatory response in LPS -induced RAW 264.7 cells through inhibition of NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:20-28. [PMID: 27965052 DOI: 10.1016/j.jep.2016.12.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da Chuanxiong Formula (DCXF) which origins from Jin Dynasty is a famous classical 2-herb Chinese medicinal prescription. It is composed of dried rhizomes of Ligusticum chuanxiong (Chuanxiong Rhizoma, CR) and Gastrodia elata (Gastrodiae Rhizoma, GR) at the ratio of 4:1 (w/w). It has been used to treat headache which is caused by wind pathogen and blood stasis for thousands of years in China. AIM OF STUDY The present study was performed to investigate the anti-inflammatory effect of DCXF and elucidate its underlying molecular mechanisms using LPS-stimulated RAW 264.7 cells. MATERIALS AND METHODS The anti-inflammatory effect of DCXF was evaluated using LPS-stimulated RAW 264.7 cells. Generation of nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. The gene expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the effect of DCXF on NF-κB activation was measured by western blot assay. RESULTS Treatment with DCXF significantly suppressed the productions of NO and PGE2 through inhibitions of iNOS and COX-2 expressions in LPS-stimulated RAW 264.7 cells. DCXF significantly decreased IκBα phosphorylation, inhibited p65 expression and reduced p-p65 level. These results suggested the anti-inflammatory effect of DCXF was associated with the reduction of inflammatory mediators through inhibition of NF-κB pathway. CONCLUSIONS These results indicated that DCXF inhibited inflammation in LPS-stimulated RAW 264.7 cells through inactivation of NF-κB pathway.
Collapse
Affiliation(s)
- Zhi-Ke Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Chun-Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hoi-Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Chun-Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Kai-Kai Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Jin-Fang Zhang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Ping-Kuen Lam
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Wai-Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Chun-Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
8
|
Liu Y, Pu QH, Wu MJ, Yu C. Proteomic analysis for the impact of hypercholesterolemia on expressions of hepatic drug transporters and metabolizing enzymes. Xenobiotica 2016; 46:940-7. [DOI: 10.3109/00498254.2016.1144228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Liu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Qiang-Hong Pu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Ming-Jun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| | - Chao Yu
- Institute of Life Science, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
9
|
RETRACTED ARTICLE: TN-2 modulates LPS-induced inflammatory response in human renal tubular epithelial cells by blocking TLR4-mediated NF-κB activation via MyD88- and TRIF-dependent mechanism. Inflamm Res 2015. [DOI: 10.1007/s00011-015-0853-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|