1
|
Li Y, Zheng J, Liu F, Tan X, Jiang H, Wang Y. Discussion of the material basis for prevention and treatment of pulmonary fibrosis using naturally medicinal and edible homologous herbs based on the dynamic process of Nrf2, NF-κB and TGF-β in PF. Biomed Pharmacother 2025; 185:117911. [PMID: 40090283 DOI: 10.1016/j.biopha.2025.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/18/2025] Open
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease with a high incidence and poor prognosis. Despite extensive research into the mechanisms that initiate and drive the progression of pulmonary fibrosis, developing effective treatments remains challenging due to the multiple etiologies, pathogenic links, and signaling pathways involved in PF. Indeed, nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), and transforming growth factor-beta (TGF-β) are central players in the pathogenesis of pulmonary fibrosis, and each of these factors influences distinct yet interconnected processes that collectively contribute to disease progression: Nrf2 upregulates antioxidants to mitigate oxidative stress, NF-κB modulates inflammatory responses, and TGF-β promotes fibroblast activation and extracellular matrix (ECM) deposition, leading to fibrosis. Targeting these pathways may offer therapeutic strategies, uncover new insights and provide potential therapeutic targets for PF. Absolutely, the interactions between Nrf2, NF-κB, and TGF-β pathways are complex and can significantly influence the progression of PF, which indicated that targeting a single pathway may show poor efficacy in managing the condition. Moreover, few therapies that effectively intervene in these pathways have been approved. This review focused on the molecular mechanisms of Nrf2, NF-κB, and TGF-β involving in PF and the material basis of the naturally medicinal and edible homologous herbs, which provides a solid foundation for understanding the disease's pathogenesis, and supports the development of therapeutic drugs or treatments for addressing the complex nature of PF.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Jia Zheng
- Chongqing University of Chinese Medicine, Chongqing 402760, PR China.
| | - Fei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China.
| | - Xianfeng Tan
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Huiping Jiang
- Chongqing Baijiahuan Health Technology Co., Ltd, Chongqing 400065, China.
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing University of Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| |
Collapse
|
2
|
Wang X, Ye T, Huang J, Hu F, Huang C, Gu B, Xu X, Yang J. Aberrant Chitinase 3-Like 1 Expression in Basal Cells Contributes to Systemic Sclerosis Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310169. [PMID: 39686726 PMCID: PMC11809421 DOI: 10.1002/advs.202310169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/06/2024] [Indexed: 12/18/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by extensive skin and internal organ fibrosis. However, the mechanism underlying fibrosis remains unclear, and effective treatments for halting or reversing fibrosis are lacking. In this study, single-cell RNA sequencing is used to obtain a comprehensive overview of skin cells from patients with SSc and healthy controls. A subset of basal cells with high chitinase 3-like 1 (Chi3L1) expression, which potentially plays an important role in fibroblast activation, is identified in SSc. Subsequently, patients with SSc are present with increased expression of Chi3L1 in the skin and serum, and elevated serum levels are associated with skin induration and pulmonary function. Furthermore, Chi3L1 promoted the differentiation of SSc dermal fibroblasts into myofibroblasts, and Chi3L1-deficient (Chi3L1-/-) mice showed amelioration of fibrosis in a bleomycin-induced SSc (BLM-SSc) model. Mechanistically, Chi3L1 mediates fibroblast activation primarily by interacting with interleukin-17 receptor A (IL-17RA), thereby initiating downstream nuclear factor kappa B and mitogen-activated protein kinases signaling pathways. Moreover, the anti-fibrotic effect of IL-17RA antagonists in BLM-SSc mice is demonstrated. In conclusion, Chi3L1 is a potential biomarker for the degree of fibrosis in SSc. Chi3L1 and its receptor, IL-17RA, are promising therapeutic targets for patients with SSc.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Tianbao Ye
- Sixth People's Hospital affiliated to Shanghai Jiao Tong UniversityShanghai200233China
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361008China
| | - Junxia Huang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Feifei Hu
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Chengjie Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Bei Gu
- Shanghai Normal UniversityShanghai200233China
| | - Xinzhi Xu
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Ji Yang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| |
Collapse
|
3
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Zeng Y, Hu R, Ma W, Ding Y, Zhou Y, Peng X, Feng L, Cheng Q, Luo Z. New tricks for old drugs- praziquantel ameliorates bleomycin-induced pulmonary fibrosis in mice. BMC Pharmacol Toxicol 2024; 25:18. [PMID: 38355586 PMCID: PMC10868045 DOI: 10.1186/s40360-024-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis. METHODS In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio. RESULTS We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-β and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-β in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages. CONCLUSIONS Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-β and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanjun Zeng
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Hu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Ma
- Department of Geriatric Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Ding
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin Peng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lixin Feng
- Department of Rheumatology and Immunology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qingmei Cheng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, 410078, China.
| |
Collapse
|
6
|
Ji-hong Y, Yu M, Ling-hong Y, Jing-jing G, Ling-li X, Lv W, Yong-mei J. Baicalein attenuates bleomycin-induced lung fibroblast senescence and lung fibrosis through restoration of Sirt3 expression. PHARMACEUTICAL BIOLOGY 2023; 61:288-297. [PMID: 36815239 PMCID: PMC9970214 DOI: 10.1080/13880209.2022.2160767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/09/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
CONTEXT Fibroblast senescence was reported to contribute to the pathological development of idiopathic pulmonary fibrosis (IPF), and baicalein is reported to attenuate IPF. OBJECTIVE This study explores whether baicalein attenuates lung fibrosis by regulating lung fibroblast senescence. MATERIALS AND METHODS Institute of Cancer Research (ICR) mice were randomly assigned to control, bleomycin (BLM), baicalein and BLM + baicalein groups. Lung fibrosis was established by a single intratracheal dose of BLM (3 mg/kg). The baicalein group received baicalein orally (100 mg/kg/day). Sirtuin 3 (Sirt3) siRNA (50 μg) was injected through the tail vein once a week for 2 weeks to explore its effect on the anti-pulmonary fibrosis of baicalein. RESULTS BLM-treated mice exhibited obvious lung fibrosis and fibroblast senescence by showing increased levels of collagen deposition (27.29% vs. 4.14%), hydroxyproline (208.05 vs. 40.16 ng/mg), collagen I (25.18 vs. 9.15 μg/mg), p53, p21, p16, MCP-1, PAI-1, TNF-α, MMP-10 and MMP-12 in lung tissues, which were attenuated by baicalein. Baicalein also mitigated BLM-mediated activation of TGF-β1/Smad signalling pathway. Baicalein restored the BLM-induced downregulation of Sirt3 expression in lung tissues and silencing of Sirt3 abolished the inhibitory role of baicalein against BLM-induced lung fibrosis, fibroblast senescence and activation of TGF-β1/Smad signalling pathway. CONCLUSIONS Baicalein preserved the BLM-induced downregulation of lung Sirt3 expression, and thus the suppression of TGF-β1/Smad signalling pathway and lung fibrosis, which might provide an experimental basis for treatment of IPF.
Collapse
Affiliation(s)
- Yuan Ji-hong
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ma Yu
- Department of Anesthesiology, Shanghai Baoshan Traditional Chinese Medicine-integrated Hospital, Shanghai, China
| | - Yuan Ling-hong
- Department of Acute and Critical Care, Changxing Branch of Xinhua Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gong Jing-jing
- Department of Nephrology, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ling-li
- Department of Acute and Critical Care, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lv
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Yong-mei
- Department of Nursing, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
8
|
Torasawa M, Horinouchi H, Yagishita S, Utsumi H, Okuda K, Takekoshi D, Ito S, Wakui H, Murata S, Kaku S, Okuma K, Matsumoto Y, Shinno Y, Okuma Y, Yoshida T, Goto Y, Yamamoto N, Araya J, Ohe Y, Fujita Y. Exploratory analysis to predict pneumonitis during durvalumab consolidation therapy for patients with locally advanced non-small cell lung cancer from proteomic profiling of circulating extracellular vesicles. Thorac Cancer 2023; 14:2909-2923. [PMID: 37614219 PMCID: PMC10569905 DOI: 10.1111/1759-7714.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Risk factors for predicting pneumonitis during durvalumab consolidation after chemoradiotherapy (CRT) in locally advanced non-small cell lung cancer (LA-NSCLC) are still lacking. Extracellular vesicles (EVs) play a crucial role in intercellular communication and are potential diagnostic tools for various diseases. METHODS We retrospectively collected predurvalumab treatment serum samples from patients treated with durvalumab for LA-NSCLC, isolated EVs using anti-CD9 and anti-CD63 antibodies, and performed proteomic analyses. We examined EV proteins that could predict the development of symptomatic pneumonitis (SP) during durvalumab treatment. Potential EV-protein biomarkers were validated in an independent cohort. RESULTS In the discovery cohort, 73 patients were included, 49 with asymptomatic pneumonitis (AP) and 24 with SP. Of the 5797 proteins detected in circulating EVs, 33 were significantly elevated (fold change [FC] > 1.5, p < 0.05) in the SP group, indicating enrichment of the nuclear factor kappa B (NF-κB) pathway. Patients with high levels of EV-RELA, an NF-κB subunit, had a higher incidence of SP than those with low levels of EV-RELA (53.8% vs. 13.4%, p = 0.0017). In the receiver operating characteristic analysis, EV-RELA demonstrated a higher area under the curve (AUC) than lung V20 (0.76 vs. 0.62) and was identified as an independent risk factor in the multivariate logistic regression analysis (p = 0.008, odds ratio 7.72). Moreover, high EV-RELA was also a predictor of SP in the validation cohort comprising 43 patients (AUC of 0.80). CONCLUSIONS Circulating EV-RELA may be a predictive marker for symptomatic pneumonitis in patients with LA-NSCLC treated with durvalumab.
Collapse
Affiliation(s)
- Masahiro Torasawa
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Shigehiro Yagishita
- Division of Molecular PharmacologyNational Cancer Center Research InstituteTokyoJapan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Keitaro Okuda
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Daisuke Takekoshi
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Saburo Ito
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Saori Murata
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Sawako Kaku
- Department of Diagnostic RadiologyNational Cancer Center HospitalTokyoJapan
| | - Kae Okuma
- Department of Radiation OncologyNational Cancer Center HospitalTokyoJapan
| | - Yuji Matsumoto
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Yuki Shinno
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Yusuke Okuma
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Tatsuya Yoshida
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
- Department of Experimental TherapeuticsNational Cancer Center HospitalTokyoJapan
| | - Yasushi Goto
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Noboru Yamamoto
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
- Department of Experimental TherapeuticsNational Cancer Center HospitalTokyoJapan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | - Yuichiro Ohe
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Yu Fujita
- Division of Respiratory Diseases, Department of Internal MedicineThe Jikei University School of MedicineTokyoJapan
- Division of Next‐Generation Drug Development Research, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
9
|
Bae JH, Choe HJ, Holick MF, Lim S. Association of vitamin D status with COVID-19 and its severity : Vitamin D and COVID-19: a narrative review. Rev Endocr Metab Disord 2022; 23:579-599. [PMID: 34982377 PMCID: PMC8724612 DOI: 10.1007/s11154-021-09705-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D is associated with biological activities of the innate and adaptive immune systems, as well as inflammation. In observational studies, an inverse relationship has been found between serum 25-hydroxyvitamin D (25(OH)D) concentrations and the risk or severity of coronavirus disease 2019 (COVID-19). Several mechanisms have been proposed for the role of vitamin D in COVID-19, including modulation of immune and inflammatory responses, regulation of the renin-angiotensin-aldosterone system, and involvement in glucose metabolism and cardiovascular system. Low 25(OH)D concentrations might predispose patients with COVID-19 to severe outcomes not only via the associated hyperinflammatory syndrome but also by worsening preexisting impaired glucose metabolism and cardiovascular diseases. Some randomized controlled trials have shown that vitamin D supplementation is beneficial for reducing severe acute respiratory syndrome coronavirus 2 RNA positivity but not for reducing intensive care unit admission or all-cause mortality in patients with moderate-to-severe COVID-19. Current evidence suggests that taking a vitamin D supplement to maintain a serum concentration of 25(OH)D of at least 30 ng/mL (preferred range 40-60 ng/mL), can help reduce the risk of COVID-19 and its severe outcomes, including mortality. Although further well designed studies are warranted, it is prudent to recommend vitamin D supplements to people with vitamin D deficiency/insufficiency during the COVID-19 pandemic according to international guidelines.
Collapse
Affiliation(s)
- Jae Hyun Bae
- grid.411134.20000 0004 0474 0479Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hun Jee Choe
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Michael F. Holick
- grid.189504.10000 0004 1936 7558Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Medical Campus, 715 Albany St #437, Boston, MA 02118 USA
| | - Soo Lim
- grid.412480.b0000 0004 0647 3378Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620 South Korea
| |
Collapse
|
10
|
Saber S, Nasr M, Kaddah MMY, Mostafa-Hedeab G, Cavalu S, Mourad AAE, Gaafar AGA, Zaghlool SS, Saleh S, Hafez MM, Girgis S, Elgharabawy RM, Nader K, Alsharidah M, Batiha GES, El-Ahwany E, Amin NA, Elagamy HI, Shata A, Nader R, Khodir AE. Nifuroxazide-loaded cubosomes exhibit an advancement in pulmonary delivery and attenuate bleomycin-induced lung fibrosis by regulating the STAT3 and NF-κB signaling: A new challenge for unmet therapeutic needs. Pharmacotherapy 2022; 148:112731. [PMID: 35220029 DOI: 10.1016/j.biopha.2022.112731] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic progressive disease that portends a very poor prognosis. It has been suggested that STAT3 is a potential target in PF. This study highlights the importance of cubosomes as a drug delivery system in enhancing the bioavailability of nifuroxazide (NXZD), a poorly soluble STAT3 inhibitor. NXZD-loaded cubosomes (NXZD-LC) were in vitro and in vivo evaluated. In vitro, cubosomes presented a poly-angular nanosized particles with a mean size and zeta potential of 223.73 ± 4.73 nm and - 20.93 ± 2.38 mV, respectively. The entrapment efficiency of nifuroxazide was 90.56 ± 4.25%. The in vivo pharmacokinetic study and the lung tissue accumulation of NXZD were performed by liquid chromatography-tandem mass spectrometry after oral administration to rats. The nanoparticles exhibited a two-fold increase and 1.33 times of bioavailability and lung tissue concentration of NXZD compared to NXZD dispersion, respectively. In view of this, NXZD-LC effectively attenuated PF by targeting STAT3 and NF-κB signals. As a result, NXZD-LC showed a potential anti-inflammatory effect as revealed by the significant decrease in MCP-1, ICAM-1, IL-6, and TNF-α and suppressed fibrogenic mediators as indicated by the significant reduction in TGF-β, TIMP-1, and PDGF-BB in lung tissues. Besides, NXZD-LC improved antioxidant defense mechanisms and decreased LDH and BALF total protein. These effects contributed to decreased collagen deposition. To conclude, cubosomes represent an advantageous pharmaceutical delivery system for enhancing pulmonary delivery of poorly soluble drugs. Additionally, repurposing NXZD as an antifibrotic agent is a promising challenge and new therapeutic approach for unmet therapeutic needs.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Sameh S Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt.
| | - Safaa Saleh
- Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Mohamed M Hafez
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
| | - Samuel Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Alsalam University, Egypt.
| | | | - Karim Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim 51452, Kingdom of Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt.
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Heba I Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Reem Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| |
Collapse
|
11
|
Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022; 13:782199. [PMID: 35237156 PMCID: PMC8882872 DOI: 10.3389/fphar.2022.782199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor that binds diverse endogenous and xenobiotic ligands, which regulate AHR stability, transcriptional activity, and cell signaling. AHR activity is strongly implicated throughout the course of chronic kidney disease (CKD). Many diverse organic molecules bind and activate AHR and these ligands are reported to either promote glomerular and tubular damage or protect against kidney injury. AHR crosstalk with estrogen, peroxisome proliferator-activated receptor-γ, and NF-κB pathways may contribute to the diversity of AHR responses during the various forms and stages of CKD. The roles of AHR in kidney fibrosis, metabolism and the renin angiotensin system are described to offer insight into CKD pathogenesis and therapies.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| |
Collapse
|
12
|
Thakur D, Taliaferro O, Atkinson M, Stoffel R, Guleria RS, Gupta S. Inhibition of nuclear factor κB in the lungs protect bleomycin-induced lung fibrosis in mice. Mol Biol Rep 2022; 49:3481-3490. [PMID: 35083615 PMCID: PMC9174314 DOI: 10.1007/s11033-022-07185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pulmonary fibrosis is a debilitating condition with limited therapeutic avenues. The pathogenicity of pulmonary fibrosis constitutes involvement of cellular proliferation, activation, and transformational changes of fibroblast to myofibroblasts. It is a progressive lung disease and is primarily characterized by aberrant accumulation of extracellular matrix proteins in the lungs with poor prognosis. The inflammatory response in the pathogenesis of lung fibrosis is suggested because of release of several cytokines; however, the underlying mechanism remains undefined. A genetic model is the appropriate way to delineate the underlying mechanism of pulmonary fibrosis. METHODS AND RESULTS In this report, we have used cc-10 promoter based IκBα mutant mice (IKBM, an inhibitor of NF-κB) which were challenged with bleomycin (BLM). Compared to wild-type (WT) mice, the IKBM mice showed significant reduction in several fibrotic, vascular, and inflammatory genes. Moreover, we have identified a new set of dysregulated microRNAs (miRNAs) by miRNA array analysis in BLM-induced WT mice. Among these miRNAs, let-7a-5p and miR-503-5p were further analyzed. Our data showed that these two miRNAs were upregulated in WT-BLM and were reduced in IKBM-BLM mice. Bioinformatic analyses showed that let-7a-5p and miR-503-5p target for endothelin1 and bone morphogenic receptor 1A (BMPR1A), respectively, and were downregulated in WT-BLM mice indicating a link in pulmonary fibrosis. CONCLUSION We concluded that inhibition of NF-κB and modulation of let-7a-5p and miR-503-5p contribute a pivotal role in pulmonary fibrosis and may be considered as possible therapeutic target for the clinical management of lung fibrosis.
Collapse
Affiliation(s)
- Devaang Thakur
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Olivia Taliaferro
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Madeleine Atkinson
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Ryan Stoffel
- Animal Facility, Baylor University, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US
| | - Rakeshwar S Guleria
- Biomarkers and Genetics Core, VISN 17 Center of Excellence On Returning War Veterans, 4800 Memorial Drive, Waco, TX, 76711, US.,Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, US
| | - Sudhiranjan Gupta
- Biomarkers and Genetics Core, VISN 17 Center of Excellence On Returning War Veterans, 4800 Memorial Drive, Waco, TX, 76711, US. .,Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US. .,Animal Facility, Baylor University, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, US.
| |
Collapse
|
13
|
Zou M, Zou J, Hu X, Zheng W, Zhang M, Cheng Z. Latent Transforming Growth Factor-β Binding Protein-2 Regulates Lung Fibroblast-to-Myofibroblast Differentiation in Pulmonary Fibrosis via NF-κB Signaling. Front Pharmacol 2022; 12:788714. [PMID: 35002722 PMCID: PMC8740300 DOI: 10.3389/fphar.2021.788714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Despite past extensive studies, the mechanisms underlying pulmonary fibrosis (PF) still remain poorly understood. The aberrantly activated lung myofibroblasts, predominantly emerging through fibroblast-to-myofibroblast differentiation, are considered to be the key cells in PF, resulting in excessive accumulation of extracellular matrix (ECM). Latent transforming growth factor-β (TGFβ) binding protein-2 (LTBP2) has been suggested as playing a critical role in modulating the structural integrity of the ECM. However, its function in PF remains unclear. Here, we demonstrated that lungs originating from different types of patients with PF, including idiopathic PF and rheumatoid arthritis-associated interstitial lung disease, and from mice following bleomycin (BLM)-induced PF were characterized by increased LTBP2 expression in activated lung fibroblasts/myofibroblasts. Moreover, serum LTBP2 was also elevated in patients with COVID-19-related PF. LTBP2 silencing by lentiviral shRNA transfection protected against BLM-induced PF and suppressed fibroblast-to-myofibroblast differentiation in vivo and in vitro. More importantly, LTBP2 overexpression was able to induce differentiation of lung fibroblasts to myofibroblasts in vitro, even in the absence of TGFβ1. By further mechanistic analysis, we demonstrated that LTBP2 silencing prevented fibroblast-to-myofibroblast differentiation and subsequent PF by suppressing the phosphorylation and nuclear translocation of NF-κB signaling. LTBP2 overexpression-induced fibroblast-to-myofibroblast differentiation depended on the activation of NF-κB signaling in vitro. Therefore, our data indicate that intervention to silence LTBP2 may represent a promising therapy for PF.
Collapse
Affiliation(s)
- Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingfeng Zou
- Department of Respiratory and Critical Care Medicine, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyang Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Bao H, Li Y, Yu C, Li X, Wang Y, Gao L, Huang J, Zhang Z. DNA-coated gold nanoparticles for tracking hepatocyte growth factor secreted by transplanted mesenchymal stem cells in pulmonary fibrosis therapy. Biomater Sci 2021; 10:368-375. [PMID: 34897301 DOI: 10.1039/d1bm01362a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification of paracrine factors secreted by transplanted mesenchymal stem cells (MSCs) during the treatment of idiopathic pulmonary fibrosis (IPF) is essential for understanding the role of MSCs in therapy. Herein, we report a facile and efficient strategy for in vivo tracking the secretion of hepatocyte growth factor (HGF) in MSCs during IPF therapy. In our strategy, a novel nanoflare tracer consisting of gold nanoparticles (AuNPs), complementary sequences and dye-labeled recognition sequences is developed. Briefly, the AuNPs are functionalized with oligonucleotide complementary sequences hybridized to the organic dye-labeled recognition sequences, where the organic fluorophores are in close proximity to the AuNPs. In the absence of targets, the dye and AuNPs are separated from each other, inducing the quenching of the fluorescence signal. However, in the presence of targets, the recognition sequences gradually fall off from the AuNPs, causing the fluorescence signal to rise. In brief, in vivo monitoring of the dynamic expression of HGF mRNA in transplanted MSCs during IPF therapy in the current work may provide new insight into the paracrine process of the transplanted MSCs, thereby advancing the MSC-based IPF therapy toward clinical applications.
Collapse
Affiliation(s)
- Hongying Bao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaodi Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yujie Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Li Gao
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
15
|
Davino-Chiovatto JE, Oliveira-Junior MC, MacKenzie B, Santos-Dias A, Almeida-Oliveira AR, Aquino-Junior JCJ, Brito AA, Rigonato-Oliveira NC, Damaceno-Rodrigues NR, Oliveira APL, Silva AP, Consolim-Colombo FM, Aimbire F, Castro-Faria-Neto HC, Vieira RP. Montelukast, Leukotriene Inhibitor, Reduces LPS-Induced Acute Lung Inflammation and Human Neutrophil Activation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.arbr.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Davino-Chiovatto JE, Oliveira-Junior MC, MacKenzie B, Santos-Dias A, Almeida-Oliveira AR, Aquino-Junior JCJ, Brito AA, Rigonato-Oliveira NC, Damaceno-Rodrigues NR, Oliveira APL, Silva AP, Consolim-Colombo FM, Aimbire F, Castro-Faria-Neto HC, Vieira RP. Montelukast, Leukotriene Inhibitor, Reduces LPS-Induced Acute Lung Inflammation and Human Neutrophil Activation. Arch Bronconeumol 2019; 55:573-580. [PMID: 31257011 DOI: 10.1016/j.arbres.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Some pro-inflammatory lipids derived from 1 lipooxygenase enzyme are potent neutrophil chemoattractant, a cell centrally involved in acute respiratory distress syndrome (ARDS); a syndrome lacking effective treatment. Considering the beneficial effects of the leukotriene receptor inhibitor, montelukast, on other lung diseases, whether montelukast attenuates inflammation in a mouse model of ARDS, and whether it reduces LPS stimulated activation of human neutrophils was investigated. METHODS Thirty-five C57Bl/6 mice were distributed into control (PBS)+24h, LPS+24h (10μg/mouse), control+48h, LPS+48h, and LPS 48h+Montelukast (10mg/kg). In addition, human neutrophils were incubated with LPS (1μg/mL) and treated with montelukast (10μM). RESULTS Oral-tracheal administration of montelukast significantly attenuated total cells (P<.05), macrophages (P<.05), neutrophils (P<.01), lymphocytes (P<.001) and total protein levels in BAL (P<.05), as well as IL-6 (P<.05), CXCL1/KC (P<.05), IL-17 (P<.05) and TNF-α (P<.05). Furthermore, montelukast reduced neutrophils (P<.001), lymphocytes (P<.01) and macrophages (P<.01) in the lung parenchyma. In addition, montelukast restored BAL VEGF levels (P<.05). LTB4 receptor expression (P<.001) as well as NF-κB (P<.001), a downstream target of LPS, were also reduced in lung parenchymal leukocytes. Furthermore, montelukast reduced IL-8 (P<.001) production by LPS-treated human neutrophils. CONCLUSION In conclusion, montelukast efficiently attenuated both LPS-induced lung inflammation in a mouse model of ARDS and in LPS challenged human neutrophils.
Collapse
Affiliation(s)
| | - Manoel Carneiro Oliveira-Junior
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - BreAnne MacKenzie
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - Alana Santos-Dias
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - Ana Roberta Almeida-Oliveira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | | | | | | | | | | | - Alessandro Pereira Silva
- Post-graduation Program in Biomedical Engineering, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | | | - Flavio Aimbire
- Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Osvaldo Cruz Institute (IOC), Osvaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rodolfo Paula Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Universidade Brasil, Post-graduation Program in Bioengineering and in Biomedical Engineering, São Paulo, SP, Brazil; Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, Santos, SP, Brazil; Anhembi Morumbi University, School of Medicine, Avenida Deputado Benedito Matarazzo 4050, São José dos Campos, SP, Brazil.
| |
Collapse
|
17
|
P120-catenin regulates pulmonary fibrosis and TGF-β induced lung fibroblast differentiation. Life Sci 2019; 230:35-44. [DOI: 10.1016/j.lfs.2019.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
|
18
|
Liu X, Long X, Liu W, Yao G, Zhao Y, Hayashi T, Hattori S, Fujisaki H, Ogura T, Tashiro SI, Onodera S, Yamato M, Ikejima T. Differential levels of reactive oxygen species in murine preadipocyte 3T3-L1 cells cultured on type I collagen molecule-coated and gel-covered dishes exert opposite effects on NF-κB-mediated proliferation and migration. Free Radic Res 2018; 52:913-928. [DOI: 10.1080/10715762.2018.1478088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Guodong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Shin-ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
19
|
Zhang Q, Tu W, Tian K, Han L, Wang Q, Chen P, Zhou X. Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J Cell Biochem 2018; 120:93-104. [PMID: 30230565 DOI: 10.1002/jcb.27128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022]
Abstract
Fibroblast-to-myofibroblast differentiation, which is characterized by increased expression of α-smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial-to-mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor-β1 (TGF-β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast-to-myofibroblast differentiation induced by TGF-β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF-β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF-β1-induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF-β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor-κB (NF-κB) subunit p65 and represses TGF-β1-induced NF-κB-dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild-type SIRT6 but not the H133Y mutant inhibits the expression of NF-κB-dependent genes including interleukin (IL)-1β, IL-6 and matrix metalloproteinase-9 (MMP-9) induced by TGF-β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF-β1-induced lung myofibroblast differentiation through inhibiting TGF-β1/Smad2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunming Tian
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianyong Han
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Panpan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Ricard-Blum S, Baffet G, Théret N. Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 2018; 68-69:122-149. [DOI: 10.1016/j.matbio.2018.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
|
21
|
Zhang Y, Zhang Q, Gui L, Cai Y, Deng X, Li C, Guo Q, He X, Huang J. Let-7e inhibits TNF-α expression by targeting the methyl transferase EZH2 in DENV2-infected THP-1 cells. J Cell Physiol 2018; 233:8605-8616. [PMID: 29768655 DOI: 10.1002/jcp.26576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/26/2018] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα), an important inflammatory cytokine, is associated with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), a severe pathological manifestation of dengue virus (DENV) infection. However, the regulatory mechanism of microRNA on TNFα is currently unknown. Our study showed that the TNFα expression increased immediately and then later decreased, while a marked increase for the miRNA let-7e was detected in dengue virus type 2 (DENV2)-infected peripheral blood mononuclear cells (PBMCs). From this study, we found that let-7e was able to inhibit TNFα expression, but bioinformatics analysis showed that the enhancer of zeste homolog 2 (EZH2) was the potential direct target of let-7e instead of TNFα. EZH2 methyl transferase can produce H3K27me3 and has a negative regulatory role. Using a dual-luciferase reporter assay and Western blotting, we confirmed that EZH2 was a direct target of let-7e and found that siEZH2 could inhibit TNFα expression. In the further study of the regulatory mechanism of EZH2 on TNFα expression, we showed that siEZH2 promoted EZH1 and H3K4me3 expression and inhibited H3K27me3 expression. More importantly, we revealed that siEZH2 down-regulated NF-κB p65 within the nucleus. These findings indicate that the let-7e/EZH2/H3K27me3/NF-κB p65 pathway is a novel regulatory axis of TNFα expression. In addition, we determined the protein differences between siEZH2 and siEZH2-NC by iTRAQ and found a number of proteins that might be associated with TNFα.
Collapse
Affiliation(s)
- Yingke Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lian Gui
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Cai
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Deng
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheukfai Li
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Guo
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoshun He
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junqi Huang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol Ther 2018; 187:98-113. [PMID: 29462659 DOI: 10.1016/j.pharmthera.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transforming growth factor (TGF)-β cytokines play a central role in development and progression of chronic respiratory diseases. TGF-β overexpression in chronic inflammation, remodeling, fibrotic process and susceptibility to viral infection is established in the most prevalent chronic respiratory diseases including asthma, COPD, lung cancer and idiopathic pulmonary fibrosis. Despite the overwhelming burden of respiratory diseases in the world, new pharmacological therapies have been limited in impact. Although TGF-β inhibition as a therapeutic strategy carries great expectations, the constraints in avoiding compromising the beneficial pleiotropic effects of TGF-β, including the anti-proliferative and immune suppressive effects, have limited the development of effective pharmacological modulators. In this review, we focus on the pathways subserving deleterious and beneficial TGF-β effects to identify strategies for selective modulation of more distal signaling pathways that may result in agents with improved safety/efficacy profiles. Adverse effects of TGF-β inhibitors in respiratory clinical trials are comprehensively reviewed, including those of the marketed TGF-β modulators, pirfenidone and nintedanib. Precise modulation of TGF-β signaling may result in new safer therapies for chronic respiratory diseases.
Collapse
|
23
|
Long-Term Effects of TCM Yangqing Kangxian Formula on Bleomycin-Induced Pulmonary Fibrosis in Rats via Regulating Nuclear Factor- κB Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2089027. [PMID: 29387126 PMCID: PMC5745787 DOI: 10.1155/2017/2089027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/04/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Objective We aimed to evaluate the therapeutic effects and long-term effects of YKF and dissect the potential mechanisms. Materials and Methods IPF rats were given YKF, prednisone, or pirfenidone, respectively, from day 1 to day 42, followed by a 28-day nonintervention interval through day 70. Forced vital capacity (FVC), histopathology, hydroxyproline (HYP) contents, lung coefficient, blood inflammatory cell populations, inflammatory cytokine levels of the lung tissues, and the expression of proteins involved in nuclear factor- (NF-) κB signaling pathway were evaluated on days 7, 14, 28, 42, and 70. Results HYP contents, Ashcroft scores, lung coefficient, and pulmonary fibrosis blood cell populations increased significantly in IPF rats, while FVC declined. All the above-mentioned parameters were improved in treatment groups from day 7 up to day 70, especially in YKF group. The mRNA and protein expressions of tumor necrosis factor- (TNF-) α significantly decreased, while interferon- (IFN-) γ significantly increased, and phosphorylations of cytoplasm inhibitor of nuclear factor kappa-B kinase β (IKKβ), inhibitor of nuclear factor kappa-B α (IκBα), and NF-κB were obviously downregulated in YKF group from day 7 to day 70. Conclusion YKF has beneficial protective and long-term effects on pulmonary fibrosis by anti-inflammatory response and alleviating fibrosis.
Collapse
|
24
|
Huang Z, Sun S, Yang C, Zheng J, Nan Y, Zhao R, Lang Z, Li H, Ma L. TIAM1 inhibits lung fibroblast differentiation in pulmonary fibrosis. Exp Ther Med 2017; 14:4254-4262. [PMID: 29067109 PMCID: PMC5647702 DOI: 10.3892/etm.2017.5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/16/2017] [Indexed: 11/16/2022] Open
Abstract
The differentiation of fibroblasts to myofibroblasts is critical for the development of idiopathic pulmonary fibrosis (IPF). T-cell lymphoma invasion and metastasis 1 (TIAM1) is known to be associated with amyotrophic lateral sclerosis 1 and colorectal cancer; however, its role in IPF is unclear. The aim of the present study was to investigate the expression and roles of TIAM1 in lung fibroblasts during pulmonary fibrosis. It was demonstrated that TIAM1 expression was significantly increased in fibrotic lung tissue and lung fibroblasts from bleomycin (BLM)-treated mice compared with control mice (P<0.05). TIAM1 expression and differentiation were significantly upregulated in human lung fibroblasts challenged with transforming growth factor-β (TGF-β) compared with unchallenged cells (P<0.05). Furthermore, inhibition of the nuclear factor (NF)-κB signaling pathway significantly attenuated TGF-β-induced TIAM1 expression and decreased fibroblast differentiation in human lung fibroblasts (P<0.05). Similarly, overexpression of TIAM1 significantly inhibited TGF-β-induced fibroblast differentiation, as indicated by decreased expression of fibronectin and α-smooth muscle actin (SMA; P<0.05). The results of the present study also demonstrated that TIAM1 knockdown increased TGF-β-induced fibroblast differentiation (P<0.05). These findings suggest that TIAM1 expression is associated with lung fibroblast differentiation in pulmonary fibrosis via an NF-κB-dependent pathway, and that TIAM1 inhibits lung fibroblast differentiation in pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Shuangyan Sun
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Changliang Yang
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Jun Zheng
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yingji Nan
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Ruikun Zhao
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Zhiguo Lang
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Hang Li
- The First Division of Chest Medicine, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Lixia Ma
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
25
|
Hou J, Ma T, Cao H, Chen Y, Wang C, Chen X, Xiang Z, Han X. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol 2017; 233:2409-2419. [PMID: 28731277 DOI: 10.1002/jcp.26112] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Johnson FL, Patel NSA, Purvis GSD, Chiazza F, Chen J, Sordi R, Hache G, Merezhko VV, Collino M, Yaqoob MM, Thiemermann C. Inhibition of IκB Kinase at 24 Hours After Acute Kidney Injury Improves Recovery of Renal Function and Attenuates Fibrosis. J Am Heart Assoc 2017; 6:JAHA.116.005092. [PMID: 28673900 PMCID: PMC5586267 DOI: 10.1161/jaha.116.005092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor‐κB is a nuclear transcription factor activated post‐ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor‐κB in the renal fibrosis post‐AKI is unknown. Methods and Results We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor‐κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor‐β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. Conclusions Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis.
Collapse
Affiliation(s)
- Florence L Johnson
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Nimesh S A Patel
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Gareth S D Purvis
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Italy
| | - Jianmin Chen
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Regina Sordi
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom.,Department of Molecular Biology and Genetics, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Guillaume Hache
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom.,Aix Marseille Universite, UMR_S 1076, Vascular Research Center of Marseille, France
| | - Viktoria V Merezhko
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - Muhammed M Yaqoob
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | - Christoph Thiemermann
- Barts and The London School of Medicine & Dentistry, The William Harvey Research Institute, Queen Mary University of London, United Kingdom
| |
Collapse
|
27
|
Liu X, Yu M, Chen Y, Zhang J. Galunisertib (LY2157299), a transforming growth factor-β receptor I kinase inhibitor, attenuates acute pancreatitis in rats. ACTA ACUST UNITED AC 2017; 49:e5388. [PMID: 27509307 PMCID: PMC4988481 DOI: 10.1590/1414-431x20165388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGF-βRI), is the only known TGF-β pathway inhibitor. In the present study, we investigated the effect of galunisertib on taurocholate (TAC)-induced acute pancreatitis (AP) in rats, and the role of TGF-β and NF-κB signaling pathways. AP was induced by infusion of TAC into the pancreatic duct of Sprague-Dawley male rats (n=30). The rats (220±50 g) were administered galunisertib intragastrically [75 mg·kg-1·day-1 for 2 days (0 and 24 h)]. Serum IL-1β, IL-6, TNF-α, amylase (AMY), lipase (LIP), and myeloperoxidase (MPO) levels were measured by ELISA. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); NF-κBp65 and TGF-β1 proteins, as well as TGF-βRI and p-Smad2/3 proteins, were detected by western blot assay. Cell apoptosis was detected by TUNEL assay. H&E staining was used to evaluate the histopathological alterations of the pancreas. Galunisertib treatment attenuated the severity of AP and decreased the pancreatic histological score. In addition, number of apoptotic cells were significantly increased in the galunisertib-treated group (16.38±2.26) than in the AP group (8.14±1.27) and sham-operated group (1.82±0.73; P<0.05 and P<0.01, respectively). Galunisertib decreased the expression levels of TGF-βRI and p-Smad2/3 and inhibited NF-κB activation and p65 translocation compared with the sham-operated group. Furthermore, serum IL-1β, IL-6, TNF-α, AMY and LIP levels and tissue MPO activity were significantly decreased in the galunisertib-treated group. Our data demonstrate that galunisertib attenuates the severity of TAC-induced experimental AP in rats by inducing apoptosis in the pancreas, inhibiting the activation of TGF-β signals and NF-κB as well as the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- X Liu
- Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.,Department of General Surgery, People's Hospital of Chengyang, Qingdao, China
| | - M Yu
- Department of Clinical Laboratory, the Women and Children's Hospital of Qingdao, Qingdao, China
| | - Y Chen
- Department of Traditional Chinese Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - J Zhang
- Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Tao L, Yang J, Cao F, Xie H, Zhang M, Gong Y, Zhang C. Mogroside IIIE, a Novel Anti-Fibrotic Compound, Reduces Pulmonary Fibrosis through Toll-Like Receptor 4 Pathways. J Pharmacol Exp Ther 2017; 361:268-279. [PMID: 28280123 DOI: 10.1124/jpet.116.239137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 03/08/2025] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease, and eventually most patients develop respiratory failure with a median survival rate of 2 to 3 years after diagnosis due to the lack of clinically effective therapies. Mogroside IIIE (MGIIIE), a cucurbitane-type compound, was isolated from Siraitia grosvenorii MGIIIE has shown the strongest inhibition of nitric oxide release, a crucial inflammatory factor, from lipopolysaccharide (LPS)-treated RAW264.7 cells compared with other mogrosides. In the pulmonary fibrosis mouse model induced by bleomycin, MGIIIE treatment attenuated pulmonary fibrosis, indicated as a reduction in myeloperoxidase activity, collagen deposition, and pathologic score. MGIIIE also significantly suppressed expression of several important fibrotic markers, e.g., α-smooth muscle actin, collagen I, transforming growth factor-β (TGF-β) signal, and metalloproteinases-9/tissue inhibitor of metalloproteinase-1. Furthermore, MGIIIE blocked tansdifferentiation of lung resident fibroblasts into myofibroblast-like cells induced by TGF-β or LPS and subsequently inhibited collagen production in lung fibroblasts. These data indicate that MGIIIE is a potent inhibitor for pulmonary fibrosis. In vitro and in vivo mechanistic studies have shown that MGIIIE significantly decreased expression of toll-like receptor 4 (TLR4) and its downstream signals of myeloid differentiation factor 88 (MyD88)/mitogen-activated protein kinase (MAPK), an inflammatory signal essential for extracellular matrix (ECM) deposition in pulmonary fibroblasts. Taken together, these results demonstrate that MGIIIE significantly prevents pulmonary fibrosis by inhibiting pulmonary inflammation and ECM deposition through regulating TLR4/MyD88-MAPK signaling. Our study suggests that MGIIIE may have therapeutic potential for treating pulmonary fibrosis in clinical settings.
Collapse
Affiliation(s)
- Lijun Tao
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Jinyu Yang
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Fengyan Cao
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Haifeng Xie
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Mian Zhang
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Yanqing Gong
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| | - Chaofeng Zhang
- (L.T., J.Y., F.C., M.Z., C.Z.,) Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, People's Republic of China; (Y.G.) Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and (H.X.) Chengdu Biopurity Phytochemicals Ltd. Chengdu, People's Republic of China
| |
Collapse
|
29
|
Chen S, Jiang S, Zheng W, Tu B, Liu S, Ruan H, Fan C. RelA/p65 inhibition prevents tendon adhesion by modulating inflammation, cell proliferation, and apoptosis. Cell Death Dis 2017; 8:e2710. [PMID: 28358376 PMCID: PMC5386538 DOI: 10.1038/cddis.2017.135] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022]
Abstract
Peritendinous tissue fibrosis which leads to poor tendon function is a worldwide clinical problem; however, its mechanism remains unclear. Transcription factor RelA/p65, an important subunit in the NF-κB complex, is known to have a critical role in many fibrotic diseases. Here, we show that RelA/p65 functions as a core fibrogenic regulator in tendon adhesion and that its inhibition exerts an anti-fibrogenic effect on peritendinous adhesion. We detected the upregulation of the NF-κB pathway in human tendon adhesion using a gene chip microarray assay and revealed the overexpression of p65 and extracellular matrix (ECM) proteins Collagen I, Collagen III, and α-smooth muscle actin (α-SMA) in human fibrotic tissues by immunohistochemistry and western blotting. We also found that in a rat model of tendon injury, p65 expression correlated with tendon adhesion, whereas its inhibition by small interfering (si)RNA prevented fibrous tissue formation and inflammatory reaction as evidenced by macroscopic, biomechanical, histological, immunohistochemical, and western blotting analyses. Furthermore, in cultured fibroblasts, p65-siRNA, p65-specific inhibitor, Helenalin and JSH23 suppressed cell proliferation and promoted apoptosis, whereas inhibiting the mRNA and protein expression of ECM components and cyclo-oxygenase-2, an inflammatory factor involved in tendon adhesion. Our findings indicate that p65 has a critical role in peritendinous tissue fibrosis and suggest that p65 knockdown may be a promising therapeutic approach to prevent tendon adhesion.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Shichao Jiang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan 250021, Shandong, People's Republic of China
| | - Wei Zheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Bing Tu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Hongjiang Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
30
|
Hadisaputri YE, Miyazaki T, Yokobori T, Sohda M, Sakai M, Ozawa D, Hara K, Honjo H, Kumakura Y, Kuwano H. TNFAIP3 overexpression is an independent factor for poor survival in esophageal squamous cell carcinoma. Int J Oncol 2017; 50:1002-1010. [PMID: 28197630 DOI: 10.3892/ijo.2017.3869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α induced protein 3 (TNFAIP3) is a protein that is induced by TNF-mediated NF-κB activation and has a dual function in regulating NF-κB. TNFAIP3 is associated with inflammatory carcinogenesis in many cancer types. However, the clinical significance of TNFAIP3 expression and function in esophageal squamous cell carcinoma (ESCC) has not yet been reported. We examined 149 ESCC tissue specimens to determine the clinical significance of TNFAIP3 by immunohistochemistry. Western blot analyses were used to detect TNFAIP3 expression in TE-1, TE-8, TE-15 and KYSE-70 ESCC cells and in Het-1A, a non-cancerous esophageal cell line. TNFAIP3 protein knockdown was conducted using small-interfering RNA to investigate its impact on cell proliferation, migration and invasion. Significant correlations between TNFAIP3 expression and differentiation (P=0.04) among clinicopathological characteristics of ESCC patients were demonstrated, and high TNFAIP3 expression was associated with poor survival (P=0.02). Moreover, multivariate analysis result showed that high TNFAIP3 expression was an independent factor for poor survival (P=0.04). In vitro analysis showed high expression of TNFAIP3 protein in TE-15 cells and low expression in Het-1A cells. Furthermore, the proliferation, migration and invasion of TE-15 cells after TNFAIP3 suppression by siRNA were significantly reduced. These findings suggest that TNFAIP3 protein may be an independent prognostic marker for poor survival, and a promising target for ESCC therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Daigo Ozawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keigo Hara
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuji Kumakura
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
31
|
Wang G, Jiao H, Zheng JN, Sun X. HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways. Int J Mol Med 2016; 39:183-190. [DOI: 10.3892/ijmm.2016.2813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
|
32
|
Chen F, Wang PL, Fan XS, Yu JH, Zhu Y, Zhu ZH. Effect of Renshen Pingfei Decoction, a traditional Chinese prescription, on IPF induced by Bleomycin in rats and regulation of TGF-β1/Smad3. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:289-297. [PMID: 27013092 DOI: 10.1016/j.jep.2016.03.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
AIM OF THE STUDY Idiopathic pulmonary fibrosis (IPF), one of the clinical common diseases, shares similar pathogenesis with ancient disease "Feibi" in Chinese medicine, Renshen pingfei decoction (RPFS), a classical prescription, was commonly used in treating Feibi. In the current study, the protective role of RPFS in rats model of IPF and the mechanism via regulation of TGF-β1/Smad3, were evaluated and explored. METHODS The chemicals of RPFS were analyzed by UPLC-QTOF-MS. Under the optimized chromatographic and MS condition, the major components in RPFS were well separated and detected. An IPF model was established in rats which were induced with Bleomycin (BLM). After treated with corresponding medicine for 7 days, 14 days, 21 days and 28 days respectively, lung function of rats were measured; peripheral blood and bronchoalveolar lavage fluid (BALF) were assessed; histopathological changes and homogenate of lung tissue were detected; TGF-β1 and Smad3 mRNA and protein expressions in lung tissue were examined as well. RESULTS 43 signal peaks of chemical components in RPFS were identified by UPLC-QTOF-MS method. Compared with model group, RPFS group exerted significant effects on IPF model rats in improving lung function and decreasing HYP content of lung tissue (P<0.01), reducing the level of TGF-β1 and NFκB in BALF (P<0.05), decreasing SOD and MDA level in serum (P<0.01), as well as down-regulating TGF-β1 and Smad3 mRNA and protein expressions of lung tissue (P<0.01). CONCLUSION RPFS could reduce the lung injury and fibrosis degree and improve lung function of IPF model rats. The protective role might mediated by down-regulating TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Fei Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng-Li Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Sheng Fan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jing-Hua Yu
- College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
33
|
Xue X, Chen Q, Zhao G, Zhao JY, Duan Z, Zheng PS. The Overexpression of TGF-β and CCN2 in Intrauterine Adhesions Involves the NF-κB Signaling Pathway. PLoS One 2015; 10:e0146159. [PMID: 26719893 PMCID: PMC4697802 DOI: 10.1371/journal.pone.0146159] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 01/24/2023] Open
Abstract
Intrauterine adhesions (IUA) are a significant cause of menstrual disturbance and infertility, but their pathogenesis still remains unclear. Here, we investigated the expression of TGF-β and CCN2 in IUA endometrial tissue by immunohistochemistry, western blotting and qRT-PCR assays, and found the expression of TGF-β and CCN2 in the endometrial tissue of IUA was significantly increased compared to normal endometrium and uterine septum (P<0.01), suggesting that TGF-β and CCN2 may play an important role in the formation of IUA. Moreover, the activity of the NF-κB signaling pathway in endometrial tissue of IUA was also significantly enhanced compared to normal endometrial and uterine septum (P<0.01) and positively correlated with the expression of TGF-β and CCN2, which suggested that TGF-β and CCN2 expression may be involved in the NF-κB signaling pathway. Blocking the NF-κB signaling pathway using SN50 resulted in the reduced expression of TGF-β in RL95-2 cells, which confirmed the association of the NF-κB signaling pathway and TGF-β in endometrial cells. Additionally, the expression of TGF-β and CCN2 was associated with IUA recurrence, which provides a potential prognostic indictor for IUA. Together, these results demonstrated that TGF-β and CCN2 play an important role in IUA formation, whose mechanism was associated with the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Qing Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Gang Zhao
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Jin-Yan Zhao
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Zhao Duan
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, the First Affiliated Hospital, Xi’an Jiaotong University Medical School, Xi’an, the People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Mia MM, Bank RA. The IκB kinase inhibitor ACHP strongly attenuates TGFβ1-induced myofibroblast formation and collagen synthesis. J Cell Mol Med 2015; 19:2780-92. [PMID: 26337045 PMCID: PMC4687706 DOI: 10.1111/jcmm.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 01/07/2023] Open
Abstract
Excessive accumulation of a collagen‐rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGFβ1) is a strong inducer of myofibroblast formation and subsequent collagen production. Currently, there are no remedies for the treatment of fibrosis. Activation of the nuclear factor kappa B (NF‐κB) pathway by phosphorylating IκB with the enzyme IκB kinase (IKK) plays a major role in the induction of fibrosis. ACHP {2‐Amino‐6‐[2‐(cyclopropylmethoxy)‐6‐hydroxyphenyl]‐4‐(4‐piperidinyl)‐3 pyridinecarbonitrile}, a selective inhibitor of IKK, prohibits the activation of the NF‐κB pathway. It is not known whether ACHP has potential anti‐fibrotic properties. Using adult human dermal and lung fibroblasts we have investigated whether ACHP has the ability to inhibit the TGFβ1‐induced transition of fibroblasts into myofibroblasts and its excessive synthesis of ECM. The presence of ACHP strongly suppressed the induction of the myofibroblast markers alpha‐smooth muscle actin (αSMA) and SM22α, as well as the deposition of the ECM components collagen type I and fibronectin. Furthermore, post‐treatment with ACHP partly reversed the expression of αSMA and collagen type I production. Finally, ACHP suppressed the expression of the three collagen‐modifying enzymes lysyl hydroxylase (PLOD1,PLOD2 and PLOD3) in dermal fibroblasts, but did not do so in lung fibroblasts. We conclude that the IKK inhibitor ACHP has potent antifibrotic properties, and that the NF‐κB pathway plays an important role in myofibroblast biology.
Collapse
Affiliation(s)
- Masum M Mia
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, Division of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|