1
|
Ye Y, Song F. SARM1 in the pathogenesis of immune-related disease. Toxicol Res (Camb) 2024; 13:tfae208. [PMID: 39664502 PMCID: PMC11631086 DOI: 10.1093/toxres/tfae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Background Sterile alpha and toll interleukin receptor motif-containing protein 1 (SARM1) are primarily expressed in the mammalian nervous system, with their presence in neurons being associated with mitochondrial aggregation. SARM1 functions as a mediator of cell death and morphological changes, while also regulating Waller degeneration in nerve fibers and influencing glial cell formation. Purpose Recent reports demonstrate SARM1 serves as a connector in the Toll-like receptor (TLR) pathway and plays a role in regulating inflammation during periods of stress such as infection, trauma, and hypoxia. These findings offer new insights into pathogenesis research and the prevention and treatment of neurodegenerative diseases and pathogen infections. Methods This review synthesizes recent findings on the immune-related mechanisms of SARM1, emphasizing its roles in inflammation and its functional impact on the nervous system and other bodily systems. Conclusions Understanding the multifaceted roles of SARM1 in immune regulation and neuronal health provides novel insights into its involvement in disease pathogenesis. These insights hold promise for advancing research into the prevention and treatment of neurodegenerative diseases and pathogen-induced conditions.
Collapse
Affiliation(s)
- Yihan Ye
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
2
|
Pk N, Rajan RK, Nanchappan V, Karuppaiah A, Chandrasekaran J, Jayaraman S, Gunasekaran V. C-Glucosyl Xanthone derivative Mangiferin downregulates the JNK3 mediated caspase activation in Almal induced neurotoxicity in differentiated SHSY-5Y neuroblastoma cells. Toxicol Mech Methods 2023; 33:707-718. [PMID: 37455591 DOI: 10.1080/15376516.2023.2237106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION C-Glucosyl Xanthone derivatives were assessed to inhibit the JNK3 mediated Caspase pathway in Almal (Aluminum Maltolate) induced neurotoxicity in SHSY-5Y cells. METHODS Mangiferin was selected among 200 C-Glucosyl Xanthones based on molecular interaction, docking score (-10.22 kcal/mol), binding free energy (-71.12 kcal/mol), ADME/tox properties and by molecular dynamic studies. Further, it was noticed that glycone moiety of Mangiferin forms H-bond with ASN 194, SER 193, GLY 76, and OH group in the first position of the aglycone moiety shows interaction at Met 149 which is exceptionally crucial for JNK3 inhibitory activity. RESULTS AND DISCUSSION Mangiferin (0.5, 1, 10, 20 and 30 µM) and standard SP600125 (20 µM) treatment increased the cell survival rate against Almal 200 µM, with EC50 of Mangiferin (8 µM) and standard SP600125 (4.9 µM) respectively. Mangiferin significantly impedes kinase activation, indicating suppression of JNK3 signaling with IC50 (98.26 nM). Mangiferin (10 and 15 µM) dose-dependently inhibits the caspase 3, 8, and 9 enzyme activation in comparison to Almal group. CONCLUSION Mangiferin demonstrated neuroprotection in SHSY-5Y cells against apoptosis induced by Almal by adapting the architecture of the neurons and increasing their density. Among all Xanthone derivatives, Mangiferin could improve neuronal toxicity by inhibiting JNK3 and down-regulating the Caspase activation.
Collapse
Affiliation(s)
- Nafila Pk
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Ravi Kumar Rajan
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Tezpur, India
| | | | - Arjunan Karuppaiah
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore, India
| | - Jaikanth Chandrasekaran
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher education and Research (Deemed to be University) Porur, Chennai, India
| | - Saravanan Jayaraman
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
3
|
Son SE, Im DS. Therapeutic effects of candesartan in inflammatory skin disorders by suppressing Th17 differentiation. Int Immunopharmacol 2023; 124:110995. [PMID: 37801970 DOI: 10.1016/j.intimp.2023.110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
As angiotensin II is associated with inflammation, type I angiotensin II receptor blockers (ARBs) exibit anti-inflammatory effects in patients with hypertension as well as inflammatory disease animal models including arthritis models. The present study aimed to investigate whether ARBs exert anti-inflammatory effects in vivo in skin disorders. We tested effects of ARBs on 1-chloro-2,4-dinitrobenzene(CDNB)-induced atopic dermatitis-like and imiquimod-induced psoriasis-like skin models. CDNB-induced atopic dermatitis-like skin lesions were suppressed by administration of candesartan or telmisartan. The suppressive effect of telmisartan was blocked by the presence of GW9662, a selective PPARγ inhibitor, but not that of candesartan. Both ARBs suppressed increases in pro-inflammatory cytokine (IL-4, IL-13, IFN-γ, and IL-17A) levels, and GW9662 inhibited telmisartan-induced suppression but not candesartan. Candesartan significantly inhibited in vitro differentiation of naïve T cells into Th17 cells to a greater extent than telmisartan. In the imiquimod-induced psoriasis model, whose primary etiology is activation of IL-23/IL-17 axis, candesartan significantly suppressed psoriasis-like skin lesions and Th17 cell populations in both lymph nodes and spleens to a greater extent than telmisartan. Overall, certain ARBs may have anti-inflammatory effects in skin diseases. Candesartan may have therapeutic implications in inflammatory skin disorders by suppressing Th17 differentiation, while telmisartan might have therapeutic potential by activating PPARγ.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Qi D, Wang W, Zhang Y, Zhang T. MiR-99b regulates cerebral ischemia neuronal injury through targeting IGF1R. Panminerva Med 2023; 65:30-36. [PMID: 32343508 DOI: 10.23736/s0031-0808.20.03920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recently, microRNA-99b (miR-99b) shows diverse functions in different human disease. However, further studies about the potential effect of miR-99b in cerebral ischemia injury still need to be done. METHODS The expressions of miR-99b and IGF1R were detected via RT-qPCR assay. Western blot assay was applied to measure the protein expression of Caspase-3, Bax and Bcl-2. MTT assay was used to observe cell viability of SH-SY5Y cells. The association of miR-99b and IGF1R was testified by dual luciferase assay. And human SH-SY5Y cells were treated with the oxygen-glucose deprivation/reperfusion (OGD/R) to mimic CIR injury. RESULTS The expression of miR-99b was increased in the OGD/R model. And upregulation of miR-99b promoted cell viability and inhibited apoptosis induced by OGD/R. Moreover, IGF1R was confirmed as a direct target gene of miR-99b. The expression of IGF1R was obviously decreased under OGD/R conditions. CONCLUSIONS MiR-99b promoted the viability and suppressed apoptosis of SH-SY5Y cells under OGD/R conditions through targeting IGF1R.
Collapse
Affiliation(s)
- Dengbin Qi
- Department of Neurology, Affiliated Hospital of Jining Medical University, YanZhou Branch, Jining, China
| | - Wei Wang
- Disinfection Supply Center, Qingdao Municipal Hospital, Qingdao, China
| | - Ying Zhang
- Department of Internal Medicine, Binzhou People's Hospital, Binzhou, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China -
| |
Collapse
|
5
|
Şen S, Hacıosmanoğlu E. Comparing the Neuroprotective Effects of Telmisartan, Perindopril, and Nebivolol Against Lipopolysaccharide-Induced Injury in Neuron-Like Cells. Cureus 2022; 14:e27429. [PMID: 36051740 PMCID: PMC9420193 DOI: 10.7759/cureus.27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
The effect of antihypertensive drugs, especially drugs modulating the renin-angiotensin-aldosterone-system (RAAS), on neurodegenerative diseases still needs to be investigated. This study aimed to compare the effects of three different antihypertensive drugs (telmisartan, perindopril, and nebivolol) on neuroprotection and acetylcholine (ACh) levels against lipopolysaccharide (LPS)-induced injury in a differentiated SH-SY5Y cell line. Cells were treated with retinoic acid for differentiation to a neuronal phenotype. LPS 20 (μg/mL) was applied to the cells for one hour. Then, the cells were treated with 1, 5, and 10 µg/mL concentrations of telmisartan, perindopril, and nebivolol separately for 24 hours, except for the control and LPS alone groups. Cell viability was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ACh levels were analyzed using an enzyme immunosorbent assay in the culture medium. Tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) expressions were evaluated using western blot analysis. Telmisartan demonstrated the highest cell viability against LPS-induced injury, whereas the protective effect of perindopril was moderate. Nebivolol showed no neuroprotective effect. The protective effect of 10-µg/mL telmisartan was superior to 10 µg/mL perindopril (p=0.006), 5 µg/mL perindopril (p=0.001), 1 µg/mL perindopril (p=0.001), and 1, 5, and 10 µg/mL nebivolol (p<0.001). Among all the study drugs, only telmisartan provided a statistically significant increase in ACh levels after LPS-induced injury. Additionally, the administration of telmisartan provided a concentration-dependent reduction in TNF-α, IL-1β, and NFκB expression against LPS-induced neuroinflammation. These findings suggest that telmisartan has a superior neuroprotective effect against LPS-induced injury in neuron-like cells compared with both perindopril and nebivolol.
Collapse
|
6
|
SARM1 deletion in parvalbumin neurons is associated with autism-like behaviors in mice. Cell Death Dis 2022; 13:638. [PMID: 35869039 PMCID: PMC9307765 DOI: 10.1038/s41419-022-05083-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD), a group of neurodevelopmental disorder diseases, is characterized by social deficits, communication difficulties, and repetitive behaviors. Sterile alpha and TIR motif-containing 1 protein (SARM1) is known as an autism-associated protein and is enriched in brain tissue. Moreover, SARM1 knockdown mice exhibit autism-like behaviors. However, its specific mechanism in ASD pathogenesis remains unclear. Here we generated parvalbumin-positive interneurons (PVI)-specific conditional SARM1 knockout (SARM1PV-CKO) mice. SARM1PV-CKO male mice showed autism-like behaviors, such as mild social interaction deficits and repetitive behaviors. Moreover, we found that the expression level of parvalbumin was reduced in SARM1PV-CKO male mice, together with upregulated apoptosis-related proteins and more cleaved-caspase-3-positive PVIs, suggesting that knocking out SARM1 may cause a reduction in the number of PVIs due to apoptosis. Furthermore, the expression of c-fos was shown to increase in SARM1PV-CKO male mice, in combination with upregulation of excitatory postsynaptic proteins such as PSD-95 or neuroligin-1, indicating enhanced excitatory synaptic input in mutant mice. This notion was further supported by the partial rescue of autism-like behavior deficits by the administration of GABA receptor agonists in SARM1PV-CKO male mice. In conclusion, our findings suggest that SARM1 deficiency in PVIs may be involved in the pathogenesis of ASD.
Collapse
|
7
|
Yao J, Wang Z, Wang R, Wang Y, Xu J, He X. Anti-proliferative and anti-inflammatory prenylated isoflavones and coumaronochromones from the fruits of Ficus altissima. Bioorg Chem 2021; 64:2893-900. [PMID: 34038794 DOI: 10.1021/acs.jafc.6b00227] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ficus altissima, an evergreen arbor belonging to the Moraceae family, is mainly cultivated in the tropics and subtropics of South and Southeast Asia with the characteristic of exuberant vitality and luxuriant foliage. In this article, four new prenylated isoflavones (1-4), along with ten previously described isoflavones (5-14) and two known prenylated coumaronochromones (15 and 16) were firstly obtained from the fruits of F. altissima. Their structures were identified by various spectroscopic techniques including specific optical rotation, HR-ESI-MS and NMR. The isolated products were evaluated for their anti-proliferative activities against three human tumor cell lines (HepG2, MCF-7 and MDA-MB-231) through MTT assay. Compounds 2, 3 and 16 exhibited obvious anti-proliferative activities against MDA-MB-231 cell line and compounds 3, 13 and 16 showed effective cytotoxic effects on HepG2 cell line in a concentration-dependent manner, as verified by the colony formation assay, cell and nucleus morphological assessment and apoptosis assay. Meanwhile, compounds 5 and 12 exhibited significant inhibition activities on NO production in LPS-stimulated RAW 264.7 cell line compared with positive control indometacin. The phytochemical investigation of the fruits of F. altissima in this study could provide the evidence for the discovery of lead compounds.
Collapse
Affiliation(s)
- Jiaming Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ru Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
8
|
Saavedra JM. Angiotensin Receptor Blockers Are Not Just for Hypertension Anymore. Physiology (Bethesda) 2021; 36:160-173. [PMID: 33904788 DOI: 10.1152/physiol.00036.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beyond blood pressure control, angiotensin receptor blockers reduce common injury mechanisms, decreasing excessive inflammation and protecting endothelial and mitochondrial function, insulin sensitivity, the coagulation cascade, immune responses, cerebrovascular flow, and cognition, properties useful to treat inflammatory, age-related, neurodegenerative, and metabolic disorders of many organs including brain and lung.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
9
|
Kwon HS, Ha J, Kim JY, Park HH, Lee EH, Choi H, Lee KY, Lee YJ, Koh SH. Telmisartan Inhibits the NLRP3 Inflammasome by Activating the PI3K Pathway in Neural Stem Cells Injured by Oxygen-Glucose Deprivation. Mol Neurobiol 2021; 58:1806-1818. [PMID: 33404978 DOI: 10.1007/s12035-020-02253-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Angiotensin II receptor blockers (ARBs) have been shown to exert neuroprotective effects by suppressing inflammatory and apoptotic responses. In the present study, the effects of the ARB telmisartan on the NLRP3 inflammasome induced by oxygen-glucose deprivation (OGD) in neural stem cells (NSCs) were investigated, as well as their possible association with the activation of the PI3K pathway. Cultured NSCs were treated with different concentrations of telmisartan and subjected to various durations of OGD. Cell counting, lactate dehydrogenase, bromodeoxyuridine, and colony-forming unit assays were performed to measure cell viability and proliferation. In addition, the activity of intracellular signaling pathways associated with the PI3K pathway and NLRP3 inflammasome was evaluated. Telmisartan alone did not affect NSCs up to a concentration of 10 μM under normal conditions but showed toxicity at a concentration of 100 μM. Moreover, OGD reduced the viability of NSCs in a time-dependent manner. Nevertheless, treatment with telmisartan increased the viability and proliferation of OGD-injured NSCs. Furthermore, telmisartan promoted the expression of survival-related proteins and mRNA while inhibiting the expression of death-related proteins induced by OGD. In particular, telmisartan attenuated OGD-dependent expression of the NLRP3 inflammasome and its related signaling proteins. These beneficial effects of telmisartan were blocked by a PI3K inhibitor. Together, these results indicate that telmisartan attenuated the activation of the NLRP3 inflammasome by triggering the PI3K pathway, thereby contributing to neuroprotection.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Jungsoon Ha
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- GemVax & Kael Co., Ltd, Seongnam-si, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Abd El Aziz AE, Sayed RH, Sallam NA, El Sayed NS. Neuroprotective Effects of Telmisartan and Nifedipine Against Cuprizone-Induced Demyelination and Behavioral Dysfunction in Mice: Roles of NF-κB and Nrf2. Inflammation 2021; 44:1629-1642. [PMID: 33709265 DOI: 10.1007/s10753-021-01447-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is a chronic inflammatory neurodegenerative disease of the central nervous system which injures the myelin sheath. Telmisartan and nifedipine are antihypertensive drugs that recently showed neuroprotective properties against neurodegenerative diseases. This study evaluated the neuroprotective effect of telmisartan or nifedipine in cuprizone-induced demyelination in mice by examining the underlying mechanisms. C57BL/6 mice received a diet containing 0.7% (w/w) cuprizone for 7 days followed by 3 weeks on a 0.2% cuprizone diet. Telmisartan (5 mg/kg/day, p.o.) or nifedipine (5 mg/kg/day, p.o.) was administered for 3 weeks starting from the second week. Telmisartan or nifedipine improved locomotor activity and enhanced motor coordination as demonstrated by open field, rotarod, and grip strength tests. Furthermore, telmisartan or nifedipine restored myelin basic protein mRNA and protein expression and increased luxol fast blue-staining intensity. Telmisartan or nifedipine attenuated cuprizone-induced oxidative stress and apoptosis by decreasing brain malondialdehyde and caspase-3 along with restoring reduced glutathione and brain-derived neurotrophic factor levels. Telmisartan or nifedipine exerted an anti-inflammatory effect by reducing the expression of nuclear factor kappa B (NF-κB p65) as well as pro-inflammatory cytokines and elevating the expression of IκB-α. In parallel, telmisartan or nifedipine upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the levels of heme oxygenase-1 and NADPH quinone oxidoreductase 1 enzymes. In conclusion, the current study provides evidence for the protective effect of telmisartan and nifedipine in cuprizone-induced demyelination and behavioral dysfunction in mice possibly by modulating NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Amira E Abd El Aziz
- Center of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | - Rabab Hamed Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Banu N, Panikar SS, Leal LR, Leal AR. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci 2020; 256:117905. [PMID: 32504757 PMCID: PMC7832382 DOI: 10.1016/j.lfs.2020.117905] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
In light of the outbreak of the 2019 novel coronavirus disease (COVID-19), the international scientific community has joined forces to develop effective treatment strategies. The Angiotensin-Converting Enzyme (ACE) 2, is an essential receptor for cell fusion and engulfs the SARS coronavirus infections. ACE2 plays an important physiological role, practically in all the organs and systems. Also, ACE2 exerts protective functions in various models of pathologies with acute and chronic inflammation. While ACE2 downregulation by SARS-CoV-2 spike protein leads to an overactivation of Angiotensin (Ang) II/AT1R axis and the deleterious effects of Ang II may explain the multiorgan dysfunction seen in patients. Specifically, the role of Ang II leading to the appearance of Macrophage Activation Syndrome (MAS) and the cytokine storm in COVID-19 is discussed below. In this review, we summarized the latest research progress in the strategies of treatments that mainly focus on reducing the Ang II-induced deleterious effects rather than attenuating the virus replication. Protective role of ACE2 in the organs and system Downregulation of ACE2 expression by SARS-CoV-2 leads to Ang II-induced organ damage. The appearance of MAS in COVID-19 patient Suggested treatment to diminish the deleterious effect of Ang II or appearance of MAS
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autonoma de México (UNAM), Apartado Postal 1-1010, Queretaro, Queretaro 76000, Mexico
| | - Lizbeth Riera Leal
- Hospital General Regional número 45, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Annie Riera Leal
- UC DAVIS Institute for Regenerative Cure, Department of Dermatology, University of California, 2921 Stockton Blvd, Rm 1630, 95817 Sacramento, CA, USA.
| |
Collapse
|
12
|
Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies. Neurochem Res 2019; 44:1228-1242. [DOI: 10.1007/s11064-019-02768-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
|
13
|
Elkahloun AG, Rodriguez Y, Alaiyed S, Wenzel E, Saavedra JM. Telmisartan Protects a Microglia Cell Line from LPS Injury Beyond AT1 Receptor Blockade or PPARγ Activation. Mol Neurobiol 2018; 56:3193-3210. [PMID: 30105672 DOI: 10.1007/s12035-018-1300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023]
Abstract
The Angiotensin II Receptor Blocker (ARB) Telmisartan reduces inflammation through Angiotensin II AT1 receptor blockade and peroxisome proliferator-activated receptor gamma (PPARγ) activation. However, in a mouse microglia-like BV2 cell line, imitating primary microglia responses with high fidelity and devoid of AT1 receptor gene expression or PPARγ activation, Telmisartan reduced gene expression of pro-injury factors, enhanced that of anti-inflammatory genes, and prevented LPS-induced increase in inflammatory markers. Using global gene expression profiling and pathways analysis, we revealed that Telmisartan normalized the expression of hundreds of genes upregulated by LPS and linked with inflammation, apoptosis and neurodegenerative disorders, while downregulating the expression of genes associated with oncological, neurodegenerative and viral diseases. The PPARγ full agonist Pioglitazone had no neuroprotective effects. Surprisingly, the PPARγ antagonists GW9662 and T0070907 were neuroprotective and enhanced Telmisartan effects. GW9226 alone significantly reduced LPS toxic effects and enhanced Telmisartan neuroprotection, including downregulation of pro-inflammatory TLR2 gene expression. Telmisartan and GW9662 effects on LPS injury negatively correlated with pro-inflammatory factors and upstream regulators, including TLR2, and positively with known neuroprotective factors and upstream regulators. Gene Set Enrichment Analysis (GSEA) of the Telmisartan and GW9662 data revealed negative correlations with sets of genes associated with neurodegenerative and metabolic disorders and toxic treatments in cultured systems, while demonstrating positive correlations with gene sets associated with neuroprotection and kinase inhibition. Our results strongly suggest that novel neuroprotective effects of Telmisartan and GW9662, beyond AT1 receptor blockade or PPARγ activation, include downregulation of the TLR2 signaling pathway, findings that may have translational relevance.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Microarray Core, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, MSC 4435, Bethesda, MD, 20892-4435, USA
| | - Yara Rodriguez
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Seham Alaiyed
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Erin Wenzel
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA
| | - Juan M Saavedra
- Laboratory of Neuroprotection, Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
Celastrol attenuates incision-induced inflammation and pain associated with inhibition of the NF-κB signalling pathway via SARM. Life Sci 2018; 205:136-144. [PMID: 29750991 DOI: 10.1016/j.lfs.2018.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023]
Abstract
AIM This study aimed to investigate whether celastrol (CEL) could alleviate incision-induced pain and decipher its possible mechanism. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into five groups: naïve, vehicle, CEL (5 μg/paw, 10 μg/paw and 20 μg/paw). CEL or vehicle was administered intraplantarly before plantar surgical incision. Histological examinations of skin tissues were performed after HE staining. Additionally, immunohistochemical staining, RT-PCR and western blot were performed to analyse macrophages, proinflammatory cytokines, SARM and NF-κB expression, respectively. Moreover, the previous mentioned factors were re-evaluated after suppressing SARM expression by shRNA. KEY FINDINGS The plantar incision rats displayed pain-related behaviours and inflammatory infiltration in the skin. The mRNA levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNFα were significantly upregulated in the skin of surgical rats. The expression of sterile α- and armadillo-motif-containing protein (SARM) was downregulated and nuclear factor kappa-B (NF-κB) was activated. Interestingly, CEL could partially restore the pain-related behavioural changes. Furthermore, molecular mechanism of CEL was explored, that included significantly reduction of proinflammatory cytokines mRNA expressions, a significant decrease of p-p65 and p65 levels and a markedly increase of SARM and IkBα expressions in skin tissues. However, supression SARM by shRNA partially eliminated those protective effect of CEL. SIGNIFICANCE Our data suggest that intraplantarly administration of CEL attenuates inflammatory and acute pain. This finding could be attributed to regulation of the NF-κB signalling pathway via SARM. These results provide pre-clinical evidence supporting the use of CEL in the treatment of surgical pain.
Collapse
|
15
|
Su F, Bai F, Zhou H, Zhang Z. Reprint of: Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 55:166-178. [PMID: 27255539 DOI: 10.1016/j.bbi.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
16
|
Su F, Bai F, Zhou H, Zhang Z. Microglial toll-like receptors and Alzheimer's disease. Brain Behav Immun 2016; 52:187-198. [PMID: 26526648 DOI: 10.1016/j.bbi.2015.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 02/08/2023] Open
Abstract
Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD.
Collapse
Affiliation(s)
- Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Hong Zhou
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
17
|
MicroRNA-25 Negatively Regulates Cerebral Ischemia/Reperfusion Injury-Induced Cell Apoptosis Through Fas/FasL Pathway. J Mol Neurosci 2016; 58:507-16. [DOI: 10.1007/s12031-016-0712-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
|
18
|
Prathab Balaji S, Vijay Chand C, Justin A, Ramanathan M. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling. Pharmacol Biochem Behav 2015; 137:60-8. [DOI: 10.1016/j.pbb.2015.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|