1
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
2
|
Slavin BR, Sarhane KA, von Guionneau N, Hanwright PJ, Qiu C, Mao HQ, Höke A, Tuffaha SH. Insulin-Like Growth Factor-1: A Promising Therapeutic Target for Peripheral Nerve Injury. Front Bioeng Biotechnol 2021; 9:695850. [PMID: 34249891 PMCID: PMC8264584 DOI: 10.3389/fbioe.2021.695850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.
Collapse
Affiliation(s)
- Benjamin R Slavin
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Division of Plastic and Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karim A Sarhane
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas von Guionneau
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Phillip J Hanwright
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Chenhu Qiu
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Translational Tissue Engineering Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Sami H Tuffaha
- Department of Plastic and Reconstructive Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Chen YH, Chen HL, Fan HC, Tung YT, Kuo CW, Tu MY, Chen CM. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9090790. [PMID: 32858955 PMCID: PMC7555286 DOI: 10.3390/antiox9090790] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The increased prevalence of renal dysfunction and chronic kidney disease (CKD) and the high costs and poor outcomes of treatment are a significant health issue. The consequence of chronic high blood pressure is the increased prevalence of target organ end-stage renal disease, which has been proven to be a strong independent risk factor for adverse cardiovascular disease. A previous study showed that kefir products have anti-inflammatory and anti-hypertensive activities and immunological modulation functions. However, no data regarding the beneficial effects of kefir peptides (KPs) on salt-induced renal damage or related kidney diseases are available. In this study, KPs were orally administered to aged salt-induced stroke-prone spontaneously hypertensive (SHRSP) rats, and the effects of KPs against inflammation and oxidative stress and their ability to protect against renal dysfunction were evaluated. Fifty-five-week-old SHRSP rats under induction with 1% NaCl in drinking water for 4 weeks showed multiple renal injuries with increased renal inflammation, fibrosis, oxidative stress, tubular atrophy, and glomerulosclerosis. In contrast, oral gavage with KPs reduced the urine protein to creatinine (UPC) ratio, the fractional excretion of electrolytes (FeNa and FeCl), extracellular matrix deposition, and the interstitial fibrotic α-smooth muscle actin (α-SMA) levels in salt-induced SHRSP rats. The renal infiltration of inflammatory cells; the release of monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), endothelin-1 (ET-1), and the cytokine nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and transforming growth factor-β (TGF-β); the reactive oxygen species (ROS) levels; and histopathological lesions were also decreased in salt-induced SHRSP rats. Furthermore, KP treatment significantly increased the renal superoxide dismutase (SOD) activity and the glomerular filtration rate (GFR), which exerted potent protection against salt-induced chronic kidney disease in SHRSP rats. The results of this study suggest that KPs ameliorate salt-induced renal damage, tubular atrophy, and glomerular dysfunction through anti-inflammatory, antioxidative stress, and antifibrotic activities, and might be a promising protective agent against high salt-induced renovascular-related diseases.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Health Research Institutes, Taichung 402, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, Da-Yeh University, Changhwa 515, Taiwan;
| | - Hueng-Chuen Fan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Miaoli 356, Taiwan
| | - Yu-Tang Tung
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Wen Kuo
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
- Department of Orthopaedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung 820, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-6309
| |
Collapse
|
4
|
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev 2019; 145:40-56. [PMID: 30594492 DOI: 10.1016/j.addr.2018.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Bacteriophages, or more colloquially as phages, are viruses that possess the ability to infect and replicate with bacterial cells. They are assembled from two major types of biomolecules, the nucleic acids and the proteins, with the latter forming a capsid and the former being encapsulated. In the eukaryotic hosts, phages are inert particulate antigens and cannot trigger pathogenesis. In recent years, many studies have been explored about using phages as nanomedicine platforms for developing vaccines due to their unique biological characteristics. The whole phage particles can be used for vaccine design in the form of phage-displayed vaccines or phage DNA vaccines. Phage-displayed vaccines are the phages with peptide or protein antigens genetically displayed on their surfaces as well as those with antigens chemically conjugated or biologically bound on their surfaces. The phages can then deliver the immunogenic peptides or proteins to the target cells or tissues. Phage DNA vaccines are the eukaryotic promoter-driven vaccine genes inserted in the phage genomes, which are carried by phages to the target cells to generate antigens. The antigens, either as the immunogenic peptides or proteins displayed on the phages, or as the products expressed from the vaccine genes, can serve as vaccines to elicit immune responses for disease prevention and treatment. Both phage-displayed vaccines and phage DNA vaccines promise a brilliant future for developing vaccines. This review presents the recent advancements in the field of phage-based vaccines and their applications in both the prevention and treatment of various diseases. It also discusses the challenges and perspectives in moving this field forwards.
Collapse
|
5
|
Abstract
Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.
Collapse
|
6
|
Tung YT, Chen HL, Wu HS, Ho MH, Chong KY, Chen CM. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700505] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/28/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Yu-Tang Tung
- Department of Life Sciences; Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
- Graduate Institute of Metabolism and Obesity Sciences; Taipei Medical University; Taipei 11031 Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresources; Da-Yeh University; Changhwa 515 Taiwan
| | - Hsin-Shan Wu
- Department of Life Sciences; Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
| | - Mei-Hsuan Ho
- Department of Life Sciences; Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science; Chang Gung University; Tao-Yuan 333 Taiwan
- Molecular Medicine Research Center; College of Medicine; Chang Gung University; Tao-Yuan 333 Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences; Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
- Rong Hsing Research Center for Translational Medicine and the iEGG Center; National Chung Hsing University; Taichung 402 Taiwan
| |
Collapse
|
7
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:109-137. [PMID: 30390250 DOI: 10.1007/978-981-13-1435-3_6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.
Collapse
|