1
|
Yan L, Quan Z, Sun T, Wang J. Autophagy signaling mediated by non-coding RNAs: Impact on breast cancer progression and treatment. Mol Aspects Med 2025; 103:101365. [PMID: 40305994 DOI: 10.1016/j.mam.2025.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Autophagy, a conserved cellular mechanism which detoxifies and degrades intracellular structures or biomolecules, has been identified as an important factor in the progression of human breast cancer and the development of treatment resistance. Non-coding RNAs (ncRNAs), a broad family of RNA, have the ability to influence various processes, including autophagy, due to their diverse downstream targets. ncRNAs play an important role in suppressing or activating autophagy by targeting autophagy-triggering components such as the ULK1 complex, Beclin1, and ATGs. Recent research has uncovered the intricate regulatory networks that govern autophagy dynamics, with ncRNAs emerging as key participants in this network. miRNAs, lncRNAs, and circRNAs are the three subfamilies of ncRNAs that have the most well-known interactions with autophagy, particularly macroautophagy. The high prevalence of breast cancer necessitates research into finding new biological processes that can help in early detection as well as enhance the effectiveness of treatment. The positive/negative link between autophagy and ncRNAs can be exploited as a supplementary therapy to improve sensitivity to treatment in breast cancer. This review investigates the regulatory roles of ncRNAs, particularly microRNAs (miRNAs), in modifying autophagy pathways in human breast cancer progression and treatment. However, future studies and clinical practice are needed to determine the most relevant microRNAs as biomarkers and also to better understand their role in breast cancer progression or treatment through modifying autophagy.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Zhuo Quan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, No.777 Xitai Road, High-tech Zone, Xi'an, Shaanxi Province, 710100, China; Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi, 710100, China
| | - Tiantian Sun
- Department of Oncology, Zibo Central Hospital, Shandong, 255036, China.
| | - Jiaju Wang
- Department of Hematology, Zibo Central Hospital, Shandong, 255036, China.
| |
Collapse
|
2
|
Bandyopadhyay A, Sinha S, Roy R, Biswas N. Autophagy mediated immune response regulation and drug resistance in cancer. Mol Biol Rep 2025; 52:492. [PMID: 40402380 DOI: 10.1007/s11033-025-10573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
Autophagy is a critical regulator of cellular homeostasis. The proteins involved in autophagy orchestrate the functions to strike the balance between cell survival and cell death in context-specific situations like aging, infections, inflammation and most importantly carcinogenesis. One of the major dead-locks in cancer treatment is the development of resistance to the available drugs (multi-drug resistance) as well as immune-suppressions in patients. Different studies over time have shown that autophagy is being involved in chemotherapy by working hand in hand with apoptosis or drug resistance through proliferative signals. Resistance to various drugs, such as, Cisplatin, Vincristine, Tamoxifen (TAM) occurs by epigenetic modifications, changed expression levels of microRNAs (miRNAs/miRs), and long non-coding RNAs (lncRNAs), which are regulated by the aberrant autophagy levels in lung, and breast cancers. More interestingly in the tumour microenvironment the immune suppressor cells also bring in autophagy in different pathway regulations either helping or opposing the whole carcinogenesis process. Macrophages, T cells, B cells, dendritic cells (DCs), neutrophils, and fibroblasts show involvement of autophagy in their differentiation and development in the tumor microenvironment (TME). Here, this extensive review for the first time tries to bring under a single canopy, several recent examples of autophagy-mediated immune regulations and autophagy-mediated epigenetically regulated drug resistance in different types of cancers.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Rajdeep Roy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Zhao Y, Klionsky DJ, Wang X, Huang Q, Deng Z, Xiang J. The Estrogen-Autophagy Axis: Insights into Cytoprotection and Therapeutic Potential in Cancer and Infection. Int J Mol Sci 2024; 25:12576. [PMID: 39684286 PMCID: PMC11641569 DOI: 10.3390/ijms252312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective approach to manipulating autophagy, with ongoing debates about whether its inhibition or stimulation is preferable for managing these complex conditions. One critical factor contributing to the variability in treatment responses for both cancers and infectious diseases is estrogen, a hormone known for its diverse biological effects. Given the strong correlations observed between estrogen signaling and autophagy, this review seeks to summarize the intricate molecular mechanisms that underlie the dual cytoprotective effects of estrogen signaling in conjunction with autophagy. We highlight recent findings from studies that involve various ligands, disease contexts, and cell types, including immune cells. Furthermore, we discuss several factors that regulate autophagy in the context of estrogen's influence. Ultimately, we propose a hypothetical model to elucidate the regulatory effects of the estrogen-autophagy axis on cell fate. Understanding these interactions is crucial for advancing our knowledge of related diseases and facilitating the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Mary Sue Coleman Hall, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA;
| | - Xin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Qiaoying Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.Z.); (X.W.); (Q.H.); (Z.D.)
| |
Collapse
|
4
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Faridová AT, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024; 103:112-127. [PMID: 39134012 PMCID: PMC11793102 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Zamanian MY, Golmohammadi M, Nili-Ahmadabadi A, Alameri AA, Al-Hassan M, Alshahrani SH, Hasan MS, Ramírez-Coronel AA, Qasim QA, Heidari M, Verma A. Targeting autophagy with tamoxifen in breast cancer: From molecular mechanisms to targeted therapy. Fundam Clin Pharmacol 2023; 37:1092-1108. [PMID: 37402635 DOI: 10.1111/fcp.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | | | - Mohammed Sami Hasan
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research Group in Educational Statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagari, India
| |
Collapse
|
7
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
8
|
Tiberio P, Gaudio M, Belloni S, Pindilli S, Benvenuti C, Jacobs F, Saltalamacchia G, Zambelli A, Santoro A, De Sanctis R. Unlocking the Potential of Circulating miRNAs in the Breast Cancer Neoadjuvant Setting: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3424. [PMID: 37444533 DOI: 10.3390/cancers15133424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The potential role of circulating microRNAs (miRNAs) as biomarkers in breast cancer (BC) management has been widely reported. However, the numerous discrepancies between studies in this regard hinders the implementation of circulating miRNAs in routine clinical practice. In the context of BC patients undergoing neoadjuvant chemotherapy (NAC), the possibility of predicting NAC response may lead to prognostic improvements by individualizing post-neoadjuvant therapy. In this context, the present meta-analysis aims to clarify circulating miRNAs' predictive role with respect to NAC response among BC patients. We conducted a comprehensive literature search on five medical databases until 16 February 2023. We pooled the effect sizes of each study by applying a random-effects model. Cochran's Q test (p-level of significance set at 0.05) scores and I2 values were assessed to determine between-study heterogeneity. The PROBAST (Prediction Model Risk of Bias Assessment Tool) tool was used to evaluate the selected studies' risk of bias. Overall, our findings support the hypothesis that circulating miRNAs, specifically miR-21-5p and miR-155-5p, may act as predictive biomarkers in the neoadjuvant setting among BC patients. However, due to the limited number of studies included in this meta-analysis and the high degrees of clinical and statistical heterogeneity, further research is required to confirm the predictive power of circulating miR-21-5p and miR-155-5p.
Collapse
Affiliation(s)
- Paola Tiberio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Mariangela Gaudio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Silvia Belloni
- Educational and Research Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Sebastiano Pindilli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Chiara Benvenuti
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Flavia Jacobs
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giuseppe Saltalamacchia
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
9
|
Singh S, Saini H, Sharma A, Gupta S, Huddar VG, Tripathi R. Breast cancer: miRNAs monitoring chemoresistance and systemic therapy. Front Oncol 2023; 13:1155254. [PMID: 37397377 PMCID: PMC10312137 DOI: 10.3389/fonc.2023.1155254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
With a high mortality rate that accounts for millions of cancer-related deaths each year, breast cancer is the second most common malignancy in women. Chemotherapy has significant potential in the prevention and spreading of breast cancer; however, drug resistance often hinders therapy in breast cancer patients. The identification and the use of novel molecular biomarkers, which can predict response to chemotherapy, might lead to tailoring breast cancer treatment. In this context, accumulating research has reported microRNAs (miRNAs) as potential biomarkers for early cancer detection, and are conducive to designing a more specific treatment plan by helping analyze drug resistance and sensitivity in breast cancer treatment. In this review, miRNAs are discussed in two alternative ways-as tumor suppressors to be used in miRNA replacement therapy to reduce oncogenesis and as oncomirs to lessen the translation of the target miRNA. Different miRNAs like miR-638, miR-17, miR-20b, miR-342, miR-484, miR-21, miR-24, miR-27, miR-23 and miR-200 are involved in the regulation of chemoresistance through diverse genetic targets. For instance, tumor-suppressing miRNAs like miR-342, miR-16, miR-214, and miR-128 and tumor-promoting miRNAs like miR101 and miR-106-25 cluster regulate the cell cycle, apoptosis, epithelial to mesenchymal transition and other pathways to impart breast cancer drug resistance. Hence, in this review, we have discussed the significance of miRNA biomarkers that could assist in providing novel therapeutic targets to overcome potential chemotherapy resistance to systemic therapy and further facilitate the design of tailored therapy for enhanced efficacy against breast cancer.
Collapse
Affiliation(s)
- Shivam Singh
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Heena Saini
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - V. G. Huddar
- Department of Kaya Chikitsa (Internal Medicine), All India Institute of Ayurveda (AIIA), New Delhi, India
| | - Richa Tripathi
- Integrated translational Molecular Biology laboratory, Department of Rog Nidan and Vikriti vigyan (Pathology), All India Institute of Ayurveda (AIIA), New Delhi, India
| |
Collapse
|
10
|
Singh T, Kaushik M, Mishra LC, Behl C, Singh V, Tuli HS. Exosomal miRNAs as novel avenues for breast cancer treatment. Front Genet 2023; 14:1134779. [PMID: 37035739 PMCID: PMC10073516 DOI: 10.3389/fgene.2023.1134779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and a leading cause of death in women worldwide. It is a heterogeneous disease, as shown by the gene expression profiles of breast cancer samples. It begins in milk-producing ducts, with a high degree of diversity between and within tumors, as well as among cancer-bearing individuals. The enhanced prevalence of breast cancer is influenced by various hormonal, lifestyle, and environmental factors, and very early onset of the disease correlates strongly with the risk of local and distant recurrence. Many subtypes are difficult to treat with conventional therapeutic modalities, and therefore, optimal management and early diagnosis are the first steps to minimizing the mortality linked with breast cancer. The use of newer methods of nanotechnology extends beyond the concept of synthesizing drug delivery mechanisms into the creation of new therapeutics, such as delivering chemotherapeutics with nanomaterial properties. Exosomes, a class of nanovesicles, are emerging as novel tools for deciphering the patient-specific proteins and biomarkers across different disease models, including breast cancer. In this review, we address the role of exosomal miRNA in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lokesh Chandra Mishra
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Chesta Behl
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Vijay Singh
- Immunology and Infectious Disease Biology Lab, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
11
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Yu Z, Wu Y, Ma Y, Cheng Y, Song G, Zhang F. Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
13
|
Koh MZ, Ho WY, Yeap SK, Ali NM, Yong CY, Boo L, Alitheen NB. Exosomal-microRNA transcriptome profiling of Parental and CSC-like MDA-MB-231 cells in response to cisplatin treatment. Pathol Res Pract 2022; 233:153854. [PMID: 35398617 DOI: 10.1016/j.prp.2022.153854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC, where its effectiveness remains challenged by frequent occurrence of cisplatin resistance. Since acquirement of drug resistance often being associated with presence of cancer stem cells (CSCs), investigation has been conducted, suggesting CSC-like subpopulation to be more resistant to cisplatin than their parental counterpart. On the other hand, plethora evidences showed the transmission of exosomal-miRNAs are capable of promoting drug resistance in breast cancers. In this study, we aim to elucidate the differential expression of exosomal-microRNAs profile and reveal the potential target genes in correlation to cisplatin resistance associated with CSC-like subpopulation by using TNBC cell line (MDA-MB-231). Utilizing next generation sequencing and Nanostring techniques, cisplatin-induced dysregulation of exosomal-miRNAs were evaluated in maximal for CSC-like subpopulation as compared to parental cells. Intriguingly, more oncogenic exosomal-miRNAs profile was detected from treated CSC-like subpopulation, which may correlate to enhancement of drug resistance and maintenance of CSCs. In treated CSC-like subpopulation, unique clusters of exosomal-miRNAs namely miR-221-3p, miR-196a-5p, miR-17-5p and miR-126-3p were predicted to target on six genes (ATXN1, LATS1, GSK3β, ITGA6, JAG1 and MYC), aligned with previous finding which demonstrated dysregulation of these genes in treated CSC-like subpopulation. Our results highlight the potential correlation of exosomal-miRNAs and their target genes as well as novel perspectives of the corresponding pathways that may be essential to contribute to the attenuated cytotoxicity of cisplatin in CSC-like subpopulation.
Collapse
Affiliation(s)
- May Zie Koh
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia.
| | - Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Chean Yeah Yong
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia.
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
14
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Ghafouri-Fard S, Khanbabapour Sasi A, Abak A, Shoorei H, Khoshkar A, Taheri M. Contribution of miRNAs in the Pathogenesis of Breast Cancer. Front Oncol 2021; 11:768949. [PMID: 34804971 PMCID: PMC8602198 DOI: 10.3389/fonc.2021.768949] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer among females. Gene expression profiling methods have shown the deregulation of several genes in breast cancer samples and have confirmed the heterogeneous nature of breast cancer at the genomic level. microRNAs (miRNAs) are among the recently appreciated contributors in breast carcinogenic processes. These small-sized transcripts have been shown to partake in breast carcinogenesis through modulation of apoptosis, autophagy, and epithelial-mesenchymal transition. Moreover, they can confer resistance to chemotherapy. Based on the contribution of miRNAs in almost all fundamental aspects of breast carcinogenesis, therapeutic intervention with their expression might affect the course of this disorder. Moreover, the presence of miRNAs in the peripheral blood of patients potentiates these transcripts as tools for non-invasive diagnosis of breast cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khanbabapour Sasi
- Biochemistry Group, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Khoshkar
- Department of Surgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol 2021; 11:702082. [PMID: 34589423 PMCID: PMC8473733 DOI: 10.3389/fonc.2021.702082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.
Collapse
Affiliation(s)
- Jin-Hai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Shi-Hai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Yang Yu
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Li-Gang Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yingchuan, China
| | - Li-Bin Wang
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
Wan D, Zhang Y, Yu Q, Li F, Zhuo J. 14-3-3ζ promoted invasion and lymph node metastasis of breast invasive ductal carcinoma with HER2 overexpression. Pathol Res Pract 2021; 227:153619. [PMID: 34560418 DOI: 10.1016/j.prp.2021.153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND HER2 was a recognized oncogene that promoted the development and metastasis of breast cancer, but its positive expression rate in invasive ductal carcinoma (IDC) was much lower than that in ductal carcinoma in situ (DCIS). The correlation between the occurrence and development of breast cancer and the amplification and overexpression of HER2 gene alone was still controversial. 14-3-3ζ had a strong protein binding ability and a variety of functions, mainly through the interaction with other proteins to exert its unique biological activities. However, influence and interaction relationship of the two proteins on the development of IDC was not clear. Furthermore, the mutual effect mechanism of synergy effect on lymph node metastasis of IDC was not known well too. METHODS Immunohistochemistry experiment was performed to detect expression status of 14-3-3ζ, HER2, TGF-β, p53 and Gli2 in paraffin-embedded samples respectively, including 30 cases of normal breast tissue, 30 cases of usual ductal hyperplasia (UDH), 30 cases of atypical ductal hyperplasia (ADH), 30 cases of DCIS and 120 cases of IDC. RESULTS The positive expression rates of 14-3-3ζ/HER2 in Normal group, UDH group, ADH group, DCIS group and IDC group were 30%/0.00%, 26.7%/0.00%, 53.3%/33.3%, 46.7%/53.3% and 50%/24.2%, respectively. Compared with Normal group or UDH group, the expression of 14-3-3ζ was significantly increased in ADH, DCIS and IDC groups. 14-3-3ζ was overexpressed in only 4 of the 16 DCIS cases with HER2 overexpression (25.0%, 4/16), but it was overexpressed in 7 of the 9 IDC cases with DCIS (77.8%, 7/9). Among HER2 overexpression cases, 14-3-3ζ overexpression was significantly different between DCIS group and IDC with DCIS group (P = 0.017). In 18 IDC cases with lymph node metastasis and HER2 overexpression, 14-3-3ζ was overexpressed in 15 cases (83.3%, 15/18), while in the 11 IDC cases without lymph node metastasis, 14-3-3ζ and HER2 were overexpressed in only 5 cases (45.5%, 5/11). Co-overexpression of 14-3-3ζ and HER2 was positively correlated with occurrence of lymph node metastasis (P = 0.048). TGF-β was overexpressed in both precancerous lesion group and IDC group compared with normal group. Compared with the IDC group without lymph node metastasis, TGF-β expression was significantly increased in the IDC group with lymph node metastasis (P = 0.015). In IDC cases with 14-3-3ζ and HER2 co-overexpression, the expression of p53 in IDC with lymph node metastasis was significantly decreased (P = 0.010), while the expression of Gli2 was significantly increased compared with IDC cases without lymph node metastasis (P = 0.038). The co-overexpression of 14-3-3ζ and HER2 was positively correlated with ER negative expression (P < 0.001) and PR negative expression (P = 0.038), respectively. CONCLUSION 14-3-3ζ synergistic with HER2 could promote the occurrence and development of breast IDC and induce the lymph node metastasis of IDC, suggesting that combined overexpression of 14-3-3ζ and HER2 would lead to higher invasion and metastasis risk of breast cancer. It was speculated that the combined detection of 14-3-3ζ and HER2 would be one of the key factors affecting the clinical treatment decision and prognosis.
Collapse
Affiliation(s)
- Dan Wan
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Yutao Zhang
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China.
| | - Qin Yu
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Feng Li
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Junju Zhuo
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| |
Collapse
|
19
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
21
|
Luo Y, Qu X, Kan D, Cai B. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered 2021; 12:6967-6980. [PMID: 34516344 PMCID: PMC8806603 DOI: 10.1080/21655979.2021.1975018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MicroRNA-451a (miR-451a) has been implicated in the initiation and progression of multiple cancers. However, the regulatory mechanisms underlying its function in nasopharyngeal carcinoma (NPC) are poorly understood. Thus, we investigated in detail the role of the microRNA-451a/chromosome segregation 1-like (miR-45a/CSE1L) axis and its regulatory mechanism in NPC. We examined the levels of miR-451a and CSE1L in NPC, and assessed the effects of miR-451a and CSE1L on NPC by cell functional experiments. Furthermore, we elucidated the direct regulatory effect of miR-451a on CSE1L by the luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation and validated our observations by calculating the Pearson's correlation coefficient. We found that miR-451a was down-regulated in NPC cells, and its over-expression attenuated cell proliferation, migration, and invasion, and tumor growth in 5-8 F and SUNE-1 cells and promoted apoptosis. Moreover, CSE1L was the direct gene target of miR-451a, and its over-expression abrogated miR-451a-dependent inhibition of malignancy in 5-8 F and SUNE-1 cells. The Pearson's correlation coefficient indicated a negative correlation between CSE1L and miR-451a. miR-451a serves as a tumor suppressor and targets CSE1L. miR-451a suppresses CSE1L expression, thereby reducing proliferation, invasion, and migration and increasing apoptosis of NPC cells.
Collapse
Affiliation(s)
- Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
23
|
Zhu HY, Gao YJ, Wang Y, Liang C, Zhang ZX, Chen Y. LncRNA CRNDE promotes the progression and angiogenesis of pancreatic cancer via miR-451a/CDKN2D axis. Transl Oncol 2021; 14:101088. [PMID: 33882369 PMCID: PMC8081992 DOI: 10.1016/j.tranon.2021.101088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
CRNDE was up-regulated in pancreatic cancer. CRNDE promoted the progression and angiogenesis of pancreatic cancer. CRNDE functioned as a sponge for miR-451a in pancreatic cancer cells. MiR-451a directly interacted with CDKN2D and regulated CDKN2D expression. CRNDE regulated pancreatic cancer progression via miR-451a/CDKN2D axis.
Background The lncRNA colorectal neoplasia differentially expressed (lncRNA CRNDE) has been reported to play a pivotal role in various cancers. However, the expression and function of CRNDE in pancreatic cancer remain unclear. The objective of this study was to investigate the effects of CRNDE on pancreatic cancer and the underlying mechanisms. Methods The expression of CRNDE in pancreatic cancer tissues and cell lines was determined by RT-qPCR. Proliferation and angiogenesis were detected by MTT, colony formation, transwell and tube formation assays in vitro and in vivo. ELISA assay was used to detect the secretion of VEGFA. IHC was performed to test the expression levels of Ki67 and CD31. The binding sites between CRNDE, CDKN2D and miR-451a were predicted by bioinformatics analysis. Dual luciferase reporter and RNA immunoprecipitation assays were conducted to confirm the interaction with each other. Results The results showed that CRNDE was significantly up-regulated in pancreatic cancer tissues as well as cell lines. CRNDE overexpression promoted the progression and angiogenesis of pancreatic cancer cells in vitro and in vivo. Moreover, we identified that CRNDE functioned as a sponge for miR-451a and CRNDE overexpression inhibited the expression of miR-451a. Furthermore, we confirmed that miR-451a directly interacted with CDKN2D and negatively regulated CDKN2D expression. In addition, CRNDE was found to positively regulate CDKN2D expression and mediate pancreatic cancer cell proliferation and angiogenesis through miR-451a/CDKN2D axis. Conclusion CRNDE modulates cell proliferation and angiogenesis via miR-451a/CDKN2D axis in pancreatic cancer, which provides a potential therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hong-Yan Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China; Department of General Surgery, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, P. R. China; Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Yu-Jie Gao
- Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen 518055, Guangdong Province, China
| | - Yong Wang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Chi Liang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| | - Yu Chen
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China.
| |
Collapse
|
24
|
Tang LB, Ma SX, Chen ZH, Huang QY, Wu LY, Wang Y, Zhao RC, Xiong LX. Exosomal microRNAs: Pleiotropic Impacts on Breast Cancer Metastasis and Their Clinical Perspectives. BIOLOGY 2021; 10:biology10040307. [PMID: 33917233 PMCID: PMC8067993 DOI: 10.3390/biology10040307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 01/07/2023]
Abstract
As a major threat factor for female health, breast cancer (BC) has garnered a lot of attention for its malignancy and diverse molecules participating in its carcinogenesis process. Among these complex carcinogenesis processes, cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis are the major causes for the occurrence of metastasis and chemoresistance which account for cancer malignancy. MicroRNAs packaged and secreted in exosomes are termed "exosomal microRNAs (miRNAs)". Nowadays, more researches have uncovered the roles of exosomal miRNAs played in BC metastasis. In this review, we recapitulated the dual actions of exosomal miRNAs exerted in the aggressiveness of BC by influencing migration, invasion, and distant metastasis. Next, we presented how exosomal miRNAs modify angiogenesis and stemness maintenance. Clinically, several exosomal miRNAs can govern the transformation between drug sensitivity and chemoresistance. Since the balance of the number and type of exosomal miRNAs is disturbed in pathological conditions, they are able to serve as instructive biomarkers for BC diagnosis and prognosis. More efforts are needed to connect the theoretical studies and clinical traits together. This review provides an outline of the pleiotropic impacts of exosomal miRNAs on BC metastasis and their clinical implications, paving the way for future personalized drugs.
Collapse
Affiliation(s)
- Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Shu-Xin Ma
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Zhuo-Hui Chen
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Long-Yuan Wu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
25
|
Autophagy Triggers Tamoxifen Resistance in Human Breast Cancer Cells by Preventing Drug-Induced Lysosomal Damage. Cancers (Basel) 2021; 13:cancers13061252. [PMID: 33809171 PMCID: PMC7999102 DOI: 10.3390/cancers13061252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endocrine therapy with tamoxifen or other endocrine drugs represents the standard treatment for estrogen receptor-positive breast cancer. In spite of effectiveness of this therapy, onset of drug resistance worsens the prognosis of about 30% of patients. Autophagy has recently been proposed as a key player of drug resistance, but the underlying mechanisms are not completely understood. In this research, the authors investigate how autophagy triggers drug resistance in breast cancer cells. The results evidence that tamoxifen affects lysosome integrity, which suggests that this effect may contribute to the anticancer activity of this drug. Activation of autophagy and overexpression of iron-binding proteins synergize in protecting the lysosomal compartment, restraining drug effectiveness in breast cancer cells. According to these results, tamoxifen-resistant cells show an increased autophagic flux and overexpress iron-binding proteins. These findings indicate that screening for the level of iron-binding proteins may help to identify patients at risk for developing drug resistance. Abstract Endocrine resistance is a major complication during treatment of estrogen receptor-positive breast cancer. Although autophagy has recently gained increasing consideration among the causative factors, the link between autophagy and endocrine resistance remains elusive. Here, we investigate the autophagy-based mechanisms of tamoxifen resistance in MCF7 cells. Tamoxifen (Tam) triggers autophagy and affects the lysosomal compartment of MCF7 cells, such that activated autophagy supports disposal of tamoxifen-damaged lysosomes by lysophagy. MCF7 cells resistant to 5 µM tamoxifen (MCF7-TamR) have a higher autophagic flux and an enhanced resistance to Tam-induced lysosomal alterations compared to parental cells, which suggests a correlation between the two events. MCF7-TamR cells overexpress messenger RNAs (mRNAs) for metallothionein 2A and ferritin heavy chain, and they are re-sensitized to Tam by inhibition of autophagy. Overexpressing these proteins in parental MCF7 cells protects lysosomes from Tam-induced damage and preserves viability, while inhibiting autophagy abrogates lysosome protection. Consistently, we also demonstrate that other breast cancer cells that overexpress selected mRNAs encoding iron-binding proteins are less sensitive to Tam-induced lysosomal damage when autophagy is activated. Collectively, our data demonstrate that autophagy triggers Tam resistance in breast cancer cells by favoring the lysosomal relocation of overexpressed factors that restrain tamoxifen-induced lysosomal damage.
Collapse
|
26
|
Xiong X, Dang W, Luo R, Long Y, Tong C, Yuan L, Liu B. A graphene-based fluorescent nanoprobe for simultaneous imaging of dual miRNAs in living cells. Talanta 2020; 225:121947. [PMID: 33592702 DOI: 10.1016/j.talanta.2020.121947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regarded as important biomarkers for disease diagnostics and therapeutics due to their significant regulatory roles in physiologic and pathologic processes. Herein, a versatile nanoprobe based on reduced graphene oxide (rGO) and nucleic acid (DNA) probe was prepared for simultaneously visualize miR-451a and miR-214-3p in living cells. In vitro experiments demonstrated that the nanoprobe exhibits excellent selectivity and outstanding sensitivity as low as 1 nM towards miR-451a and miR-214-3p. Moreover, the detection signals of miRNAs have good linearity in their respective concentration ranges (miR-451a: 1-100 nM, Y1 = 9.3062X1+114.85 (R2 = 0.9965). miR-214-3p: 1-200 nM, Y2 = 1.4424X2+91.312 (R2 = 0.9961)). Finally, simultaneous dual-color imaging of miR-451a and miR-214-3p in human breast cancer cells (MDA-MB-231) was realized by exploiting the P1&P2@rGO nanoprobe. In summary, this simple and effective strategy provides a general sensing platform for highly sensitive detection and simultaneous imaging of dual miRNAs in living cells.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruxin Luo
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Liqin Yuan
- Department of General Surgery, Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
27
|
Gao Y, Li X, Zeng C, Liu C, Hao Q, Li W, Zhang K, Zhang W, Wang S, Zhao H, Fan D, Li M, Zhang Y, Zhang W, Zhang C. CD63 + Cancer-Associated Fibroblasts Confer Tamoxifen Resistance to Breast Cancer Cells through Exosomal miR-22. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002518. [PMID: 33173749 PMCID: PMC7610308 DOI: 10.1002/advs.202002518] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 05/21/2023]
Abstract
Tamoxifen remains the most effective treatment for estrogen receptor α (ERα)-positive breast cancer. However, many patients still develop resistance to tamoxifen in association with metastatic recurrence, which presents a tremendous clinical challenge. To better understand tamoxifen resistance from the perspective of the tumor microenvironment, the whole microenvironment landscape is charted by single-cell RNA sequencing and a new cancer-associated fibroblast (CAF) subset, CD63+ CAFs, is identified that promotes tamoxifen resistance in breast cancer. Furthermore, it is discovered that CD63+ CAFs secrete exosomes rich in miR-22, which can bind its targets, ERα and PTEN, to confer tamoxifen resistance on breast cancer cells. Additionally, it is found that the packaging of miR-22 into CD63+ CAF-derived exosomes is mediated by SFRS1. Furthermore, CD63 induces STAT3 activation to maintain the phenotype and function of CD63+ CAFs. Most importantly, the pharmacological blockade of CD63+ CAFs with a CD63-neutralizing antibody or cRGD-miR-22-sponge nanoparticles enhances the therapeutic effect of tamoxifen in breast cancer. In summary, the study reveals a novel subset of CD63+ CAFs that induces tamoxifen resistance in breast cancer via exosomal miR-22, suggesting that CD63+ CAFs may be a novel therapeutic target to enhance tamoxifen sensitivity.
Collapse
Affiliation(s)
- Yuan Gao
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xiaoju Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Cheng Zeng
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
- Institute of Material MedicalSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Chenlin Liu
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Qiang Hao
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Weina Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Kuo Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wangqian Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Shuning Wang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Huadong Zhao
- Department of General SurgeryTangdu HospitalThe Fourth Military Medical UniversityXi'an710038P. R. China
| | - Dong Fan
- Department of General SurgeryTangdu HospitalThe Fourth Military Medical UniversityXi'an710038P. R. China
| | - Meng Li
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Wei Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Cun Zhang
- The State Key Laboratory of Cancer BiologyBiotechnology CenterSchool of PharmacyThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
28
|
Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020; 36:517-536. [PMID: 32875398 DOI: 10.1007/s10565-020-09553-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Chemoresistance is a complex phenomenon responsible for failure in response to chemotherapy agents and more than 90% of deaths in cancer patients. MicroRNAs (miRNAs), as a subgroup of non-coding RNAs with lengths between 21 and 25 nucleotides, are involved in various cancer processes like chemoresistance via interacting with their target mRNAs and suppressing their expression. Autophagy is a greatly conserved procedure involving the lysosomal degradation of cytoplasmic contents and organelles to deal with environmental stresses like hypoxia and starvation. Autophagy contributes to response to chemotherapy agents: autophagy can act as a protective mechanism for mediating the resistance in response to chemotherapy or can induce autophagic cell death and mediate the sensitivity to chemotherapy. On the other hand, one of the processes targeted by microRNAs in the regulation of chemoresistance is autophagy. Hence, we studied the literatures on chemoresistance mechanisms, the miRNAs' role in cancer, and the miRNAs' role in chemoresistance by modulating autophagy. Graphical Abstract.
Collapse
|
29
|
miR-451a suppresses the development of breast cancer via targeted inhibition of CCND2. Mol Cell Probes 2020; 54:101651. [PMID: 32828867 DOI: 10.1016/j.mcp.2020.101651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/22/2023]
Abstract
Extensive research has indicated that miRNAs are crucial for the occurrence and progression of cancers. miR-451a, involved in breast cancer (BC), is one of the miRNAs. This study focused on the mechanism by which miR-451a regulates BC. The levels of miR-451a in BC tissues and cell lines were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan‒Meier analysis showed that this was intimately related to the patient's overall survival rate. Functional experiments revealed the negative effects of miR-451a on the abilities of BC cells to multiply (tested by Cell Counting Kit-8), migrate (tested by wound healing assay), and invade (tested by Transwell assay) and its positive effects on apoptosis (tested by flow cytometry). Western blotting indicated that the expression of tumor-related proteins was affected by miR-451a. Moreover, in vivo experiments suggested that tumor growth was clearly restrained by an miR-451a agonist in a xenograft tumor model. Bioinformatic analysis indicated that miR-451a directly targeted Cyclin D2 (CCND2), as demonstrated by the luciferase reporter assay. An opposite change in the level of CCND2 and miR-451a in BC was indicated by qRT-PCR, western blotting, and immunohistochemistry. Subsequently, functional experiments and western blotting analysis confirmed that CCND2 accelerated BC progression, which was regulated by miR-451a. Cumulatively, research on miR-451a may be valuable for BC treatment.
Collapse
|
30
|
Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor. Cancers (Basel) 2020; 12:cancers12082162. [PMID: 32759784 PMCID: PMC7465269 DOI: 10.3390/cancers12082162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.
Collapse
|
31
|
Wang Q, Shang J, Zhang Y, Zhou Y, Tang L. MiR-451a restrains the growth and metastatic phenotypes of papillary thyroid carcinoma cells via inhibiting ZEB1. Biomed Pharmacother 2020; 127:109901. [DOI: 10.1016/j.biopha.2020.109901] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
|
32
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
33
|
Liu Y, Yang HZ, Jiang YJ, Xu LQ. miR-451a is downregulated and targets PSMB8 in prostate cancer. Kaohsiung J Med Sci 2020; 36:494-500. [PMID: 32128987 DOI: 10.1002/kjm2.12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 02/09/2020] [Indexed: 01/05/2023] Open
Abstract
Abnormal expression of microRNAs (miRNAs) is frequently occurred in prostate cancer (PCa). This study was aimed to investigate the biological roles of miR-451a in PCa. Quantitative real-time PCR (qRT-PCR) and Western blot were employed to investigate the expression levels of miR-451a and proteasome (prosome, macropain) subunit, beta type, 8 (PSMB8) in PCa cell lines. Luciferase activity reporter assay was used to verify the connection between miR-451a and PSMB8. in vitro functional experiments were performed to measure the effects of miR-451a or PSMB8 on PCa cell proliferation, colony formation ability, cell invasion, and cell apoptosis. miR-451a expression was downregulated, whereas PSMB8 expression was upregulated in PCa cell lines. Luciferase activity reporter assay confirmed the direct connection between miR-451a and PSMB8. Overexpression of miR-451a inhibits PCa cell proliferation, colony formation, cell invasion and promotes cell apoptosis, while the overexpression of PSMB8 caused the opposite effects. Moreover, rescue experiments confirmed PSMB8 was a functional target of miR-451a. In conclusion, this study provides novel insights into the role of miR-451a in PCa, and the results demonstrated miR-451a could inhibit PCa progression by targeting PSMB8.
Collapse
Affiliation(s)
- Yun Liu
- Department of Urinary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Huan-Zhi Yang
- Department of Neurology, Central Hospital of Binzhou, Binzhou, Shandong, People's Republic of China
| | - Yong-Jun Jiang
- Department of Urinary Surgery, The Third People's Hospital of LinYi, Linyi, Shandong, People's Republic of China
| | - Li-Qi Xu
- Department of Urologic Surgery, No. 906 Hospital of PLA, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Gan Y, Ye F, He XX. The role of YWHAZ in cancer: A maze of opportunities and challenges. J Cancer 2020; 11:2252-2264. [PMID: 32127952 PMCID: PMC7052942 DOI: 10.7150/jca.41316] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAZ (also named 14-3-3ζ) is a central hub protein for many signal transduction pathways and plays a significant role in tumor progression. Accumulating evidences have demonstrated that YWHAZ is frequently up-regulated in multiple types of cancers and acts as an oncogene in a wide range of cell activities including cell growth, cell cycle, apoptosis, migration, and invasion. Moreover, YWHAZ was reported to be regulated by microRNAs (miRNAs) or long non-coding RNAs and exerted its malignant functions by targeting downstream molecules like protein kinase, apoptosis proteins, and metastasis-related molecules. Additionally, YWHAZ may be a potential biomarker of diagnosis, prognosis and chemoresistance in several cancers. Targeting YWHAZ by siRNA, shRNA or miRNA was reported to have great help in suppressing malignant properties of cancer cells. In this review, we perform literature and bioinformatics analysis to reveal the oncogenic role and molecular mechanism of YWHAZ in cancer, and discuss the potential clinical applications of YWHAZ concerning diagnosis, prognosis, and therapy in malignant tumors.
Collapse
Affiliation(s)
- Yun Gan
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Long X, Shi Y, Ye P, Guo J, Zhou Q, Tang Y. MicroRNA-99a Suppresses Breast Cancer Progression by Targeting FGFR3. Front Oncol 2020; 9:1473. [PMID: 32038996 PMCID: PMC6993250 DOI: 10.3389/fonc.2019.01473] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs have been implicated in acting as oncogenes or anti-oncogenes in breast cancer by regulating diverse cellular pathways. In the present study, we investigated the effects of miR-99a on cell biological processes in breast cancer. Breast cancer cells were transfected with a lentivirus that expressed miR-99a or a scramble control sequence. Functional experiments showed that miR-99a reduced breast cancer cell proliferation, invasion and migration. Tumor xenograft experiment suggested miR-99a overexpression inhibited breast cancer cell proliferation in vivo. The dual luciferase assay revealed that miR-99a directly targets FGFR3 by binding its 3′ UTR in breast cancer. miR-99a was strongly down-regulated in breast tumor and FGFR3 was significantly up-regulated in breast tumor. FGFR3 silencing inhibited proliferation, migration and invasion of breast cancer cells. Deep sequencing indicated that miR-99a overexpression regulates multiple signaling pathways and triggers the alteration of the whole transcriptome. We constructed correlated expression networks based on circRNA/miRNA and lncRNA/miRNA competing endogenous RNAs regulation and miRNA-mRNA interaction, which provided new insights into the regulatory mechanism of miR-99a. In conclusion, these results suggest that the miR-99a/FGFR3 axis is an important tumor regulator in breast cancer and might have potential as a therapeutic target.
Collapse
Affiliation(s)
- Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Shi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yueting Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Lu XD, Han WX, Liu YX. Suppression of miR-451a accelerates osteogenic differentiation and inhibits bone loss via Bmp6 signaling during osteoporosis. Biomed Pharmacother 2019; 120:109378. [PMID: 31541885 DOI: 10.1016/j.biopha.2019.109378] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022] Open
Abstract
Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (μCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.
Collapse
Affiliation(s)
- Xiang-Dong Lu
- Department of Orthopedics, The Second Hospital of Shan Xi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Wen-Xing Han
- Department of Orthopedics Dept. Unit 6, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xiong Liu
- Departmentof Spinal Surgery, Affiliated Hospital of Yan'anUniversity, Yan'anCity, Shaanxi Province, 716000, China.
| |
Collapse
|
37
|
Li J, Tian T, Zhou X. The role of exosomal shuttle RNA (esRNA) in lymphoma. Crit Rev Oncol Hematol 2019; 137:27-34. [DOI: 10.1016/j.critrevonc.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
|
38
|
Zhao S, Li B, Li C, Gao H, Miao Y, He Y, Wang H, Gong L, Li D, Zhang Y, Feng J. The Apoptosis Regulator 14-3-3η and Its Potential as a Therapeutic Target in Pituitary Oncocytoma. Front Endocrinol (Lausanne) 2019; 10:797. [PMID: 31849836 PMCID: PMC6893364 DOI: 10.3389/fendo.2019.00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/01/2019] [Indexed: 11/24/2022] Open
Abstract
The 14-3-3 protein family has attracted much attention in research into the pathogenesis of human tumors because of its involvement in tumorigenesis. In previous studies, we found that 14-3-3η was highly expressed in pituitary oncocytoma. However, the mechanism by which 14-3-3η regulates tumorigenesis in pituitary oncocytoma is unclear. 14-3-3η-binding proteins were investigated in pituitary oncocytoma by immunoprecipitation and proteomic analysis. A total of 443 proteins were identified as 14-3-3η binding proteins. The interactions of 14-3-3η and its binding partners were identified by a network analysis using the STRING database. The network included 433 nodes and 564 edges. PRAS40 (AKT1S1) was a binding protein of 14-3-3η and showed experimental interactions with 14-3-3η in the STRING database. The combined score was 0.407, which suggested a functional link. The 443 binding proteins of 14-3-3η showed enriched molecular signatures in GSEA and GO analysis. PRAS40 (AKT1S1) was enriched in the mTOR signaling pathway. Western blot analysis showed that the relative expression of p-PRAS40 (T246)/PRAS40 was significantly higher in pituitary oncocytoma than in normal pituitary tissues (p < 0.05). R18, a 14-3-3 protein inhibitor, inhibited MMQ cell proliferation after treatment with 8 μM R18 for 48 h compared to the control group (p < 0.01). These results suggest that 14-3-3η may be involved in promoting tumorigenesis in pituitary oncocytoma by interacting with PRAS40 (T246) via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Sida Zhao
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- *Correspondence: Sida Zhao
| | - Bin Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhou Miao
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yue He
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hongyun Wang
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Gong
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dan Li
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Medical Association, Beijing, China
| | - Jie Feng
- Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Jie Feng
| |
Collapse
|
39
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
41
|
Abstract
Macroautophagy/autophagy is vital for intracellular quality control and homeostasis. Therefore, careful regulation of autophagy is very important. In the past 10 years, a number of studies have reported that estrogenic effectors affect autophagy. However, some results, especially those regarding the modulatory effect of 17β-estradiol (E2) on autophagy seem inconsistent. Moreover, several clinical trials are already in place combining both autophagy inducers and autophagy inhibitors with endocrine therapies for breast cancer. Not all patients experience benefit, which further confuses and complicates our understanding of the main effects of autophagy in estrogen-related cancer. In view of the importance of the crosstalk between estrogen signaling and autophagy, this review summarizes the estrogenic effectors reported to affect autophagy, subcellular distribution and translocation of estrogen receptors, autophagy-targeted transcription factors (TFs), miRNAs, and histone modifications regulated by E2. Upon stimulation with estrogen, there will always be opposing functional actions, which might occur between different receptors, receptors on TFs, TFs on autophagy genes, or even histone modifications on transcription. The huge signaling network downstream of estrogen can promote autophagy and reduce overstimulated autophagy at the same time, which allows autophagy to be regulated by estrogen in a restricted range. To help understand how the estrogenic regulation of autophagy affects cell fate, a hypothetical model is presented here. Finally, we discuss some exciting new directions in the field. We hope this might help to better understand the multiple associations between estrogen and autophagy, the pathogenic mechanisms of many estrogen-related diseases, and to design novel and efficacious therapeutics. Abbreviations: AP-1, activator protein-1; HATs, histone acetyltransferases; HDAC, histone deacetylases; HOTAIR, HOX transcript antisense RNA.
Collapse
Affiliation(s)
- Jin Xiang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Xiang Liu
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Jing Ren
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Kun Chen
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Hong-Lu Wang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Yu-Yang Miao
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Miao-Miao Qi
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| |
Collapse
|
42
|
miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J Neurooncol 2018; 138:499-508. [DOI: 10.1007/s11060-018-2835-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
43
|
Li W, Xu L, Che X, Li H, Zhang Y, Song N, Wen T, Hou K, Yang Y, Zhou L, Xin X, Xu L, Zeng X, Shi S, Liu Y, Qu X, Teng Y. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells. BMC Cancer 2018; 18:507. [PMID: 29720121 PMCID: PMC5930956 DOI: 10.1186/s12885-018-4387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. Methods MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. Results MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Conclusions Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex. Electronic supplementary material The online version of this article (10.1186/s12885-018-4387-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Haizhou Li
- Jinzhou Center Hospital, Jinzhou, 121000, Liaoning, China
| | - Ye Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, 110001, Liaoning, China
| | - Lu Zhou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xing Xin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xue Zeng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Yuee Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
44
|
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018; 11:1529-1541. [PMID: 29593419 PMCID: PMC5865556 DOI: 10.2147/ott.s152462] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance.
Collapse
Affiliation(s)
- Weizi Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Chunli Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Yunjie He
- The First Clinical School of Nanjing Medical University
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Yong Xu
- Nanjing Medical University Affiliated Cancer Hospital.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
45
|
Chen X, Wang YW, Zhu WJ, Li Y, Liu L, Yin G, Gao P. A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer. Hum Pathol 2018; 76:122-132. [PMID: 29555574 DOI: 10.1016/j.humpath.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Recent findings have reported that human microRNAs (miRNAs) could serve as prognostic biomarkers in various cancers. We aimed to identify miRNAs that were associated with lymph node metastasis (LNM) and prognosis in breast cancer patients. A miRNA microarray covering 2019 mature miRNAs was used to identify differentially expressed miRNAs in 9 patients with LNM and 3 patients without LNM. Thirty-five differentially expressed miRNAs were identified, of which 10 significantly were up-regulated, whereas the other 25 were down-regulated in tissues with LNM compared with those without LNM. Seven miRNAs were subjected to quantitative real-time polymerase chain PCR (qRT-PCR) reaction, and 4 miRNAs (miR-191-5p, miR-214-3p, miR-451a, and miR-489) were validated in a total of 159 patients including a training set (n = 64) and a validation set (n = 95). The 4 miRNAs were used to construct a miRNA signature by logistic regression. Risk scores derived from the 4-miRNA signature were calculated to stratify the patients into high- or low-risk groups. Patients with high-risk scores had poorer overall survival and disease-free survival than did those with low-risk scores. The miRNA signature was an independent prognostic factor. MiR-191-5p increased, whereas miR-214-3p, miR-451a, and miR-489 inhibited cell proliferation, migration, and invasion abilities. The 4-miRNA signature may be a reliable prognostic and predictive tool for metastasis and survival in breast cancer patients.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Ya-Wen Wang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Wen-Jie Zhu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Yan Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Lin Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Gang Yin
- Department of Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
46
|
Malhotra A, Jain M, Prakash H, Vasquez KM, Jain A. The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget 2017; 8:110671-110684. [PMID: 29299178 PMCID: PMC5746413 DOI: 10.18632/oncotarget.22577] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
Chemoresistance is one of the major hurdles in the treatment of breast cancer, which limits the effect of both targeted and conventional therapies in clinical settings. Therefore, understanding the mechanisms underpinning resistance is paramount for developing strategies to circumvent resistance in breast cancer patients. Several published reports have indicated that lncRNAs play a dynamic role in the regulation of both intrinsic and acquired chemoresistance through a variety of mechanisms that endow cells with a drug-resistant phenotype. Although a number of lncRNAs have been implicated in chemoresistance of breast cancer, their mechanistic roles have not been systematically reviewed. Thus, here we present a detailed review on the latest research findings and discoveries on the mechanisms of acquisition of chemoresistance in breast cancer related to lncRNAs, and how lncRNAs take part in various cancer signalling pathways involved in breast cancer cells. Knowledge obtained from this review could assist in the development of new strategies to avoid or reverse drug resistance in breast cancer chemotherapy.
Collapse
Affiliation(s)
- Akshay Malhotra
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Center for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, TX, USA
| | - Aklank Jain
- Center for Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
47
|
Chang C, Liu J, He W, Qu M, Huang X, Deng Y, Shen L, Zhao X, Guo H, Jiang J, Fu XY, Huang R, Zhang D, Yan J. A regulatory circuit HP1γ/miR-451a/c-Myc promotes prostate cancer progression. Oncogene 2017; 37:415-426. [PMID: 28967902 DOI: 10.1038/onc.2017.332] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Heterochromatin protein 1γ (HP1γ) has been implicated in carcinogenesis of various cancer types. However, the role of HP1γ in prostate cancer (PCa) progression and the underlying molecular mechanisms remain largely unknown. We found that HP1γ is upregulated in PCa and elevated levels of HP1γ in PCa predict poor outcome. In addition, depletion of HP1γ in PCa cells not only repressed proliferation and induced apoptosis but also impaired tumorigenicity. We also found that c-Myc was capable of upregulating HP1γ by directly binding to the E-box element in the first intron of HP1γ gene, and the upregulated HP1γ, in turn, repressed the expression of miR-451a by enhancing H3K9 methylation at the promoter region of miR-451a. Furthermore, reduction of miR-451a significantly reversed HP1γ loss-induced PCa cell apoptosis, whereas miR-451a overexpression repressed cell survival by targeting and downregulating c-Myc. The association among c-Myc, HP1γ and miR-451a was further confirmed in human clinical samples. Therefore, we propose that an HP1γ/miR-451a/c-Myc regulatory circuitry exists in PCa cells and this circuit has a crucial role in PCa progression.
Collapse
Affiliation(s)
- C Chang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - J Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - W He
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - M Qu
- Department of Bioscience and Bioengineering, School of Chemistry and Life Science, Jinling College of Nanjing University, Nanjing, China
| | - X Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - Y Deng
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - L Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China
| | - X Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - H Guo
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - J Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - X Y Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - R Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - D Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - J Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China.,Collaborative Innovation Center of Genetics and Development, Shanghai, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Campos-Parra AD, Mitznahuatl GC, Pedroza-Torres A, Romo RV, Reyes FIP, López-Urrutia E, Pérez-Plasencia C. Micro-RNAs as Potential Predictors of Response to Breast Cancer Systemic Therapy: Future Clinical Implications. Int J Mol Sci 2017; 18:E1182. [PMID: 28574440 PMCID: PMC5486005 DOI: 10.3390/ijms18061182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/24/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022] Open
Abstract
Despite advances in diagnosis and new treatments such as targeted therapies, breast cancer (BC) is still the most prevalent tumor in women worldwide and the leading cause of death. The principal obstacle for successful BC treatment is the acquired or de novo resistance of the tumors to the systemic therapy (chemotherapy, endocrine, and targeted therapies) that patients receive. In the era of personalized treatment, several studies have focused on the search for biomarkers capable of predicting the response to this therapy; microRNAs (miRNAs) stand out among these markers due to their broad spectrum or potential clinical applications. miRNAs are conserved small non-coding RNAs that act as negative regulators of gene expression playing an important role in several cellular processes, such as cell proliferation, autophagy, genomic stability, and apoptosis. We reviewed recent data that describe the role of miRNAs as potential predictors of response to systemic treatments in BC. Furthermore, upon analyzing the collected published information, we noticed that the overexpression of miR-155, miR-222, miR-125b, and miR-21 predicts the resistance to the most common systemic treatments; nonetheless, the function of these particular miRNAs must be carefully studied and further analyses are still necessary to increase knowledge about their role and future potential clinical uses in BC.
Collapse
Affiliation(s)
- Alma D Campos-Parra
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Gerardo Cuamani Mitznahuatl
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Abraham Pedroza-Torres
- Laboratorio de Genomica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
- CATEDRA-CONACyT, Av. De los Insurgente Sur 1582, Col. Crédito Constructor., C.P. 03940 Benito Juárez, Ciudad de México, Mexico.
| | - Rafael Vázquez Romo
- Departamento de Cirugia de Tumores mamarios, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Fany Iris Porras Reyes
- Servicio de Anatomia Patologica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de México, Mexico.
| | - Eduardo López-Urrutia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de Mexico (UNAM), Av. De Los Barrios 1, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, C.P. 54090 Tlalnepantla, México, Mexico.
| |
Collapse
|
49
|
Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-Regulating microRNAs and Cancer. Front Oncol 2017; 7:65. [PMID: 28459042 PMCID: PMC5394422 DOI: 10.3389/fonc.2017.00065] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers’s disease, Parkinson’s disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Yunus Akkoc
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Muhammed Kocak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
50
|
Wu C, Luo J. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway. Med Sci Monit 2016; 22:3860-3867. [PMID: 27765938 PMCID: PMC5077288 DOI: 10.12659/msm.900689] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) UCA1 is an oncogene in breast cancer. The purpose of this study was to investigate the role of UCA1 in tamoxifen resistance of estrogen receptor positive breast cancer cells. Material/Methods Tamoxifen sensitive MCF-7 cells were transfected for UCA1 overexpression, while tamoxifen resistant LCC2 and LCC9 cells were transfected with UCA siRNA for UCA1 knockdown. qRT-PCR was performed to analyze UCA1 expression. CCK-8 assay, immunofluorescence staining of cleaved caspase-9, and flow cytometric analysis of Annexin V/PI staining were used to assess tamoxifen sensitivity. Western blot analysis was performed to detect p-AKT and p-mTOR expression. Results LncRNA UCA1 was significantly upregulated in tamoxifen resistant breast cancer cells compared to tamoxifen sensitive cells. LCC2 and LCC9 cells transfected with UCA1 siRNA had significantly higher ratio of apoptosis after tamoxifen treatment. UCA1 siRNA significantly decreased the protein levels of p-AKT and p-mTOR in LCC2 and LCC9 cells. Enforced UCA1 expression substantially reduced tamoxifen induced apoptosis in MCF-7 cells, while rapamycin treatment abrogated the protective effect of UCA1. Conclusions UCA1 upregulation was associated with tamoxifen resistance in breast cancer. Mechanistically, UCA1 confers tamoxifen resistance to breast cancer cells partly via activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Chihua Wu
- Department of Breast Surgery, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Jing Luo
- Department of Breast Surgery, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| |
Collapse
|