1
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2025; 62:2230-2249. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
2
|
Xu Y, Wang X, Zhou X, Zeng W, Yuan J, Ye J. Multiple strategies enhance the efficacy of MSC-Exos transplantation for spinal cord injury. Exp Neurol 2025; 383:115038. [PMID: 39481515 DOI: 10.1016/j.expneurol.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Spinal cord injury (SCI) is a relatively common and lethal dangerous disease of the central nervous system, for which there is a lack of effective clinical treatments. It has been found that mesenchymal stem cell-derived exosomes (MSC-Exos) play a key role in alleviating SCI through mechanisms such as regulating the microenvironment, promoting angiogenesis, and facilitating axonal regeneration. However, the drawbacks of natural exosomes, such as low yield, weak activity, and low targeting ability, limit their clinical applications. In recent years, MSCs-Exos have gradually become a research hotspot for treating SCI through miRNA modulation, combined hydrogel, and preculture. In addition, exosomes as good biocompatible drugs, nucleic acid, and other delivery carriers have shown a broad application prospect in treating SCI. This article summarizes the pathogenesis of SCI and the research progress of MSC-Exos in the treatment of SCI in recent years, and provides a systematic review of the mechanisms of MSC exosomes and their combination with different modalities in the treatment of SCI.
Collapse
Affiliation(s)
- Yan Xu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Wenhui Zeng
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Jiayi Yuan
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China; Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou 341000, Jiangxi, China; Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, Jiangxi, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
3
|
Zhou Y, Bai Y, Zhang P, Weng P, Xie W. Propofol alleviates spinal cord ischemia-reperfusion injury by preserving PI3K/AKT/GIT1 axis. J Investig Med 2024; 72:705-714. [PMID: 38715211 DOI: 10.1177/10815589241254044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) is a major contributor to neurological damage and mortality associated with spinal cord dysfunction. This study aims to explore the possible mechanism of Propofol and G-protein-coupled receptor-interacting protein 1 (GIT1) in regulating SCIRI in rat models. SCIRI rat models were established and injected with Propofol, over expression of GIT1 (OE-GIT1), or PI3K inhibitor (LY294002). The neurological function was assessed using Tarlov scoring system, and Hematoxylin & Eosin (H&E) staining was applied to observe morphology changes in spinal cord tissues. Cell apoptosis, blood-spinal cord barriers (BSCB) permeability, and inflammatory cytokines were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, evans blue (EB) staining, and enzyme-linked immuno sorbent assay (ELISA), respectively. Reverse transcription-quantitative polymerase chain reaction and western blot were used to detect the expression levels of GIT1, endothelial nitric oxide synthase (eNOS), PI3K/AKT signal pathway and apoptosis-related proteins. SCIRI rats had decreased expressions of GIT1 and PI3K/AKT-related proteins, whose expressions can be elevated in response to Propofol treatment. LY294002 can also decrease GIT1 expression levels in SCIRI rats. Propofol can attenuate neurological dysfunction induced by SCIRI, decrease spinal cord tissue injury and BSCB permeability in addition to suppressing cell apoptosis and inflammatory cytokines, whereas further treatment by LY294002 can partially reverse the protective effect of Propofol on SCIRI. Propofol can activate PI3K/AKT signal pathway to increase GIT1 expression level, thus attenuating SCIRI in rat models.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Yuyan Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Peisen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Peiqing Weng
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Wenxi Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| |
Collapse
|
4
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1979-2001. [PMID: 39280179 PMCID: PMC11372641 DOI: 10.4239/wjd.v15.i9.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation. AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage. METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice. RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA. CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
5
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1978-2000. [DOI: 10.4239/wjd.v15.i9.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.
AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.
METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice.
RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.
CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
6
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Peng W, Xie Y, Liu Y, Xu J, Yuan F, Li C, Qin T, Lu H, Duan C, Hu J. Targeted delivery of CD163 + macrophage-derived small extracellular vesicles via RGD peptides promote vascular regeneration and stabilization after spinal cord injury. J Control Release 2023; 361:750-765. [PMID: 37586563 DOI: 10.1016/j.jconrel.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Targeted delivery of small extracellular vesicles (sEVs) with low immunogenicity and fewer undesirable side effects are needed for spinal cord injury (SCI) therapy. Here, we show that RGD (Arg-Gly-Asp) peptide-decorated CD163+ macrophage-derived sEVs can deliver TGF-β to the neovascular endothelial cells of the injured site and improve neurological function after SCI. CD163+ macrophages are M2 macrophages that express TGF-β and are reported to promote angiogenesis and vascular stabilization in various diseases. Enriched TGF-β EVs were crucial in angiogenesis and tissue repair. However, TGF-β also boosts the formation of fibrous or glial scars, detrimental to neurological recovery. Our results found RGD-modified CD163+ sEVs accumulated in the injured region and were taken up by neovascular endothelial cells. Furthermore, RGD-CD163+ sEVs promoted vascular regeneration and stabilization in vitro and in vivo, resulting in substantial functional recovery post-SCI. These data suggest that RGD-CD163+ sEVs may be a potential strategy for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Gu C, Kong F, Zeng J, Geng X, Sun Y, Chen X. Remote ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in mice by activating NMDAR/AMPK/PGC-1α/SIRT3 signaling. Cell Biosci 2023; 13:57. [PMID: 36927808 PMCID: PMC10018930 DOI: 10.1186/s13578-023-00999-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND To study the protective effects of delayed remote ischemic preconditioning (RIPC) against spinal cord ischemia-reperfusion injury (SCIRI) in mice and determine whether SIRT3 is involved in this protection and portrayed its upstream regulatory mechanisms. METHODS In vivo, WT or SIRT3 global knockout (KO) mice were exposed to right upper and lower limbs RIPC or sham ischemia. After 24 h, the abdominal aorta was clamped for 20 min, then re-perfused for 3 days. The motor function of mice, number of Nissl bodies, apoptotic rate of neurons, and related indexes of oxidative stress in the spinal cord were measured to evaluate for neuroprotective effects. The expression and correlation of SIRT3 and NMDAR were detected by WB and immunofluorescence. In vitro, primary neurons were exacted and OGD/R was performed to simulate SCIRI in vivo. Neuronal damage was assessed by observing neuron morphology, detecting LDH release ratio, and flow cytometry to analyze the apoptosis. MnSOD and CAT enzyme activities, GSH and ROS level were also measured to assess neuronal antioxidant capacity. NMDAR-AMPK-PGC-1α signaling was detected by WB to portray upstream regulatory mechanisms of RIPC regulating SIRT3. RESULTS Compared to the SCIRI mice without RIPC, mice with RIPC displayed improved motor function recovery, a reduced neuronal loss, and enhanced antioxidant capacity. To the contrary, the KO mice did not exhibit any effect of RIPC-induced neuroprotection. Similar results were observed in vitro. Further analyses with spinal cord tissues or primary neurons detected enhanced MnSOD and CAT activities, as well as increased GSH level but decreased MDA or ROS production in the RIPC + I/R mice or NMDA + OGD/R neurons. However, these changes were completely inhibited by the absence of SIRT3. Additionally, NMDAR-AMPK-PGC-1α signaling was activated to upregulate SIRT3 levels, which is essential for RIPC-mediated neuroprotection. CONCLUSIONS RIPC enhances spinal cord ischemia tolerance in a SIRT3-dependent manner, and its induced elevated SIRT3 levels are mediated by the NMDAR-AMPK-PGC-1α signaling pathway. Combined therapy targeting SIRT3 is a promising direction for treating SCIRI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Fanqi Kong
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China. .,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| |
Collapse
|
9
|
Molecular Mechanisms in the Vascular and Nervous Systems following Traumatic Spinal Cord Injury. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010009. [PMID: 36675958 PMCID: PMC9866624 DOI: 10.3390/life13010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Traumatic spinal cord injury (SCI) induces various complex pathological processes that cause physical impairment and psychological devastation. The two phases of SCI are primary mechanical damage (the immediate result of trauma) and secondary injury (which occurs over a period of minutes to weeks). After the mechanical impact, vascular disruption, inflammation, demyelination, neuronal cell death, and glial scar formation occur during the acute phase. This sequence of events impedes nerve regeneration. In the nervous system, various extracellular secretory factors such as neurotrophic factors, growth factors, and cytokines are involved in these events. In the vascular system, the blood-spinal cord barrier (BSCB) is damaged, allowing immune cells to infiltrate the parenchyma. Later, endogenous angiogenesis is promoted during the subacute phase. In this review, we describe the roles of secretory factors in the nervous and vascular systems following traumatic SCI, and discuss the outcomes of their therapeutic application in traumatic SCI.
Collapse
|
10
|
Hou Y, Luo D, Hou Y, Luan J, Zhan J, Chen Z, E S, Xu L, Lin D. Bu Shen Huo Xue decoction promotes functional recovery in spinal cord injury mice by improving the microenvironment to promote axonal regeneration. Chin Med 2022; 17:85. [PMID: 35820953 PMCID: PMC9277908 DOI: 10.1186/s13020-022-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bu-Shen-Huo-Xue (BSHX) decoction has been used in the postoperative rehabilitation of patients with spinal cord injury in China. In the present study, we aim to reveal the bioactive compounds in BSHX decoction and comprehensively explore the effects of BSHX decoction and the underlying mechanism in spinal cord injury recovery. METHODS The main chemical constituents in BSHX decoction were determined by UPLC-MS/MS. SCI mice were induced by a pneumatic impact device at T9-T10 level of the vertebra, and treated with BSHX decoction. Basso-Beattie-Bresnahan (BBB) score, footprint analysis, hematoxylin-eosin (H&E) staining, Nissl staining and a series of immunofluorescence staining were performed to investigate the functional recovery, glial scar formation and axon regeneration after BSHX treatment. Immunofluorescent staining of bromodeoxyuridine (BrdU), neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) was performed to evaluate the effect of BSHX decoction on neural stem cells (NSCs) proliferation and differentiation. RESULTS We found that the main compounds in BSHX decoction were Gallic acid, 3,4-Dihydroxybenzaldehyde, (+)-Catechin, Paeoniflorin, Rosmarinic acid, and Diosmetin. BSHX decoction improved the pathological findings in SCI mice through invigorating blood circulation and cleaning blood stasis in the lesion site. In addition, it reduced tissue damage and neuron loss by inhibiting astrocytes activation, and promoting the polarization of microglia towards M2 phenotype. The functional recovery test revealed that BSHX treatment improved the motor function recovery post SCI. CONCLUSIONS Our study provided evidence that BSHX treatment could improve the microenvironment of the injured spinal cord to promote axonal regeneration and functional recovery in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiyao Luan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zepeng Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Shunmei E
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 55 Neihuan Xi Road, Panyu District, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Liangliang Xu
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China. .,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China. .,Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Hou J, Li H, Xue C, Ma J. Lidocaine relieves spinal cord ischemia-reperfusion injury via long non-coding RNA MIAT-mediated Notch1 downregulation. J Biochem 2022; 171:411-420. [PMID: 34981118 DOI: 10.1093/jb/mvab150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Microglial activation and inflammatory response play a critical role in spinal cord ischemia-reperfusion injury (SCIRI). This study aimed to investigate whether lidocaine relieves SCIRI via modulating MIAT-mediated Notch1 downregulation. Mouse SCIRI was induced by the obstruction of the aortic arch. Lidocaine was injected after reperfusion. Microglial activation and inflammatory response were assessed by Iba1, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) levels. The interaction between MIAT and Notch1 was assessed by RNA pull-down and RNA immunoprecipitation assays. Lidocaine treatment relieved SCIRI by reducing Iba1 and serum TNF-α and IL-1β levels. After lidocaine treatment, MIAT expression was elevated in lipopolysaccharide- (LPS-) induced BV2 cells. The interference of MIAT and the overexpression of MIAT and Notch1 restored TNF-α and IL-1β levels in supernatants. Notch1 protein was existent in MIAT-pull-down compounds, and the expression of MIAT was markedly elevated in Notch1-immunoprecipitants. The overexpression of MIAT markedly promoted the degradation of Notch1 and increased the level of ubiquitin-bound Notch1 complex. The therapeutic effect of lidocaine on SCIRI mice could be reversed by adeno-associated virus-mediated MIAT knockdown. In conclusion, lidocaine treatment relieved SCIRI via inhibiting microglial activation and reducing the inflammatory response. The molecular mechanism was partly through MIAT-mediated Notch1 downregulation.
Collapse
Affiliation(s)
- Junkai Hou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University
| | - Changjiang Xue
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University
| | - Junqi Ma
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University
| |
Collapse
|
12
|
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 2022; 17:194-202. [PMID: 34100456 PMCID: PMC8451579 DOI: 10.4103/1673-5374.314323] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 106 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu-Lu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kai-Min Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran-Ran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Luo D, Li X, Hou Y, Hou Y, Luan J, Weng J, Zhan J, Lin D. Sodium tanshinone IIA sulfonate promotes spinal cord injury repair by inhibiting blood spinal cord barrier disruption in vitro and in vivo. Drug Dev Res 2021; 83:669-679. [PMID: 34842291 DOI: 10.1002/ddr.21898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) leads to microvascular damage and the destruction of the blood spinal cord barrier (BSCB), which can progress into secondary injuries, such as apoptosis and necrosis of neurons and glia, culminating in permanent neurological deficits. BSCB restoration is the primary goal of SCI therapy, although very few drugs can repair damaged barrier structure and permeability. Sodium tanshinone IIA sulfonate (STS) is commonly used to treat cardiovascular disease. However, the therapeutic effects of STS on damaged BSCB during the early stage of SCI remain uncertain. Therefore, we exposed spinal cord microvascular endothelial cells to H2 O2 and treated them with different doses of STS. In addition to protecting the cells from H2 O2 -induced apoptosis, STS also reduced cellular permeability. In the in vivo model of SCI, STS reduced BSCB permeability, relieved tissue edema and hemorrhage, suppressed MMP activation and prevented the loss of tight junction and adherens junction proteins. Our findings indicate that STS treatment promotes SCI recovery, and should be investigated further as a drug candidate against traumatic SCI.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Second College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxian Weng
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Liu B, Zheng W, Dai L, Fu S, Shi E. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell 2021; 74:101678. [PMID: 34823099 DOI: 10.1016/j.tice.2021.101678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
At present, much more studies have focused on the therapeutic effect of exosome-delivered microRNAs on diseases. Previous study has shown that miR-455-5p is downregulated in ischemic stroke, but little is known about the role of exosome-delivered miR-455-5p in spinal cord ischemia reperfusion (SCIR) injury. Herein, we isolated exosomes from bone marrow mesenchymal stem cells (BMSCs) transfected with lentivirus vectors containing miR-455-5p. SCIR rat model was established after the intrathecal injection of exosomes containing miR-455-5p. The expression level of miR-455-5p was downregulated after SCIR, administration of exosomal miR-455-5p enhanced the level of miR-455-5p in the injured spinal cord. Hind-limb motor function scores indicated that exosomal miR-455-5p improved the recovery of hind-limb function of SCIR rats. HE staining and Nissl staining showed that miR-455-5p enriched exosomes reduced histopathological abnormalities after SCIR. Double immunofluorescence staining revealed that exosomes containing miR-455-5p reduced apoptosis of neurons, and activated autophagy in neurons after SCIR. We observed that the expression of Nogo-A, a direct target of miR-455-5p, was decreased in the spinal cord of exosomal miR-455-5p administrated SCIR rats. Targeting relationship between miR-455-5p and Nogo-A was verified by dual-luciferase reporter assay. In summary, exosomes containing miR-455-5p had the neuroprotective effects on SCIR injury by promoting autophagy and inhibiting apoptosis of neurons.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Wenjun Zheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Li Dai
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
15
|
Qian X, Wu YH, Che YY, Zhao W, Shu LF, Zhu J, Wang YH, Chen T. IP 3R-mediated activation of BK channels contributes to mGluR5-induced protection against spinal cord ischemia-reperfusion injury. Neurochem Int 2021; 150:105191. [PMID: 34547325 DOI: 10.1016/j.neuint.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yong-Hui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yuan-Yuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wei Zhao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Long-Fei Shu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
16
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Yao C, Cao X, Yu B. Revascularization After Traumatic Spinal Cord Injury. Front Physiol 2021; 12:631500. [PMID: 33995118 PMCID: PMC8119644 DOI: 10.3389/fphys.2021.631500] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a complex pathological process. The initial mechanical damage is followed by a progressive secondary injury cascade. The injury ruptures the local microvasculature and disturbs blood-spinal cord barriers, exacerbating inflammation and tissue damage. Although endogenous angiogenesis is triggered, the new vessels are insufficient and often fail to function normally. Numerous blood vessel interventions, such as proangiogenic factor administration, gene modulation, cell transplantation, biomaterial implantation, and physical stimulation, have been applied as SCI treatments. Here, we briefly describe alterations and effects of the vascular system on local microenvironments after SCI. Therapies targeted at revascularization for SCI are also summarized.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
18
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
20
|
Wang H, Chen FS, Zhang ZL, Zhou HX, Ma H, Li XQ. MiR-126-3p-Enriched Extracellular Vesicles from Hypoxia-Preconditioned VSC 4.1 Neurons Attenuate Ischaemia-Reperfusion-Induced Pain Hypersensitivity by Regulating the PIK3R2-Mediated Pathway. Mol Neurobiol 2021; 58:821-834. [PMID: 33029740 DOI: 10.1007/s12035-020-02159-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023]
Abstract
Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1β were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- He Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Zai-Li Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong-Xu Zhou
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China
| | - Xiao-Qian Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
21
|
Ren Z, Qi Y, Sun S, Tao Y, Shi R. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells Dev 2020; 29:1467-1478. [PMID: 33045910 DOI: 10.1089/scd.2020.0133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating medical condition with profound social and economic impacts. Although research is ongoing, current treatment options are limited and do little to restore functionality. However, recent studies suggest that mesenchymal stem cell-derived exosomes (MSC-exosomes) may hold the key to exciting new treatment options for SCI patients. MSCs are self-renewing multipotent stem cells with multi-directional differentiation and can secrete a large number of exosomes (vesicles secreted into the extracellular environment through endocytosis, called MSC-exosomes). These MSC-exosomes play a critical role in repairing SCI through promoting angiogenesis and axonal growth, regulating inflammation and the immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be utilized to transport genetic material or drugs to target cells, and their relatively small size makes them able to permeate the blood-brain barrier. In this review, we summarize recent advances in MSC-exosome themed SCI treatments and cell-free therapies to better understand this newly emerging methodology.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yao Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Orthopedics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Tao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
22
|
Lin S, Xu C, Lin J, Hu H, Zhang C, Mei X. Regulation of inflammatory cytokines for spinal cord injury recovery. Histol Histopathol 2020; 36:137-142. [PMID: 33001420 DOI: 10.14670/hh-18-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is one of the most destructive traumatic diseases in human beings. The balance of inflammation in the microenvironment is crucial to the repair process of spinal cord injury. Inflammatory cytokines are direct mediators of local lesion inflammation and affect the prognosis of spinal cord injury to varying degrees. In spinal cord injury models, some inflammatory cytokines are beneficial for spinal cord repair, while others are harmful. A large number of animal studies have shown that local targeted administration can effectively regulate the secretion and delivery of inflammatory cytokines and promote the repair of spinal cord injury. In addition, many clinical studies have shown that drugs can promote the repair of spinal cord injury by regulating the content of inflammatory cytokines. However, topical administration affects only a small portion of inflammatory cytokines. In addition, different individuals have different inflammatory cytokine profiles during spinal cord injury. Therefore, future research should aim to develop a personalized local delivery therapeutic cocktail strategy to effectively and accurately regulate inflammation and obtain substantial functional recovery from spinal cord injury.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Jiaquan Lin
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Hengshuo Hu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Chuanjie Zhang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| |
Collapse
|
23
|
González JN, Salerno TA. Commentary: Are We Remotely Near Prevention of Spinal Cord Injury During Thoraco-Abdominal Aortic Aneurysm Repair? Semin Thorac Cardiovasc Surg 2020; 32:797-798. [PMID: 32497721 DOI: 10.1053/j.semtcvs.2020.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jessica N González
- Division of Cardiothoracic Surgery, University of Miami/Jackson Memorial Hospital, 1611 NW 12th Ave, Miami, FL, 33136
| | - Tomas A Salerno
- Division of Cardiothoracic Surgery, University of Miami/Jackson Memorial Hospital, 1611 NW 12th Ave, Miami, FL, 33136.
| |
Collapse
|
24
|
Cai XJ, Zhao JJ, Lu Y, Zhang JP, Ren BY, Cao TT, Xi GJ, Li ZW. The microenvironment following oxygen glucose deprivation/re-oxygenation-induced BSCB damage in vitro. Brain Res Bull 2018; 143:171-180. [PMID: 30086352 DOI: 10.1016/j.brainresbull.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the microenvironment following blood-spinal cord barrier (BSCB) damage and to evaluate the role of BSCB disruption in secondary damage of spinal cord injury (SCI). METHODS A model of BSCB damage was established by co-culture of primary microvascular endothelial cells and glial cells obtained from rat spinal cord tissue followed by oxygen glucose deprivation/re-oxygenation (OGD/R). Permeability was evaluated by measuring the transendothelial electrical resistance (TEER) and the leakage test of Fluorescein isothiocyanate-dextran (FITC-dextran). The expression of tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1) were evaluated by Western blot and immunofluorescence microscopy. Proinflammatory factors (TNF-α, iNOS, COX-2 and IL-1β), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were detected in the culture medium under different conditions by enzyme-linked immuno sorbent assay (ELISA). RESULTS The model of BSCB damage induced by OGD/R was successfully constructed. The maximum BSCB permeability occurred 6-12 hours but not within the first 3 h after OGD/R-induced damage. Likewise, the most significant period of TJ protein loss was also detected 6-12 hours after induction. During the hyper-acute period (3 h) following OGD/R-induced damage of BSCB, leukocyte chemotactic factors and leukocyte adhesion factors were significantly increased in the BSCB model. Pro-inflammation factors (TNF-α, IL-1β, iNOS, COX-2), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were also sharply produced during the acute period (3-6 hours) and maintained plateau levels 6-12 hours following OGD/R-induced damage, which overlapped with the period of BSCB permeability maximum. A negative linear correlation was observed between the abundance of proinflammatory factors and the expression of TJ proteins (ZO-1 and occludin) and transepithelial electrical resistance (TEER), and a positive linear correlation was found with transendothelial FITC-dextran. CONCLUSIONS Secondary damage continues after primary BSCB damage induced by OGD/R, exhibiting close ties with inflammation injury.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China
| | - Jing-Jing Zhao
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Yi Lu
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Jian-Ping Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Bing-Yan Ren
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Ting-Ting Cao
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Guang-Jun Xi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Zai-Wang Li
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China.
| |
Collapse
|
25
|
Xiao B, Chai Y, Lv S, Ye M, Wu M, Xie L, Fan Y, Zhu X, Gao Z. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int J Mol Med 2017; 40:1201-1209. [PMID: 28849073 PMCID: PMC5593464 DOI: 10.3892/ijmm.2017.3106] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
Cerebral ischemia is a leading cause of death and disability. A previous study indicated that remote ischemic postconditioning (RIP) in the treatment of cerebral ischemia reduces ischemia/reperfusion (I/R) injury. However, the underlying mechanism is not well understood. In the present study, the authors hypothesized that the protective effect of RIP on neurological damage is mediated by exosomes that are released by endothelial cells in femoral arteries. To test this, right middle cerebral artery occlusion/reperfusion with RIP was performed in rats. In addition, an I/R injury cell model was tested that included human umbilical vein endothelial cells (HUVECs) and SH-SY5Y cells. Both the in vivo and in vitro models were examined for injury. Markers of exosomes (CD63, HSP70 and TSG101) were assessed by immunohistochemistry, western blot analysis and flow cytometry. Exosomes were extracted from both animal serum and HUVEC culture medium and identified by electron microscopy. They investigated the role of endothelial cell-derived exosomes in the proliferation, apoptosis, cell cycle, migration and invasion of I/R-injured SH-SY5Y cells. In addition, apoptosis-related molecules caspase-3, Bax and Bcl-2 were detected. RIP was determined to increase the number of exosomes and the expression levels of CD63, HSP70 and TSG101 in plasma, but not in brain hippocampal tissue. The size of exosomes released after I/R in HUVECs was similar to the size of exosomes released in rats subjected to RIP. Endothelial cell-derived exosomes partly suppressed the I/R-induced cell cycle arrest and apoptosis, and inhibited cell proliferation, migration and invasion in SH-SY5Y nerve cells. Endothelial cell-derived exosomes directly protect nerve cells against I/R injury, and are responsible for the protective role of RIP in I/R.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Chai
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liyuan Xie
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanghua Fan
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziyun Gao
- Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Liu SG, Wang YM, Zhang YJ, He XJ, Ma T, Song W, Zhang YM. ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway. Neurochem Int 2017; 108:230-237. [PMID: 28411102 DOI: 10.1016/j.neuint.2017.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Spinal cord ischemia (SCI) induces a range of cellular and molecular cascades, including activation of glutamate receptors and downstream signaling. Post-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-d-aspartic acid (NMDA) receptors to form a ternary complex in the CNS. This molecular complex-mediated cytotoxicity has been implicated in brain ischemia, but its role in SCI has not been determined. The goal of the study was to investigate the potential protective effects of ZL006, a small-molecule inhibitor of the PSD-95/nNOS interaction, in an in vitro SCI model induced by oxygen and glucose deprivation (OGD) in cultured spinal cord neurons. We found that ZL006 reduced OGD-induced lactate dehydrogenase (LDH) release, neuronal apoptosis and loss of cell viability. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated mitochondrial membrane potential (MMP) loss, and enhanced ATP generation. In addition, ZL006 stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that ZL006 increased the activation of AMPK-PGC-1α-Sirt3 pathway, and the beneficial effects of ZL006 was partially abolished by AMPK inhibitor and PGC-1α knockdown. Therefore, our present data showed that, by the AMPK-PGC-1α-Sirt3 pathway, ZL006 protects spinal cord neurons against ischemia through reducing mitochondrial oxidative stress to prevent apoptosis.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yun-Mei Wang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Yan-Jun Zhang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710004, China
| | - Tao Ma
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Wei Song
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yu-Min Zhang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China.
| |
Collapse
|
27
|
Bellanti F. Ischemia-reperfusion injury: evidences for translational research. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S55. [PMID: 27868023 PMCID: PMC5104605 DOI: 10.21037/atm.2016.10.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Francesco Bellanti
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|