1
|
Wang S, Zhang Y, Yuan WC, Qi CY, Zhang HX, Wang TQ, Liu HJ, Li HS, Tian YM, Wang S, Miao SB, Zhang LP, Guo H, Zhang XJ, Zhang Y, Ma H, Guan Y. A new mechanism of high-altitude adaptation reducing myocardium infarction: inhibiting inflammation-induced ubiquitin degradation of BK Ca to enhance coronary vasodilation. Basic Res Cardiol 2025:10.1007/s00395-025-01113-0. [PMID: 40332606 DOI: 10.1007/s00395-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Our prior research demonstrated that chronic intermittent hypobaric hypoxia (CIHH) pretreatment confers cardioprotection against ischemia/reperfusion (I/R) injury in rats. However, the precise mechanisms underlying CIHH's cardioprotective effects remain insufficiently understood. This study aims to elucidate the upstream signaling pathways and dynamic regulation of BKCa channels in mediating CIHH-induced cardioprotection through coronary artery vasodilation in rats. Male Sprague-Dawley rats, matched by age and body weight, were assigned to control (Con) and CIHH groups. The CIHH group underwent 35 days of hypobaric hypoxia exposure simulating an altitude of 4000 m, for 5 h daily. Hearts were isolated, perfused using the Langendorff system, and subjected to 30 min of ischemia, followed by 60 or 120 min of reperfusion. Compared to the Con group, CIHH significantly improved left ventricular function recovery, reduced infarct size, and increased coronary flow (CF). Microvessel recording, co-immunoprecipitation, and whole-cell patch clamp techniques demonstrated that CIHH augmented CF by promoting coronary vasodilation, attributed to the inhibition of muscle RING-finger protein-1 (MuRF1)-mediated degradation of the BKCa-β1 subunit. Moreover, CIHH inhibited IKKα-induced phosphorylation and ubiquitin-mediated degradation of IκBα, thereby enhancing its cytoplasmic binding to NF-κB p65 in coronary smooth muscle cells. This process attenuated NF-κB p65 nuclear translocation and the subsequent inflammation-induced expression of MuRF1. The observed increase in coronary vasodilation, driven by the suppression of NF-κB/MuRF1-mediated BKCa-β1 degradation, contributes to enhanced CF and cardioprotection against I/R injury following CIHH.
Collapse
Affiliation(s)
- Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei-Cheng Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Can-Yang Qi
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hua-Xing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tian-Qi Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui-Jie Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hai-Shuang Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China
| | - Sui-Bing Miao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, 050011, China
| | - Li-Ping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Xiang-Jian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Li HS, Liu HJ, Zhang Y, Zhang J, Yan HY, Yuan WC, Wang S, Yu S, Yang SQ, Sun MW, Qi CY, Miao SB, Zhang LP, Guo H, Zhang Y, Ma HJ, Guan Y. Chronic intermittent hypobaric hypoxia prevents pulmonary arterial hypertension through maintaining eNOS homeostasis. Arch Biochem Biophys 2025; 767:110340. [PMID: 39954797 DOI: 10.1016/j.abb.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a pathological condition in which pulmonary artery pressure is elevated which causes patients to die of right heart failure. Chronic intermittent hypobaric hypoxia (CIHH) represents a novel method of intermittently exposing subjects to a simulated plateau hypobaric hypoxia environment. This study investigates the potential preventive and protective effects of CIHH on PAH. MAIN METHODS Male Sprague-Dawley rats were randomly divided into four groups: control group (Con), chronic intermittent hypobaric hypoxia group (CIHH), pulmonary arterial hypertension group (PAH), chronic intermittent hypobaric hypoxia + pulmonary arterial hypertension group (CIHH + PAH). To evaluate the effects of CIHH on PAH, a range of techniques was employed, including pulmonary hemodynamics, vascular reactivity assay, Western blot, RNA sequencing, HE staining and co-immunoprecipitation. KEY FINDINGS CIHH was demonstrated to reduce pulmonary artery constriction and enhance relaxation, reducing the mean pulmonary artery pressure in PAH rats. This is achieved through attenuating the CaM/eNOS (Calmodulin,CaM)protein interaction and increasing the CaV1/eNOS (Caveolin-1,CaV1) protein interaction, thereby preventing eNOS overactivation contribution to improving NO bioavailability in PAH rats. SIGNIFICANCE CIHH prevents PAH by maintaining eNOS homeostasis in PAH rats.
Collapse
Affiliation(s)
- Hai-Shuang Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui-Jie Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han-Yu Yan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei-Cheng Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuo Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sheng-Qiang Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Meng-Wei Sun
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Can-Yang Qi
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sui-Bing Miao
- Key Laboratory of Maternal and Fetal Medicine of Hebei Province, The Fourth Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, 050017, China
| | - Li-Ping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Guo X, Ma H, Cui Z, Zhao Q, Zhang Y, Jia L, Zhang L, Guo H, Zhang X, Zhang Y, Guan Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Reduces Hypothalamic N-Methyl-d-Aspartate Receptor Activity and Sympathetic Outflow in Spontaneously Hypertensive Rats. High Alt Med Biol 2024; 25:77-88. [PMID: 38241485 DOI: 10.1089/ham.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.
Collapse
Affiliation(s)
- Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongyu Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ziye Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ying Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lu Jia
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Neurophysiology of Hebei Province, Shijiazhuang, China
| |
Collapse
|
4
|
Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 2023; 14:1035186. [PMID: 37229453 PMCID: PMC10203702 DOI: 10.3389/fendo.2023.1035186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION As a common complication of spinal cord injury (SCI), most SCI patients suffer from osteoporosis. In our previous study, chronic intermittent hypobaric hypoxia (CIHH) could promote bone fracture healing. We speculated that it may act a role in the progression of osteoporosis. The current study purposed to explore the role of CIHH in the osteoporosis triggered by SCI in rats. METHODS A SCI-induced SCI model was established by completed transection at T9-T10 spinal cord of Wistar rats. One week after SCI, the rats were conducted to CIHH treatment (PB = 404 mmHg, Po2 = 84 mmHg) 6 hours a day for continuously 7 weeks. RESULTS The results of X-radiography and Micro-CT assessment demonstrated that compared with sham rats, the areal bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, trabecular number, and trabecular connectivity were decreased. Trabecular bone pattern factor, trabecular separation, as well as structure model index were increased at the distal femur and proximal tibia of SCI rats, which were effectively reversed by CIHH treatment. Histomorphometry showed that CIHH treatment increased bone formation of SCI rats, as evidenced by the increased osteoid formation, the decreased number and surface of TRAP-positive osteoclasts. Furthermore, ELISA and real time PCR results showed that the osteoblastogenesis-related biomarkers, such as procollagen type 1 N-terminal propeptide, osteocalcin in serum, as well as ALP and OPG mRNAs in bone tissue were decreased, while the osteoclastogenesis-related biomarkers, including scleorostin in serum and RANKL and TRAP mRNAs in bone tissue were increased in SCI rats. Importantly, the deviations of aforementioned biomarkers were improved by CIHH treatment. Mechanically, the protective effects of CIHH might be at least partly mediated by hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. CONCLUSION The present study testified that CIHH treatment ameliorates osteoporosis after SCI by balancing osteoblast and osteoclast activities in rats.
Collapse
Affiliation(s)
| | | | | | | | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Cui F, Mi H, Guan Y, Zhu Y, Wang R, Tian Y, Yang K, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates vascular reactivity through upregulating adiponectin expression of PVAT in metabolic syndrome rats. Can J Physiol Pharmacol 2023; 101:160-170. [PMID: 36716441 DOI: 10.1139/cjpp-2022-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cumulating evidence demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had beneficial effects on the body. This study investigated the role of perivascular adipose tissue (PVAT) in ameliorating effect of CIHH on vascular reactivity by adiponectin in mesenteric artery of metabolic syndrome (MS) rats. Main methods: 6-week-old male Sprague-Dawley rats were randomly divided into four groups: control (CON), MS model, CIHH treatment, and MS + CIHH treatment group. The size of adipocytes in PVAT was measured by scanning electron microscopy. Serum adiponectin was measured. The microvessel recording technique was used to observe the effect of CIHH on contraction and relaxation in mesenteric artery rings. Also, the expressions of interleukin-1β, tumor necrosis factor-α, adiponectin, AdipoR1, AdipoR2, APPL1, and endothelial nitric oxide synthase (eNOS) were assayed by Western blotting. Key findings: in MS rats, adipocyte size increased, serum adiponectin decreased, contraction reaction increased while relaxation reaction decreased, the expression of pro-inflammatory cytokines was upregulated, while adiponectin was downregulated in PVAT, and the expressions of AdipoR1, AdipoR2, APPL, and phosphorylated-eNOS were downregulated in mesenteric artery. All aforementioned abnormalities of MS were ameliorated in MS + CIHH rats. We concluded that CIHH treatment improves vascular reactivity through upregulating adiponectin expression and downregulating pro-inflammatory cytokine expression of PVAT in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China.,Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Haichao Mi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Yan Zhu
- Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Ruotong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Kaifan Yang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| |
Collapse
|
6
|
Yu B, Chen H, Guo XQ, Hua H, Guan Y, Cui F, Tian YM, Zhang HX, Zhang XJ, Zhang Y, Ma HJ. CIHH protects the heart against left ventricular remodelling and myocardial fibrosis by balancing the renin-angiotensin system in SHR. Life Sci 2021; 278:119540. [PMID: 33930369 DOI: 10.1016/j.lfs.2021.119540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/19/2023]
Abstract
AIM The aim of our study was to clarify the cardioprotection of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in spontaneously hypertensive rats (SHR). MAIN METHODS Adult male rats were divided into normal blood pressure Wistar-Kyoto rats (WKY) control (WKY-CON), WKY rats with CIHH treatment (WKY-CIHH), SHR control (SHR-CON) and SHR with CIHH treatment (SHR-CIHH) groups. SHR-CIHH and WKY-CIHH rats were subjected to hypobaric hypoxia simulating 4000-m altitude for 35 days, 5 h per day. Arterial blood pressure and cardiac function parameters, including ejection fraction, fractional shortening and left ventricular (LV) wall thickness, were evaluated. Cardiac pathomorphology and myocardial fibrosis were determined. The expression of angiotensin-converting enzyme (ACE), ACE2, Ang II, Ang1-7, AT1 receptor, Mas receptor, IL-6, TNF-α,IL-10, SOD and MDA were assayed in myocardium. KEY FINDINGS CIHH significantly decreased arterial blood pressure, alleviated LV hypertrophy, and improved cardiovascular function in SHR (P < 0.05-0.01). Also, CIHH protected SHR heart against morphological changes and fibrosis. In addition, CIHH significantly down-regulated the ACE/Ang II/AT1 receptor axis and up-regulated the ACE2/Ang1-7/Mas axis of renin-angiotensin system (RAS) in SHR (P < 0.05-0.01). CIHH significantly reduced IL-6, TNF-α, and MDA levels, but increased IL-10 and SOD in SHR myocardium (P < 0.05-0.01). SIGNIFICANCE The CIHH treatment protected the heart of SHR against LV remodelling and myocardial fibrosis, which might be carried out through a balance in the ACE/Ang II/AT1 axis and the ACE2/Ang1-7/Mas axis of the RAS to reduce inflammation, and inhibit oxidative stress.
Collapse
Affiliation(s)
- Bin Yu
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Department of Emergency, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei Province 050011, China
| | - Hua Chen
- Department of Coronary Care Unit, The Hebei General Hospital, Shijiazhuang, No.348, HepingWest Road, Hebei Province 050051, China
| | - Xin-Qi Guo
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Hong Hua
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Fang Cui
- Department of Electron Microscope Laboratory Centre, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Hua-Xing Zhang
- Core Facilities and Centers, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Xiang-Jian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China.
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China.
| |
Collapse
|
7
|
Chen H, Yu B, Guo X, Hua H, Cui F, Guan Y, Tian Y, Zhang X, Zhang Y, Ma H. Chronic Intermittent Hypobaric Hypoxia Decreases High Blood Pressure by Stabilizing the Vascular Renin-Angiotensin System in Spontaneously Hypertensive Rats. Front Physiol 2021; 12:639454. [PMID: 33841179 PMCID: PMC8024534 DOI: 10.3389/fphys.2021.639454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aims Previous studies have demonstrated the anti-hypertensive effect of chronic intermittent hypobaric hypoxia (CIHH) in hypertensive rats. The present study investigated the anti-hypertensive effect of CIHH in spontaneously hypertensive rats (SHR) and the role of the renin-angiotensin system (RAS) in anti-hypertensive effect of CIHH. Methods Fifteen-week-old male SHR and WKY rats were divided into four groups: the SHR without CIHH treatment (SHR-CON), the SHR with CIHH treatment (SHR-CIHH), the WKY without CIHH treatment (WKY-CON), and the WKY with CIHH treatment (WKY-CIHH) groups. The SHR-CIHH and WKY-CIHH rats underwent 35-days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h per day. Arterial blood pressure and heart rate were recorded by biotelemetry, and angiotensin (Ang) II, Ang1–7, interleukin (IL)-6, tumor necrosis factor-alpha (TNF)-α, and IL-10 in serum and the mesenteric arteries were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. The microvessel tension recording technique was used to determine the contraction and relaxation of the mesenteric arteries. Hematoxylin and eosin and Masson’s staining were used to observe vascular morphology and fibrosis. Western blot was employed to detect the expression of the angiotensin-converting enzyme (ACE), ACE2, AT1, and Mas proteins in the mesenteric artery. Results The biotelemetry result showed that CIHH decreased arterial blood pressure in SHR for 3–4 weeks (P < 0.01). The ELISA and immunohistochemistry results showed that CIHH decreased Ang II, but increased Ang1–7 in serum and the mesenteric arteries of SHR. In the CIHH-treated SHR, IL-6 and TNF-α decreased in serum and the mesenteric arteries, and IL-10 increased in serum (P < 0.05–0.01). The microvessel tension results revealed that CIHH inhibited vascular contraction with decreased Ang1–7 in the mesenteric arteries of SHR (P < 0.05–0.01). The staining results revealed that CIHH significantly improved vascular remodeling and fibrosis in SHR. The western blot results demonstrated that CIHH upregulated expression of the ACE2 and Mas proteins, and downregulated expression of the ACE and AT1 proteins (P < 0.05–0.01). Conclusion CIHH decreased high blood pressure in SHR, possibly by inhibiting RAS activity, downregulating the ACE-Ang II-AT1 axis and upregulating the ACE2-(Ang1-7)-Mas axis, which resulted in antagonized vascular remodeling and fibrosis, reduced inflammation, and enhanced vascular relaxation.
Collapse
Affiliation(s)
- Hua Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Cardiovascular Care Unit, Hebei General Hospital, Shijiazhuang, China
| | - Bin Yu
- Department of Cardiovascular Care Unit, Hebei General Hospital, Shijiazhuang, China.,Department of Emergency, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hong Hua
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Cui
- Department of Electron Microscope Experimental Centre, Hebei Medical University, Shijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
8
|
Zhang L, Jin L, Guo J, Bao K, Hu J, Zhang Y, Hou Z, Zhang L. Chronic Intermittent Hypobaric Hypoxia Enhances Bone Fracture Healing. Front Endocrinol (Lausanne) 2021; 11:582670. [PMID: 33664707 PMCID: PMC7921462 DOI: 10.3389/fendo.2020.582670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The effect of chronic intermittent hypobaric hypoxia (CIHH) on bone fracture healing is not elucidated. The present study aimed to investigate the role of CIHH on bone fracture healing and the mechanism. The Sprague-Dawley rats were randomly divided into the CIHH group and control group and monitored for 2, 4, or 8 weeks after femoral fracture surgery. Bone healing efficiency was significantly increased in the CIHH group as evidenced by higher high-density bone volume fractions, higher bone mineral density, higher maximum force, and higher stiffness. Histologically, the CIHH group exhibited superior bone formation, endochondral ossification, and angiogenic ability compared with the control group. The expression of HIF-1α and its downstream signaling proteins VEGF, SDF-1/CXCR4 axis were increased by the CIHH treatment. Moreover, the expression of RUNX2, osterix, and type I collagen in the callus tissues were also up-regulated in the CIHH group. In conclusion, our study demonstrated that CIHH treatment improves fracture healing, increases bone mineral density, and increases bone strength via the activation of HIF-1α and bone production-related genes.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jin
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialiang Guo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai Bao
- Department of Orthopaedic Surgery, Hebei Provincial Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinglue Hu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
10
|
Importance of the commissural nucleus of the solitary tract in renovascular hypertension. Hypertens Res 2019; 42:587-597. [PMID: 30622315 DOI: 10.1038/s41440-018-0190-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
The rodent renovascular hypertension model has been used to investigate the mechanisms promoting hypertension. The importance of the carotid body for renovascular hypertension has been demonstrated. As the commissural NTS (cNTS) is the first synaptic site in the central nervous system that receives information from carotid body chemoreceptors, we evaluated the contribution of cNTS to renovascular hypertension in the present study. Normotensive male Holtzman rats were implanted with a silver clip around the left renal artery to induce two-kidney, one-clip (2K1C) hypertension. Six weeks later, isoguvacine (a GABAA agonist) or losartan (an AT1 antagonist) was injected into the cNTS, and the effects were compared with carotid body removal. Immunohistochemistry for Iba-1 and GFAP to label microglia and astrocytes, respectively, and RT-PCR for components of the renin-angiotensin system and cytokines in the NTS were also performed 6 weeks after renal surgery. The inhibition of cNTS with isoguvacine or the blockade of AT1 receptors with losartan in the cNTS decreased the blood pressure and heart rate of 2K1C rats even more than carotid body removal did. The mRNA expression of NOX2, TNF-α and IL-6, microglia, and astrocytes also increased in the cNTS of 2K1C rats compared to that of normotensive rats. These results indicate that tonically active neurons within the cNTS are essential for the maintenance of hypertension in 2K1C rats. In addition to signals from the carotid body, the present results suggest that angiotensin II directly activates the cNTS and may also induce microgliosis and astrogliosis within the NTS, which, in turn, cause oxidative stress and neuroinflammation.
Collapse
|
11
|
Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018; 470:1271-1289. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
12
|
Chronic intermittent hypobaric hypoxia protects vascular endothelium by ameliorating autophagy in metabolic syndrome rats. Life Sci 2018; 205:145-154. [PMID: 29733850 DOI: 10.1016/j.lfs.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 01/18/2023]
Abstract
AIMS The study aimed to investigate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) on endothelium function and relaxation of mesenteric artery in metabolism syndrome (MS) rats. MAIN METHODS Male adult Sprague-Dawley rats were randomly divided into control (CON), CIHH (treated with 28-days hypobaric hypoxia simulating an altitude of 5000 m, 6 h daily), MS (induced by high fat diet and 10% fructose water feeding), and MS + CIHH groups. Body weight, systolic arterial pressure, blood biochemical and the endothelium dependent relaxation (EDR) of mesenteric arteries were measured. The expression of phosphor-endothelial nitric oxide synthase (p-eNOS), endoplasmic reticulum (ER) stress-related proteins and autophagy-related proteins in mesenteric arteries was assayed. KEY FINDINGS The MS rats displayed hypertension, obesity, metabolic abnormity and insulin resistance, EDR was attenuated, p-eNOS expression was down-regulated, the expressions of ER stress-related proteins were up-regulated, and autophagy dysfunction occurred. All aforementioned abnormalities in MS rats were ameliorated in MS + CIHH rats. Furthermore, the improvement of CIHH on EDR and p-eNOS was cancelled by the ER stress inducer, and the autophagy inhibitor. SIGNIFICANCE In conclusion CIHH protects endothelium function and enhances relaxation in mesenteric arteries of MS rats through improving autophagy function, reducing ER stress and up-regulating p-eNOS.
Collapse
|
13
|
Perim RR, Amorim MR, Bonagamba TLLGH, Machado BH. Previous exposure to chronic intermittent hypoxia blunts the development of one-kidney, one-clip hypertension in rats. Exp Physiol 2018; 103:473-482. [DOI: 10.1113/ep086734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Raphael R. Perim
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Mateus R. Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - The Late Leni G. H. Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP 14049-900 Brazil
| |
Collapse
|
14
|
Fu C, Li N, Yuan Y, Wang R, Chen J, Yang J, Guo Z, Wang S, Zhang Y, Liu Y, Dong J. Chronic intermittent hypobaric hypoxia provides vascular protection in the aorta of the 2-kidney, 1-clip rat model of hypertension. Can J Physiol Pharmacol 2018; 96:807-814. [PMID: 29400080 DOI: 10.1139/cjpp-2017-0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies have demonstrated that chronic intermittent hypobaric hypoxia (CIHH) can reduce blood pressure in spontaneously hypertensive rats and renovascular hypertensive (RVH) rats in which endothelial dysfunction is determined as a critical factor. However, whether CIHH can regulate vasodilation of the aorta in RVH rats remains unknown. The purpose of this study was to investigate the effect of CIHH on impaired relaxation of the aorta in the 2-kidney, 1-clip (2K1C) RVH rat model. The results showed CIHH improved the impaired endothelium-dependent relaxation in the 2K1C rat aorta. The endothelial dysfunction was prevented by the p38 antagonist SB203580, but not by the ERK1/2 antagonist PD98059 or JNK antagonist SP600125. Furthermore, the expression of p-eNOS, HIF-1α, and HIF-2α increased while that of p-p38 and BMP-4 decreased in CIHH-treated aortas from 2K1C rats. Finally, the p-eNOS expression was upregulated and the p-p38 expression was downregulated by pre-incubation of SB203580 or the BMP-4 antagonist Noggin with the aorta. CIHH ameliorated the impairment of endothelium-dependent relaxation through upregulating the expression of p-eNOS, which may be mediated by the inhibition of BMP-4/p-p38 MAPK, and upregulating the expression of HIFs in the 2K1C rat aorta.
Collapse
Affiliation(s)
- Congrui Fu
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Li
- b Department of Physiology, Medical College, Hebei University, Baoding, Hebei, China
| | - Yujia Yuan
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ri Wang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Yang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zan Guo
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Wang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yi Zhang
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yixian Liu
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China.,c Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Jinghui Dong
- a Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Yuan F, Zhang L, Li YQ, Teng X, Tian SY, Wang XR, Zhang Y. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress. Sci Rep 2017; 7:7922. [PMID: 28801645 PMCID: PMC5554163 DOI: 10.1038/s41598-017-08388-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022] Open
Abstract
We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Li Zhang
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Qing Li
- Department of Gynecology, Hebei Traditional Medicine Hospital, Shijiazhuang, 050011, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, 050017, China
| | - Si-Yu Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiao-Ran Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China.
| |
Collapse
|
16
|
Protective Effects of Chronic Intermittent Hypobaric Hypoxia Pretreatment against Aplastic Anemia through Improving the Adhesiveness and Stress of Mesenchymal Stem Cells in Rats. Stem Cells Int 2017; 2017:5706193. [PMID: 28798776 PMCID: PMC5534323 DOI: 10.1155/2017/5706193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 11/29/2022] Open
Abstract
Aplastic anemia (AA) is a common malignant blood disease, and chronic intermittent hypobaric hypoxia (CIHH) has a beneficial effect against different diseases. The aim of the present study was to investigate the protective effect of CIHH against AA and underlying mechanisms. 5-Fluorouracil and busulfan treatment induced AA model in rats with reduction of hematological parameters and bone marrow tissue injury and decrease of the colony numbers of progenitor cells. CIHH pretreatment significantly reduced the incidence rate of AA and alleviated above symptoms in AA model. The adhesive molecules of bone marrow mesenchymal stem cells (BMMSCs) in AA model, VLA-4, VCAM-1, and ICAM-1 were upregulated, and those of CD162 and CD164 were downregulated by CIHH pretreatment. The expressions of HIF-1α and NF-κB in BMMSCs were also decreased through CIHH pretreatment. Overall, the results demonstrated for the first time that CIHH has an anti-AA effect through improving the adhesiveness and stress of mesenchymal stem cells in rats. CIHH could be a promising and effective therapy for AA.
Collapse
|
17
|
Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats. Life Sci 2016; 160:57-63. [DOI: 10.1016/j.lfs.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
|